首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation shows that both intracranial liquor circulation and skull biomechanical properties evaluated by its pliability (compliance) to intracranial pressure are characterised by marked interhemisphere asymmetry. The interhemisphere differences of cerebrospinal fluid mobility were evaluated by means of asymmetry coefficient (right/left ratio of liquor mobility) which was found to be 1.25-1.45 in healthy middle-age persons. For the skull pliability (compliance) the coefficient of hemispheric asymmetry was 0.75-0.95. These two hemisphere asymmetry coefficients are characterized by reciprocal relationships. These coefficients demonstrated no dominancy related to right/left hemisphere as well as no correlation with neurophysiological parameter. Functional tests (apnoea, hyperventilation, Stookey test) gave rise to significant changes of these coefficient values. At ageing, the magnitudes of these coefficients decreased. The spectral analysis of pulse waves of dopplerogram and rheoencephalogram reveals hemisphere asymmetry, too. It should be suggested that the interhemisphere asymmetry of the CSF dynamics and skull biomechanical properties is a special mechanism which contributes in the process of circulatory-metabolic support of brain activity.  相似文献   

2.
Cradleboarding was practiced by numerous prehistoric and historic populations, including the Hopi. In this group, one result of cra-dleboarding was bilateral or asymmetric flattening of the posterior occipital. We test whether cradleboarding had significant effects on the morphology of the cranial vault, cranial base, and face. Additionally, we examine associations between direction of flattening and asymmetric craniofacial growth. A skeletal sample of Hopi from the Old Walpi site includes both nonmodified (N = 43) and modified individuals (N = 39). Three-dimensional coordinates of 53 landmarks were obtained using a diagraph. Thirty-six landmarks were used to define nine finite elements in the cranial vault, cranial base, and face. Finite element scaling was used to compare average nonmodified individuals, with averages of bilaterally, right, and left modified individuals. The significance of variation among “treatment” groups was evaluated using a bootstrap test. Pearson product-moment correlations test the association of asymmetry with direction of modification. Hopi cradleboarding has a significant effect on growth of the cranial vault, but does not affect morphology of the cranial base or face. Bilateral flattening of the cranial vault leads to decreased length and increased width of the cranial vault. Flattening of the right or left cranial vault results in ipsilaterally decreased length and width coupled with a corresponding increased length and width on the contralateral side of the cranial vault. There is a significant correlation of size asymmetry with direction of modification in the cranial vault, but not with size or shape change in the cranial base or face. © 1995 Wiley-Liss, Inc.  相似文献   

3.
On 311 dental stone casts of living children aged from 8 to 12 years, were measured the lingual fossa depth, MD diameter, and the BL diameter of the permanent maxillary incisors. The correlations and the differences of measured variables between left and right incisors, centrals and laterals, male and female incisors as well as the correlations between measured variables themselves were analysed. High left-right symmetry was established, except for directional asymmetry in female centrals. A significant positive correlation in terms of positive allometry between the lingual fossa depth and MD diameter was found. In the light of these results, the significance of the lingual fossa depth as a factor of strength is discussed.  相似文献   

4.
Sinsel NK  Guelinckx PJ 《Plastic and reconstructive surgery》2003,111(4):1432-43; discussion 1444-5
In a previous study, the influence of the midfacial musculature upon growth and development of the maxilla and mandible was established macroscopically. Dry skull measurements revealed a reduced premaxillary, maxillary, mandibular, and anterior corpus length with a simultaneous increase in mandibular ramal height on the paralyzed side. It was demonstrated that these reduced premaxillary and maxillary lengths were among others the result of reduced nasofrontal growth, whereas the increased ramal height was accompanied by condylar growth alterations. This study investigated whether the growth alterations at the mandibular corpus region could be explained by altered periosteal growth at the muscle-bone interface of the zygomatico-auricular muscle and the mandibular corpus, caused by altered muscle activity acting upon the periosteal sleeve. Fifty-six 12-day-old New Zealand White rabbits were randomly assigned to either a control or an experimental group. In the experimental group, left-sided partial facial paralysis was induced surgically when the animals were 12 days old. To study the muscle-bone interface, seven follow-up time intervals were defined between 3.5 and 60 days following the surgery. At these time intervals, four randomly selected control animals and four randomly selected experimental animals were killed. The anterior mandibular corpus region with the muscle-bone interface of the left control hemimandible and the left and right experimental hemimandibles was processed for undecalcified tissue preparation. Quantitative analysis of the total bone area at the muscle-bone interface revealed no significant differences between the left control hemimandible and the left and right experimental hemimandibles. Also, qualitative study of the histologic sections showed no major changes in the appearance or development of the trabecular pattern between the groups. However, slight differences in the distribution pattern of osteoblasts and osteoclasts along the bony surface were found between the left control hemimandible and the left and right experimental hemimandibles, which seemed to explain the alterations in mandibular corpus shape between these groups. It was suggested that these changes in the distribution pattern of osteoblasts and osteoclasts were the result of changes in the loading distribution pattern acting upon the mandible, caused by an altered neuromuscular recruitment pattern of the remaining functionally intact, mandibularly attached muscles. The latter was probably the result of adaptive mandibular positioning in response to an altered occlusal relationship, which was induced by the abnormal maxillary growth as a result of the unilateral partial facial paralysis.  相似文献   

