首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic regulation of G-protein signaling in the phototransduction cascade ensures the high temporal resolution of vision. In a key step, the activated alpha-subunit of transducin (Galphat-GTP) activates the cGMP phosphodiesterase (PDE) by binding the inhibitory gamma-subunit (PDEgamma). Significant progress in understanding the interaction between Galphat and PDEgamma was achieved by solving the crystal structure of the PDEgamma C-terminal peptide bound to Galphat in the transition state for GTP hydrolysis (Slep, K. C., Kercher, M. A., He, W., Cowan, C. W., Wensel, T. G., and Sigler, P. B. (2001) Nature 409, 1071-1077). However, some of the structural elements of each molecule were absent in the crystal structure. We have probed the binding surface between the PDEgamma C terminus and activated Galphat bound to guanosine 5'-O-(3-thio)-triphosphate (GTPgammaS) using a series of full-length PDEgamma photoprobes generated by intein-mediated expressed protein ligation. For each of seven PDEgamma photoprobe species, expressed protein ligation allowed one benzoyl-L-phenylalaine substitution at selected hydrophobic C-terminal positions, and the addition of a biotin affinity tag at the extreme C terminus. We have detected photocross-linking from several PDEgamma C-terminal positions to the Galphat-GTPgammaS N terminus, particularly from PDEgamma residue 73. The overall percentage of cross-linking to the Galphat-GTPgammaSN terminus was analyzed using a far Western method for examining Galphat-GTPgammaS proteolytic digestion patterns. Furthermore, mass spectrometric analysis of cross-links to Galphat from a benzoyl-phenylalanine replacement at PDEgamma position 86 localized the region of photoinsertion to Galphat N-terminal residues Galphat-(22-26). This novel Galphat/PDEgamma interaction suggests that the transducin N terminus plays an active role in signal transduction.  相似文献   

2.
GTP-binding protein (G protein)-mediated signal transduction pathways play essential roles during the aggregation and differentiation process of Dictyostelium. In addition to the five known G protein alpha-subunit genes, we recently identified three novel alpha-subunit genes, G alpha 6, G alpha 7, and G alpha 8, using the polymerase chain reaction technique. We present here a more complete analysis of G alpha 7 and G alpha 8. The cDNAs of these two genes were cloned, and their complete nucleotide sequences were determined. Sequence analyses indicate that G alpha 8 possesses some unusual features. It lacks the "TCATDT" motif, a sequence of amino acids highly conserved among G alpha subunits, and has an additional 50 amino acids at its C-terminus consisting of long stretches of asparagine. Moreover, G alpha 8 is unusually resistant to protease digestion, which may indicate a slow GTP hydrolysis rate. The possible functions of these alpha-subunits were assessed by generating mutants lacking G alpha 7 or G alpha 8 by gene targeting through homologous recombination and by overexpressing G alpha 7 or G alpha 8 protein. Overexpression of G alpha 7 resulted in abnormal morphogenesis starting at the slug stage, whereas analysis of the other strains failed to reveal any obvious growth or developmental defects under either normal or stressful conditions. The implications of these results are discussed.  相似文献   

3.
The advantages of using amino-directed photoprobes to couple native fragments, obtained by enzymatic digestion with trypsin, to protein carriers to prepare peptide-conjugates is described. The following photoprobe reagents were investigated:N-hydroxysuccinimidylp-azidobenzoate,N-hydroxysuccinimidyl ester ofp-azidobenzoylglycine,N-hydroxysuccinimidylp-benzoylbenzoate, and pentachlorophenyl ester ofp-benzoylbenzoyl glycine or the symmetric anhydride ofp-benzoylbenzoylglycine. These reagents modify only the NH2-terminal amino group and/or COOH-terminal -amino group of lysine of the tryptic fragments. Since the photoprobe is inert until photolysis, the probe-modified native fragment can be readily purified by high-performance liquid chromatography before cross-linking to the carrier molecule. The benzophenone photoprobes were shown to give the highest incorporation of peptide onto the protein carrier.  相似文献   

