首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA condensation, precipitation, and aggregation are related phenomena involving DNA-DNA interactions in the presence of multivalent cations, and studied for their potential implications in DNA packaging in the cell. Recent studies have shown that the condensation/aggregation is a prerequisite for the cellular uptake of DNA for gene therapy applications. To elucidate the ionic and structural factors involved in DNA aggregation, we studied the precipitation and resolubilization of high molecular weight and sonicated calf thymus DNA, two therapeutic oligonucleotides, and poly(dA).2Poly(dT) triplex DNA in the presence of the tetravalent polyamine spermine using a centrifugation assay, Tm measurements, and CD spectroscopy. The ability of spermine to provoke DNA precipitation was in the following order: triplex DNA > duplex DNA > single-stranded DNA. In contrast, their resolubilization at high polyamine concentrations followed a reverse order. The effective concentration of spermine to precipitate DNA increased with Na+ in the medium. Tm data indicated the DNA stabilizing effect of spermine even in the resolubilized state. CD spectroscopy revealed a series of sequential conformational alterations of duplex and triplex DNA, with the duplex form regaining the B-DNA conformation at high concentrations (approximately 200 mM) of spermine. The triplex DNA, however, remained in a Psi-DNA conformation in the resolubilized state. Chemical structural specificity effects were exerted by spermidine and spermine analogues in precipitating and resolubilizing sonicated calf thymus DNA, with N4-methyl substitution of spermidine and a heptamethylene separation of the imino groups of spermine having the maximal difference in the precipitating ability of the analogues compared to spermidine and spermine, respectively. Therapeutically important bis(ethyl) substitution reduced the precipitating ability of the analogues compared to spermine. The effect of the cationicity of polyamines was evident with the pentamines being much more efficacious than the tetramines and triamines. These results provide new insights into the mechanism of DNA precipitation by polyamines, and suggest the importance of polyamine structure in developing gene delivery vehicles for therapeutic applications.  相似文献   

2.
We synthesized seven homologs of spermine (H2N(CH2)3NH(CH2)nNH(CH2)3NH2, where n = 2-9; n = 4 for spermine) and studied their effects on melting temperature (Tm), conformation, and precipitation of poly(dA).2poly(dT). The triplex DNA melting temperature, Tm1 was 34.4 degrees C in the presence of 150 mM KCl. Addition of spermine homologs increased Tm1 in a concentration-dependent and structure-dependent manner, with 3-6-3 (n = 6) exerting optimal stabilization. The dTm1/dlog[polyamine] values were 9-24 for these compounds. The duplex melting temperature, Tm2 was insensitive to homolog concentration and structure, suggesting their ability to stabilize triplex DNA without altering the stability of the underlying duplex. Circular dichroism spectral studies revealed psi-DNA formation in a concentration-dependent and structure-dependent manner. Phase diagrams were constructed showing the critical ionic/polyamine concentrations stabilizing different structures. These compounds also exerted structural specificity effects on precipitating triplex DNA. These data provide new insights into the ionic/structural determinants affecting triplex DNA stability and indicate that 3-6-3 is an excellent ligand to stabilize poly(dA).2poly(dT) triplex DNA under physiologic ionic conditions for antigene therapeutics.  相似文献   

3.
Polyamines favor DNA triplex formation at neutral pH   总被引:15,自引:0,他引:15  
K J Hampel  P Crosson  J S Lee 《Biochemistry》1991,30(18):4455-4459
The stability of triplex DNA was investigated in the presence of the polyamines spermine and spermidine by four different techniques. First, thermal-denaturation analysis of poly[d(TC)].poly[d(GA)] showed that at low ionic strength and pH 7, 3 microM spermine was sufficient to cause dismutation of all of the duplex to the triplex conformation. A 10-fold higher concentration of spermidine produced a similar effect. Second, the kinetics of the dismutation were measured at pH 5 in 0.2 M NaCl. The addition of 500 microM spermine increased the rate by at least 2-fold. Third, in 0.2 M NaCl, the mid-point of the duplex-to-triplex dismutation occurred at a pH of 5.8, but this was increased by nearly one pH unit in the presence of 500 microM spermine. Fourth, intermolecular triplexes can also form in plasmids that contain purine.pyrimidine inserts by the addition of a single-stranded pyrimidine. This was readily demonstrated at pH 7.2 and 25 mM ionic strength in the presence of 100 microM spermine or spermidine. In 0.2 M NaCl, however, 1 mM polyamine is required. Since, in the eucaryotic nucleus, the polyamine concentration is in the millimolar range, then appropriate purine-pyrimidine DNA sequences may favor the triplex conformation in vivo.  相似文献   