5.
Owing to the great morphological diversity of domestic dogs (Canis familiaris), the study of historical shape change in dog skulls provides an excellent opportunity for investigating the dynamics of morphological evolution. Breed standards make known which features were selected by breeders. Here we use the methods of geometric morphometrics to study change of skull shape in a series of purebred St Bernard dogs spanning nearly 120 years. A regression of shape on time was highly significant and revealed a consistent trend of shape change that corresponded to the features deemed desirable by the breed standard. Historical shape change in St Bernards involves a broadening of the skull and a tilting of the palate and upper jaw relative to the rest of the skull. This trend appears to be linear throughout the entire period and appears to be continuing. Allometry was ruled out as a contributing factor to this change because there was no consistent trend of historical change in skull size and because neither the patterns of static nor ontogenetic allometry corresponded to the historical shape change. The dramatic modification of the St Bernard skull demonstrates that selection can achieve sustained and substantial change and can completely overcome constraints such as allometry.  相似文献   

6.
The asymmetric positioning of internal organs on the left or right side of the body is highly conserved in vertebrates and relies on a Nodal signaling pathway acting on the left side of the embryo. Whether the same pathway also regulates left-right asymmetry in invertebrates and what is the evolutionary origin of the mechanisms controlling left-right determination are not known. Here, we show that nodal regulates left-right asymmetry in the sea urchin but that, intriguingly, its expression is reversed compared to vertebrates. Nodal signals emitted from the right side of the larva prevent the right coelomic pouch from forming the imaginal rudiment. Inhibition of Nodal signaling after gastrulation causes formation of an ectopic rudiment on the right side, leading to twinned urchins after metamorphosis. In contrast, ectopic activation of the pathway prevents formation of the rudiment. Our results show that the mechanisms responsible for left-right determination are conserved within basal deuterostomes.  相似文献   

7.
Saccadic latencies were studied in ten healthy subjects. Peripheral targets were presented monocularly to a leading and nonleading eyes in the right and left hemifields. SS (single step) and OVERLAP (200 ms) schemes of visual stimulation were used. Under OVERLAP conditions, the saccadic latency was longer by 30-39 ms and the number of long-latency saccades was higher than under SS conditions, especially in subjects with mixed asymmetry profiles. In the majority of subjects with right asymmetry profile, the latencies of saccades during stimulation of the leading eye were by 12 ms shorter than during stimulation of the nonleading eye, and the latencies of right saccades were by 24 ms shorter than that of the left saccades independently of the stimulated eye. The obtained results explain some characteristic features of hemyspheric asymmetry in organization of saccadic movements.  相似文献   

8.
It is now standard practice, at Universities around the world, for academics to place pictures of themselves on a personal profile page maintained as part of their University's web-site. Here we investigated what these pictures reveal about the way academics see themselves. Since there is an asymmetry in the degree to which emotional information is conveyed by the face, with the left side being more expressive than the right, we hypothesised that academics in the sciences would seek to pose as non-emotional rationalists and put their right cheek forward, while academics in the arts would express their emotionality and pose with the left cheek forward. We sourced 5829 pictures of academics from their University websites and found that, consistent with the hypotheses, there was a significant difference in the direction of face posing between science academics and English academics with English academics showing a more leftward orientation. Academics in the Fine Arts and Performing Arts however, did not show the expected left cheek forward bias. We also analysed profile pictures of psychology academics and found a greater bias toward presenting the left check compared to science academics which makes psychologists appear more like arts academics than scientists. These findings indicate that the personal website pictures of academics mirror the cultural perceptions of emotional expressiveness across disciplines.  相似文献   