4.
[Tyr36]human adenylate cyclase stimulating peptide (1-36)-NH2, an amino-terminal analog of a tumor peptide which is associated with hypercalcemia of malignancy, and [Nle8, Nle18, Tyr34]bovine parathyroid hormone (PTH)-(1-34)-NH2 both bind with similar affinities to receptors on rat osteosarcoma cells, ROS 17/2.8, when either of the peptides is used as the radioligand. Pretreatment of the cells with either peptide down-regulates available binding sites for either radioligand and desensitizes the cAMP accumulation stimulated by either peptide. Prior exposure of the cells to dexamethasone increases these responses to both peptides. Photoderivatized radioiodinated [Tyr36]human adenylate cyclase-stimulating peptide (1-36)-NH2 and [Nle8, Nle18, Tyr34]bovine PTH-(1-34)-NH2 both specifically label a Mr = 80,000 membrane protein on ROS 17/2.8 cells. The intensity of labeling this receptor band by either photoprobe is reduced by co-incubation with either peptide over the same dose range. Equivalent dose-dependent down-regulation of receptors which bind both photoprobes is also found when ROS 17/2.8 cells are preincubated with either peptide. Dexamethasone increases the intensity of receptor labeling. Our findings strongly indicate that both peptides recognize the same plasma membrane receptor on ROS 17/2.8 cells. Although the physiological function(s) of human adenylate cyclase-stimulating peptide is unknown, these results could explain why its biological actions on mineral ion metabolism so closely simulate those of PTH and raise interesting questions about the general biological and evolutionary significance of the use of the same receptor by chemically distinct peptides.  相似文献   

5.
6.
We have investigated whether the proteolysis of members of the cGMP binding phosphodiesterases (PDE6, PDE5A1, and PDE10A2) by caspase-3 is modulated by the gamma inhibitor subunit of PDE6. We show here that purified caspase-3 proteolyses PDE6, an enzyme composed of two nonidentical catalytic subunits (termed alpha and beta) with molecular mass of 88 and 84 kDa. The proteolysis of PDE6 produced a single fragment with a molecular mass of 78 kDa. This corresponds to the possible cleavage of the caspase-3 consensus DFVD site (amino acids: 164-168) in the alpha subunit and leads to a 50% decrease in the cGMP hydrolysing activity of the enzyme. The addition of rod PDEgamma to the incubation completely blocked the cleavage of PDE6 by caspase-3. In contrast, rod PDEgamma converted PDE5A1 (molecular mass of 98 kDa) to a better substrate for caspase-3. This resulted in the formation of four major fragments with molecular mass of 82-83, 67, 43, and 34 kDa. In addition, caspase-3 induced an approximately 80% reduction in the activity of a partially purified preparation of PDE5A1 in the presence of rod PDEgamma. Caspase-3 also cleaved PDE10A2 (molecular mass of 95 kDa) to a single 48-kDa fragment. This was consistent with cleavage of the DLFD site (amino acids: 312-315) in PDE10A2. In contrast with both PDE6 and PDE5A1, rod PDEgamma was without effect on this enzyme. These data show that rod PDEgamma interacts with at least two members of the cGMP binding PDE family (PDE5A1 and PDE6) and can exert differential effects on the cleavage of these enzymes by caspase-3.  相似文献   