9.
We studied asymmetric variation of the mandible in the Central European portion of the hybrid zone between two house mouse subspecies, Mus musculus musculus and Mus musculus domesticus. Within introgression classes, defined by the share of diagnostic allozymes, we quantified the directional and fluctuating component of asymmetric variation, as well as skewness and kurtosis of individual asymmetry distributions. Furthermore, in the same manner we re‐analysed asymmetric variation of the ventral side of the skull. According to the quadratic polynomial model, the mandible shape‐fluctuating asymmetry, but not size‐fluctuating asymmetry, was significantly decreased in the centre of the hybrid zone (with a minimum predicted for a hybrid index of 0.41). On the contrary, the skull shape‐fluctuating asymmetry non‐monotonically increased towards the musculus side of the hybrid zone (with a peak predicted for a hybrid index of 0.86). Thus, the impact of hybridization on fluctuating asymmetry is trait‐specific in this portion of the house mouse hybrid zone. The only general feature of asymmetric variation we observed was the shift towards the platykurtosis of asymmetry distributions in the centre of the hybrid zone. Taken together, we suggest genetic variability for right–left asymmetries to be generally increased, but the developmental instability of mandible shape to be decreased, by hybridization. We hypothesize the decrease of developmental instability to be caused by overdominant effects on developmental dynamics rather than by increased heterozygosity. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 13–27.  相似文献   

10.
The interspecific allometry of five measures of total cranial bone thickness is examined in 10 extant catarrhine genera and two fossil hominid samples representing A. africanus and Asian H. erectus. Analysis of the modern sample shows that most interspecific variation in vault thickness can be accounted for by variation in body size. Correlation values are moderate to high (r = 0.75–0.98), and all variables exhibit positive allometry. The bone thickness:body mass relationship of modern humans broadly conforms with that of other primates. However, in the distribution of relative thickness throughout the skull, H. sapiens is distinguished by relative thickening of the parietal and extreme relative thinning of the temporal squama. The bone thickness:body mass relationship in the two early hominid species is examined using published mean body weight estimates generated from post-cranial predictor variables. A. africanus exhibits great similarity to modern humans in its relation to the catarrhine regression data and in the distribution of relative thickness throughout the skull. H. erectus also shows a modern human-like pattern in the distribution of its relative thickness; however, its bone thickness:body mass relationship is dissimilar to that displayed by all other taxa, including the other hominid species. On the basis of these results, it is suggested that the published body weight estimate assigned to H. erectus greatly underestimates actual mean body size for Asian members of this species. © 1996 Wiley-Liss, Inc.  相似文献   

11.
The zebrafish epithalamus, consisting of the pineal complex and flanking dorsal habenular nuclei, provides a valuable model for exploring how left-right differences could arise in the vertebrate brain. The parapineal lies to the left of the pineal and the left habenula is larger, has expanded dense neuropil, and distinct patterns of gene expression from the right habenula. Under the influence of Nodal signaling, positioning of the parapineal sets the direction of habenular asymmetry and thereby determines the left-right origin of habenular projections onto the midbrain target, the interpeduncular nucleus (IPN). In zebrafish with parapineal reversal, neurons from the left habenula project to a more limited ventral IPN region where right habenular axons would normally project. Conversely, efferents from the right habenula adopt a more extensive dorsoventral IPN projection pattern typical of left habenular neurons. Three members of the leftover-related KCTD (potassium channel tetramerization domain containing) gene family are expressed differently by the left and right habenula, in patterns that define asymmetric subnuclei. Molecular asymmetry extends to protein levels in habenular efferents, providing additional evidence that left and right axons terminate within different dorsoventral regions of the midbrain target. Laser-mediated ablation of the parapineal disrupts habenular asymmetry and consequently alters the dorsoventral distribution of innervating axons. The results demonstrate that laterality of the dorsal forebrain influences the formation of midbrain connections and their molecular properties.  相似文献   

12.
Using the non-destructive technique of 3-D micro computed tomography (3-D-μCT), we present a new, virtual reconstruction of the Le Moustier 1 Neandertal skull. This new reconstruction corrects defects found in earlier reconstruction attempts by repositioning misaligned cranial fragments, addressing the problem of asymmetry caused by pressure during the fossilization process, and placing the basioccipital in its proper anatomical position. Metric comparisons between Le Moustier 1 and juvenile and adult Neandertals demonstrate that facial height proceeded at a faster rate of growth than facial prognathism at the beginning of the adolescent period. They also confirm the anterior placement of the basioccipital. A compound painted to match the colour of the fossilized bone was used in previous reconstruction attempts and the aim of this analysis was to remove the false material to reveal to what extent the fossilized bone was preserved. The areas with the most artificial material and glue include the palate, areas around the mandibular teeth, the left frontal, and parts of the right parietal and temporal bones. The μCT data were also used to examine internal structures of the skull including the frontal sinus and the labyrinth of the inner ear. An investigation of the frontal sinus reveals morphology similar to that found in adult Neandertals, although the structure does not extend to mid-orbit. The dimension of the radius of curvature of the lateral semicircular canal falls within one standard deviation, and the anterior and posterior canals within two standard deviations, of the published Neandertal mean. As in other Neandertals, the posterior semicircular canal is in an inferior position relative to the plane of the lateral canal.  相似文献   

13.
The behaviour of mice of BALB/c line was studied in a symmetrical multialternative Y-maze: their motor, alimentary and investigating activities as well as spatial-motor asymmetry. In animals with inactivated left hemisphere, as compared to intact ones, the motor and alimentary activities were lowered, and the investigating one augmented. Instead of the weak left-side asymmetry a distinct left-side preference appeared of most Y-maze sections, and right-side preference for approaches to the feeders. Elimination of the right hemisphere did not change the motor activity; the alimentary one decreased and the investigating one augmented, but less than during inactivation of the left hemisphere. On the whole, the right-side asymmetry appeared for all sections. According to all parameters studied, the influence of the left hemisphere on animal behaviour was more expressive and diverse. Spatial preference is formed with participation of influences of both hemispheres. The differences between them are more qualitative than quantitative.  相似文献   

14.
Summary An investigation of structural asymmetry in the avian brain was conducted on the epithalamic medial habenular nucleus of the chicken. Twelve male and ten female two-day-old chickens were used for a morphometric evaluation of asymmetry. The medial habenular nucleus was measured from paraffin-wax-embedded, 8 m-thick sections by use of a semiautomatic image analyser. The volumes of the right and left medial habenula of each animal were statistically analysed (within animal experimental design). The right medial habenula in males showed significant group asymmetry. In contrast, females failed to demonstrate group bias in favour of either hemisphere. However, individual females were lateralised, with either a larger right or left medial habenula. Although individuals of both sexes were lateralised, there was no significant sex difference in volume in either the right or left medial habenula.We propose that sex-linked structural asymmetry may be influenced by steroid hormonal effects in the central nervous system, and that such asymmetry could be more prevalent in the non-mammalian vertebrate brain than previously considered.  相似文献   

15.
We examined how maxillary molar dimensions change with body and skull size estimates among 54 species of living and subfossil strepsirrhine primates. Strepsirrhine maxillary molar areas tend to scale with negative allometry, or possibly isometry, relative to body mass. This observation supports several previous scaling analyses showing that primate molar areas scale at or slightly below geometric similarity relative to body mass. Strepsirrhine molar areas do not change relative to body mass(0.75), as predicted by the metabolic scaling hypothesis. Relative to basicranial length, maxillary molar areas tend to scale with positive allometry. Previous claims that primate molar areas scale with positive allometry relative to body mass appear to rest on the incorrect assumption that skull dimensions scale isometrically with body mass. We identified specific factors that help us to better understand these observed scaling patterns. Lorisiform and lemuriform maxillary molar scaling patterns did not differ significantly, suggesting that the two infraorders had little independent influence on strepsirrhine scaling patterns. Contrary to many previous studies of primate dental allometry, we found little evidence for significant differences in molar area scaling patterns among frugivorous, folivorous, and insectivorous groups. We were able to distinguish folivorous species from frugivorous and insectivorous taxa by comparing M1 lengths and widths. Folivores tend to have a mesiodistally elongated M1 for a given buccolingual M1 width when compared to the other two dietary groups. It has recently been shown that brain mass has a strong influence on primate dental eruption rates. We extended this comparison to relative maxillary molar sizes, but found that brain mass appears to have little influence on the size of strepsirrhine molars. Alternatively, we observed a strong correlation between the relative size of the facial skull and relative molar areas among strepsirrhines. We hypothesize that this association may be underlain by a partial sharing of the patterning of development between molar and facial skull elements.  相似文献   