7.
Although a high-resolution crystal structure for the ground state of rhodopsin is now available, portions of the cytoplasmic surface are not well resolved, and the structural basis for the interaction of the cytoplasmic loops with the retinal G-protein transducin (G(t)) is still unknown. Previous efforts aimed at the design, construction, and functional characterization of soluble mimics for the light-activated state of rhodopsin have shown that grafting defined segments from the cytoplasmic region of bovine opsin onto a surface loop in a mutant form of thioredoxin (HPTRX) is sufficient to confer partial G(t) activating potential [Abdulaev et al. (2000) J. Biol. Chem. 275, 39354-39363]. To assess whether these designed mimics could provide a structural insight into the interaction between light-activated rhodopsin and G(t), the ability of an HPTRX fusion protein comprised of the second (CD) and third (EF) cytoplasmic loops (HPTRX/CDEF) to bind G(t) alpha-subunit (G(t)(alpha)) peptides was examined using nuclear magnetic resonance (NMR) spectroscopy. Transfer NOESY (TrNOESY) experiments show that an 11 amino acid peptide corresponding to the carboxyl terminus of G(t)(alpha) (GtP), as well as a "high-affinity" peptide analogue, HAP1, binds to HPTRX/CDEF in the fast-exchange regime and undergoes similar, subtle structural changes at the extreme carboxyl terminus. Observed TrNOEs suggest that both peptides when bound to HPTRX/CDEF adopt a reverse turn that is consistent with the C-cap structure that has been previously reported for the interaction of GtP with the light-activated signaling state, metarhodopsin II (MII). In contrast, TrNOESY spectra provide no evidence for structuring of the amino terminus of either GtP or HAP1 when bound to HPTRX/CDEF, nor do the spectra show any measurable changes in the CD and EF loop resonances of HPTRX/CDEF, which are conformationally dynamic and significantly exchange broadened. Taken together, the NMR observations indicate that HPTRX/CDEF, previously identified as a functional mimic of MII, is also an approximate structural mimic for this light-activated state of rhodopsin.  相似文献   

8.
Rotavirus mRNAs are capped but not polyadenylated, and viral proteins are translated by the cellular translation machinery. This is accomplished through the action of the viral nonstructural protein NSP3, which specifically binds the 3' consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G I. To further our understanding of the role of NSP3 in rotavirus replication, we looked for other cellular proteins capable of interacting with this viral protein. Using the yeast two-hybrid assay, we identified a novel cellular protein-binding partner for rotavirus NSP3. This 110-kDa cellular protein, named RoXaN (rotavirus X protein associated with NSP3), contains a minimum of three regions predicted to be involved in protein-protein or nucleic acid-protein interactions. A tetratricopeptide repeat region, a protein-protein interaction domain most often found in multiprotein complexes, is present in the amino-terminal region. In the carboxy terminus, at least five zinc finger motifs are observed, further suggesting the capacity of RoXaN to bind other proteins or nucleic acids. Between these two regions exists a paxillin leucine-aspartate repeat (LD) motif which is involved in protein-protein interactions. RoXaN is capable of interacting with NSP3 in vivo and during rotavirus infection. Domains of interaction were mapped and correspond to the dimerization domain of NSP3 (amino acids 163 to 237) and the LD domain of RoXaN (amino acids 244 to 341). The interaction between NSP3 and RoXaN does not impair the interaction between NSP3 and eIF4G I, and a ternary complex made of NSP3, RoXaN, and eIF4G I can be detected in rotavirus-infected cells, implicating RoXaN in translation regulation.  相似文献   

9.
A general synthetic strategy is described for the preparation of peptide-conjugates where the peptides contain the NH2 terminal, COOH terminal, or internal regions of the protein sequence. Glycoprotein D of herpes simplex virus type 1 is used as a representative protein. Ten-residue peptide fragments of the native sequence were synthesized using standard solid-phase methodology. Photoprobes stable to conditions of synthesis and HF cleavage were coupled directly to the protected-peptide resin during synthesis. This one-step procedure eliminates the potential modification of functional groups in the sequence of interest that can occur when using chemically labile bifunctional reagents. Since the photoprobe is inert until photolysis, the synthetic peptide-probe can be readily purified by high-performance liquid chromatography before cross-linking to the carrier molecule. The following photoprobe derivatives were investigated: thep-azidobenzoyl,p-nitrophenylalanyl, andp-benzoylbenzoyl groups. The benzophenone photoprobes were shown to give the highest incorporation of peptide-probe with the protein carrier over a wide range ofpH and solvent conditions. For solid-phase synthesis three benzophenone photoprobes can be used: benzoylbenzoic acid, benzoylbenzoylglycine, andN e-(4-benzoylbenzoyl)-N -t-butyloxycarbonyl-lysine.  相似文献   