16.
A robust finding in the human neurosciences is the observation of a left hemisphere specialization for processing spoken language. Previous studies suggest that this auditory specialization and brain asymmetry derive from a primate ancestor. Most of these studies focus on the genus Macaca and all demonstrate a left hemisphere bias. Due to the narrow taxonomic scope, however, we lack a sense of the distribution of this asymmetry among primates. Further, although the left hemisphere bias appears mediated by conspecific calls, other possibilities exist including familiarity, emotional relevance and more general acoustic properties of the signal. To broaden the taxonomic scope and test the specificity of the apparent hemisphere bias, we conducted an experiment on vervets (Cercopithecus aethiops)-a different genus of old world monkeys and implemented the relevant acoustic controls. Using the same head orienting procedure tested with macaques, results show a strong left ear/right hemisphere bias for conspecific vocalizations (both familiar and unfamiliar), but no asymmetry for other primate vocalizations or non-biological sounds. These results suggest that although auditory asymmetries for processing species-specific vocalizations are a common feature of the primate brain, the direction of this asymmetry may be relatively plastic. This finding raises significant questions for how ontogenetic and evolutionary forces have impacted on primate brain evolution.  相似文献   

17.
In all vertebrates, invariant left/right (L/R) positioning and organization of the internal viscera is controlled by a conserved pathway. Nodal, a member of the TGFbeta superfamily is a critical upstream component responsible for initiating L/R axis determination. Asymmetric Nodal expression in the node preceeds and foreshadows morphological L/R asymmetry. Here we address the mechanism of Nodal activation in the left LPM by studying the function of a novel enhancer element, the AIE. We show this element is exclusively active in cells of the left lateral plate mesoderm (LPM) and is not itself responding to Nodal asymmetry. To test the hypothesis that this element may initiate asymmetric Nodal expression in the LPM, we deleted it from the mouse germ line. Mice homozygous for the AIE deletion (Nodal(deltaaie/deltaaie)) show no defects. However, we find that the AIE contributes to regulating the level of asymmetric Nodal activity; analysis of transheterozygous embryos (Nodal(deltaaie/null)) shows reduced Nodal expression in the left LPM associated with a low penetrance of L/R defects. Our findings point to the existence of two independent pathways that control Nodal expression in the left LPM.  相似文献   

18.
Using the non-destructive technique of 3-D micro computed tomography (3-D-μCT), we present a new, virtual reconstruction of the Le Moustier 1 Neandertal skull. This new reconstruction corrects defects found in earlier reconstruction attempts by repositioning misaligned cranial fragments, addressing the problem of asymmetry caused by pressure during the fossilization process, and placing the basioccipital in its proper anatomical position. Metric comparisons between Le Moustier 1 and juvenile and adult Neandertals demonstrate that facial height proceeded at a faster rate of growth than facial prognathism at the beginning of the adolescent period. They also confirm the anterior placement of the basioccipital. A compound painted to match the colour of the fossilized bone was used in previous reconstruction attempts and the aim of this analysis was to remove the false material to reveal to what extent the fossilized bone was preserved. The areas with the most artificial material and glue include the palate, areas around the mandibular teeth, the left frontal, and parts of the right parietal and temporal bones. The μCT data were also used to examine internal structures of the skull including the frontal sinus and the labyrinth of the inner ear. An investigation of the frontal sinus reveals morphology similar to that found in adult Neandertals, although the structure does not extend to mid-orbit. The dimension of the radius of curvature of the lateral semicircular canal falls within one standard deviation, and the anterior and posterior canals within two standard deviations, of the published Neandertal mean. As in other Neandertals, the posterior semicircular canal is in an inferior position relative to the plane of the lateral canal.  相似文献   

19.
A case is reported in which an immense cranial vault was reduced as part of the rehabilitation of a patient with severe hydrocephalus who had preservation of the intellect. This patient was selected carefully, and we do not advocate such procedures on every hydrocephalic. This patient was recumbent and bedridden prior to the procedure because of the size and weight of his head, but he was able to move freely in a wheelchair and attend a special school after the reduction of the skull.  相似文献   

20.
The compensation hypothesis predicts that if the left testis is defective e.g. due to developmental stress,the increased right testis serves a compensatory role, and thereby displaying testes asymmetry which can be a reliable indicator of male body condition. Here, to test the prediction of the compensation hypothesis, we analyzed difference in size between left testis and right testis and the relationship between testes asymmetry and male body condition in the swelled vent frog(Feirana quadranus).We found that the left testis was larger than right testis,displaying a significant directional asymmetry in testes size. Although testes mass was correlated with body condition, testes asymmetry was not correlated with body condition, which cannot provide evidence that the right testis had a compensatory function. Our findings suggest no evidence for the compensation hypothesis in this species due to lacking the compensatory function in right testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号