10.
The involvement of heterotrimeric G proteins in the regulation of adherens junction function is unclear. We identified alphaSNAP as an interactive partner of G alpha12 using yeast two-hybrid screening. Glutathione S-transferase pull-down assays showed the selective interaction of alphaSNAP with G alpha12 in COS-7 as well as in human umbilical vein endothelial cells. Using domain swapping experiments, we demonstrated that the N-terminal region of G alpha12 (1-37 amino acids) was necessary and sufficient for its interaction with alphaSNAP. G alpha13 with its N-terminal extension replaced by that of G alpha12 acquired the ability to bind to alphaSNAP, whereas G alpha12 with its N terminus replaced by that of G alpha13 lost this ability. Using four point mutants of alphaSNAP, which alter its ability to bind to the SNARE complex, we determined that the convex rather than the concave surface of alphaSNAP was involved in its interaction with G alpha12. Co-transfection of human umbilical vein endothelial cells with G alpha12 and alphaSNAP stabilized VE-cadherin at the plasma membrane, whereas down-regulation of alphaSNAP with siRNA resulted in the loss of VE-cadherin from the cell surface and, when used in conjunction with G alpha12 overexpression, decreased endothelial barrier function. Our results demonstrate a direct link between the alpha subunit of G12 and alphaSNAP, an essential component of the membrane fusion machinery, and implicate a role for this interaction in regulating the membrane localization of VE-cadherin and endothelial barrier function.  相似文献   

11.
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.  相似文献   

12.
Excretory-secretory products of Giardia lamblia   总被引:18,自引:0,他引:18  
The surface of Giardia lamblia strain WB was radioiodinated with either 1,3,4,6-tetrachloro-3 alpha, 6 alpha-diphenylglycoluril (IODOGEN) or lactoperoxidase, and the labeled membrane components as well as the released excretory-secretory (E-S) products were identified. The surface of G. lamblia was easily labeled, and G. lamblia excretory-secretory (E-S) products were identified in the medium. Over 70% of the label on the cell surface was released over 24 hr. The major E-S product released was polydisperse (m.w. 225 to 94,000), protease VI and periodate-sensitive, chloroform-methanol insoluble, and failed to adhere to a series of carbohydrate-binding lectins or to diethylaminoethyl (DEAE) cellulose. Hydrophobicity was suggested by adherence to phenyl-Sepharose. The major E-S product of another G. lamblia isolate, Portland-1 (P-1), was antigenically different. A previous study showed that strain P-1 lacked a major antigenic component of strain WB. In the present study, this material was identified as the major secretory product of WB by crossed immunoelectrophoresis.  相似文献   

13.
Radioiodinated photoactivatable photoprobes can provide valuable insights regarding protein structure. Previous work in our laboratory showed that the cocaine derivative and photoprobe 3-[ (125)I]iodo-4-azidococaine ([ (125)I]IACoc) binds to the sigma-1 receptor with 2-3 orders of magnitude higher affinity than cocaine [Kahoun, J. R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1393-1397]. Using this photoprobe, we demonstrated the insertion site for [ (125)I]IACoc to be Asp188 [Chen, Y. (2007) Biochemistry 46, 3532-3542], which resides in the proposed steroid binding domain-like II (SBDLII) region (amino acids 176-194) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. An additional photoprobe based on the sigma-1 receptor ligand fenpropimorph, 1- N-(2-3-[ (125)I]iodophenyl)propane ([ (125)I]IAF), was found to label a peptide in both the SBDLII and steroid binding domain-like I (SBDLI) (amino acids 91-109) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. In this report, we describe two novel strategically positioned carrier-free, radioiodinated photoaffinity labels specifically designed to probe the putative "nitrogen interacting region" of sigma-1 receptor ligands. These two novel photoprobes are (-)-methyl 3-(benzoyloxy)-8-2-(4-azido-3-[ (125)I]iodobenzene)-1-ethyl-8-azabicyclo[3.2.1]octane-2-carboxylate ([ (125)I]-N-IACoc) and N-propyl- N-(4-azido-3-iodophenylethyl)-3-(4-fluorophenyl)propylamine ([ (125)I]IAC44). In addition to reporting their binding affinities to the sigma-1 and sigma-2 receptors, we show that both photoaffinity labels specifically and covalently derivatized the pure guinea pig sigma-1 receptor (26.1 kDa) [Ramachandran, S. (2007) Protein Expression Purif. 51, 283-292]. Cleavage of the photolabeled sigma-1 receptor using Endo Lys C and cyanogen bromide (CNBr) revealed that the [ (125)I]-N-IACoc label was located primarily in the N-terminus and SBDLI-containing peptides of the sigma-1 receptor, while [ (125)I]IAC44 was found in peptide fragments consistent with labeling of both SBDLI and SBDLII.  相似文献   

14.
Human alpha 2-macroglobulin (alpha 2M) undergoes a conformational change after reaction with proteases. In this report, it is shown that although two trypsin molecules may bind simultaneously to each alpha 2M, only one trypsin is necessary to induce alpha 2M conformational change. Ternary complexes of alpha 2M and either two radioiodinated trypsins or two nonradioiodinated trypsins were purified by gel filtration chromatography. The nonradioactive complex did not bind 125I-trypsin, even after incubation for 24 h with the free protease present at a large molar excess. Under comparable conditions, a large molar excess of nonradioactive trypsin did not cause significant dissociation of the complex prepared with radioiodinated protease. Equations are presented that distinguish between two separate models of protease binding and demonstrate that binary alpha 2M-trypsin complex retains no significant trypsin binding activity despite the presence of a vacant protease binding site. Purified alpha 2M-plasmin complex, with 1.10 mol of plasmin/mol of inhibitor, also retained no trypsin binding activity as assessed with radioiodinated protein binding experiments. These studies suggest that reactions of alpha 2M with proteases are accurately described by the "trap hypothesis" (Barrett, A. J., and Starkey, P. M. (1973) Biochem. J. 133, 709-724) independent of protease size or binding stoichiometry.  相似文献   

15.
Site-directed labeling was used to obtain local information on the binding interface in a receptor-ligand complex. As a model we have chosen the specific association of the extracellular part of tissue factor (sTF) and factor VIIa (FVIIa), the primary initiator of the blood coagulation cascade. Different spectroscopic labels were covalently attached to an engineered cysteine in position 140 in sTF, a position normally occupied by a Phe residue previously characterized as an important contributor to the sTF:FVIIa interaction. Two spin labels, IPSL [N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide] and MTSSL [(1-oxyl-2,2,5, 5-tetramethylpyrroline-3-methyl)methanethiosulfonate], and two fluorescent labels, IAEDANS [5-((((2-iodoacetyl)amino) ethyl)amino)naphthalene-1-sulfonic acid] and BADAN [6-bromoacetyl-2-dimethylaminonaphthalene], were used. Spectral data from electron paramagnetic resonance (EPR) and fluorescence spectroscopy showed a substantial change in the local environment of all labels when the sTF:FVIIa complex was formed. However, the interaction was probed differently by each label and these differences in spectral appearance could be attributed to differences in label properties such as size, polarity, and/or flexibility. Accordingly, molecular modeling data suggest that the most favorable orientations are unique for each label. Furthermore, line-shape simulations of EPR spectra and calculations based on fluorescence depolarization measurements provided additional details of the local environment of the labels, thereby confirming a tight protein-protein interaction between FVIIa and sTF when the complex is formed. The tightness of this local interaction is similar to that seen in the interior of globular proteins.  相似文献   

16.
Syntrophins are components of the dystrophin-glycoprotein complex of the plasma membrane in muscular and neuronal cells, and recruit signaling proteins such as neuronal nitric oxide synthase via their multiple protein-protein interaction motifs. In this study, we found that alpha1-syntrophin binds to various subtypes of guanine nucleotide-binding protein alpha subunits (Galpha). A pull-down analysis using full-length recombinant alpha1-syntrophin and MS analysis showed that alpha1-syntrophin was coprecipitated with several isoforms of Galpha proteins in addition to known binding partners such as dystrobrevin and neuronal nitric oxide synthase. Further analysis using recombinant Galpha isoforms showed that alpha1-syntrophin associates with at least Galphai, Galphao, Galphas and Galphaq subtypes. The region of alpha1-syntrophin required for its interaction with Galphas was determined as the N-terminal half of the first pleckstrin homology domain. In addition, the syntrophin unique domain of alpha1-syntrophin was suggested to contribute to this interaction. In COS-7 cells, downregulation of alpha1-syntrophin by RNAi resulted in enhanced cAMP production and cAMP response element-binding protein phosphorylation induced by isoproterenol treatment. These results suggest that alpha1-syntrophin provides a scaffold for the Galpha family of heterotrimeric G proteins in the brain to regulate the efficiency of signal transduction evoked by G-protein-coupled receptors.  相似文献   

17.
Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein-protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (K(D-DNA)=1.4 nM). Another fusion protein, constructed without the C-terminal protein-protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (K(D-DNA)=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA-protein stability to protein-protein contacts at a remote site may provide a trigger point for DNA-protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase.  相似文献   

18.
The mammalian skeletal muscle acetylcholine receptor contains two nonequivalent acetylcholine binding sites, one each at the alpha/delta and alpha/gamma subunit interfaces. Alpha-Conotoxin MI, a 14-amino acid competitive antagonist, binds at both interfaces but has approximately 10(4) higher affinity for the alpha/delta site. We performed an "alanine walk" to identify the residues in alpha-MI that contribute to this selective interaction with the alpha/delta site. Electrophysiological measurements with Xenopus oocytes expressing normal receptors or receptors lacking either the gamma or delta subunit were made to assay toxin-receptor interaction. Alanine substitutions in most amino acid positions had only modest effects on toxin potency at either binding site. However, substitutions in two positions, proline-6 and tyrosine-12, dramatically reduced toxin potency at the high-affinity alpha/delta site while having comparatively little effect on low-affinity alpha/gamma binding. When tyrosine-12 was replaced by alanine, the toxin's selectivity for the high-affinity site (relative to that for the low-affinity site) was reduced from 45,000- to 30-fold. A series of additional amino acid substitutions in this position showed that increasing side chain size/hydrophobicity increases toxin potency at the alpha/delta site without affecting alpha/gamma binding. In contrast, when tyrosine-12 is diiodinated, toxin binding is nearly irreversible at the alpha/delta site but also increases by approximately 500-fold at the alpha/gamma site. The effects of position 12 substitutions are accounted for almost entirely by changes in the rate of toxin dissociation from the high-affinity alpha/delta binding site.  相似文献   

19.
The membrane-reactive, photoactivatable probe 125I-TID [3-(trifluoromethyl)-3-(m-[125I]iodophenyl)-3H-diazirine] was found to label the M protein of vesicular stomatitis virus about 40% as much as G protein in intact virions, in agreement with labeling studies with other probes. By analyzing limited tryptic digestion and specific chemical cleavage products, the label was essentially entirely localized within the first 19, and probably within the first 5 to 10, amino acid residues at the N terminus, identifying this short amphipathic segment as the likely site of interaction of M protein with the viral bilayer.  相似文献   

20.
We used yeast two-hybrid and in vitro co-immobilization assays to study the interaction between the Escherichia coli RNA polymerase (RNAP) alpha and beta subunits during the formation of alpha(2)beta, a physiological RNAP assembly intermediate. We show that a 430-amino acid-long fragment containing beta conserved segments F, G, H, and a short part of segment I forms a minimal domain capable of specific interaction with alpha. The alpha-interacting domain is held together by protein-protein interactions between beta segments F and I. Residues in catalytically important beta segments H and I directly participate in alpha binding; substitutions of strictly conserved segment H Asp(1084) and segment I Gly(1215) abolish alpha(2)beta formation in vitro and are lethal in vivo. The importance of these beta amino acids in alpha binding is fully supported by the structural model of the Thermus aquaticus RNAP core enzyme. We also demonstrate that determinants of RNAP assembly are conserved, and that a homologue of beta Asp(1084) in A135, the beta-like subunit of yeast RNAP I, is responsible for interaction with AC40, the largest alpha-like subunit. However, the A135-AC40 interaction is weak compared with the E. coli alpha-beta interaction, and A135 mutation that abolishes the interaction is phenotypically silent. The results suggest that in eukaryotes additional RNAP subunits orchestrate the enzyme assembly by stabilizing weak, but specific interactions of core subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号