4.
T Antony  T Thomas  A Shirahata  T J Thomas 《Biochemistry》1999,38(33):10775-10784
RNA-DNA hybrid stabilization is an important factor in the efficacy of oligonucleotide-based antisense gene therapy. We studied the ability of natural polyamines, putrescine, spermidine, and spermine, and a series of their structural analogues to stabilize RNA-DNA hybrids using melting temperature (Tm) measurements, circular dichroism (CD) spectroscopy, and the ethidium bromide (EB) displacement assay. Phosphodiester (PO) and phosphorothioate (PS) oligodeoxyribonucleotides (ODNs) (21-mer) targeted to the initiation codon region of c-myc mRNA and the corresponding complementary RNA oligomer were used for this study. In the absence of polyamines, the Tm values of RNA-PODNA and RNA-PSDNA helices were 41 +/- 1 and 35 +/- 1 degrees C, respectively, in 10 mM sodium cacodylate buffer. In the presence of a hexamine analogue of spermine at a concentration of 25 microM, the hybrids were stabilized with Tm values of 80 and 78 degrees C, for RNA-PODNA and RNA-PSDNA, respectively. The d(Tm)/d(log[polyamine]) values, representing the concentration-dependent stabilization of hybrid helices by polyamines, increased from 10 to 24 for both the RNA-PODNA and RNA-PSDNA helices. Bisethyl substitution of the primary amino groups of the polyamines reduced the hybrid stabilizing potential of the polyamines. Among the homologues of spermidine [H2N(CH2)3NH(CH2)nNH2, where n = 2-8; n = 4 for spermidine] and spermine [H)N(CH2)3NH(CH2)nNH(CH2)3NH2, where n = 2-8; n = 4 for spermine], spermidine and spermine were the most effective agents for stabilizing the hybrid helices. At a physiologically compatible concentration of 150 mM NaCl, the hybrid helix formed from PODNA was more stable than that formed from PSDNA in the presence of polyamines. CD spectroscopic studies showed that the hybrids were stabilized in a conformation close to A-DNA in the presence of polyamines. The relative binding affinity of the polyamine homologues for the hybrid helices, as measured by the EB displacement assay, followed the same order in which they stabilized the hybrids. These results are important in the antisense context and in the general context of polyamine-nucleic acid interactions, and suggest that pentamine and hexamine analogues of spermine might be useful in improving the efficacy of therapeutic ODNs.  相似文献   

5.
The synthesis, as well as the rationale for synthesis of diacridines, double intercalators, as potential inhibitors of nucleic acid synthesis is presented. The syntheses of (9-acridyl)-putrescine and -spermine, and bis(-9-acridyl)-putrescine, -spermidine, -spermine diamines and of bis(6-chloro-2-methoxy-9-acridyl)-putrescine and -spermine diamines, all substituted on the terminal NH2 groups are described. In addition, the homologous series of diacridines connected by the amino groups of the diamines NH2(CH2)nNH2 (where n = 2,3,4,6,8,10,12,14,16,18) to the C-9 of the diacridines has been synthesized. The chemical properties of these compounds as well as their molecular relationship to DNA are presented. The effect of the double intercalators on the Tm of DNA and of (A)n - (U)n, (dA)n - (dT)n, (G)n - (C)n and on (dG)n - (dC)n have been determined. The double acridine intercalators produce a much greater increase of the Tm of these nucleic acids than do the single acridine intercalators. They also profoundly affect the Tm of DNA in physiological salt concentrations; under these latter conditions the single intercalators have no effect. The relationship between the length of the chain connecting the two acridine rings and the inhibition of the growth of P-388 cells in vitro and vivo is presented. Their growth inhibitory properties appear, in general, to parallel their intercalative abilities.  相似文献   

6.
Transglutaminase 2 (TG2) has been reported to be involved in cell growth through the formation of epsilon-(gamma-glutamyl) lysine (Gln-Lys) or N-(gamma-glutamyl) polyamine (Gln-polyamine). We have recently reported that the inhibition of Gln-Lys cross-linking by the formation of Gln-spermidine led to the increase of DNA synthesis in regenerating rat liver. TG2 may catalyze the replacement reaction between Lys residues in protein and polyamines. In the present study, we attempted to develop an experimental model for ascertaining this replacement reaction. We examined whether or not TG2 exhibited the association and dissociation reaction of Gln-polyamine bond in protein, using N,N-dimethylcasein (DC). The dissociated polyamines were identified by autoradiography. The dissociation of [(14)C] polyamines from DC bond [(14)C] polyamines complex by TG2 could occur in the presence of non-radioactive polyamines as second amine donor, whereas in the absence, could not almost occur. Moreover, it was indicated that this release of old [(14)C] polyamine bonded to DC was due to binding of added new [(14)C] polyamine to Gln residues in DC. These results demonstrate that TG2 catalyzes the replacement reaction between added [(14)C] polyamine and DC bond [(14)C] polyamine. The dissociation and association reaction may both occur together, the new DC-polyamine complex being formed at the same time as the dissociation of old DC-polyamine complex, since readying a second amine donor is necessary to dissociate DC-polyamine complex. These results indicate that this experimental model is successful in the study of TG2-catalyzed dissociation and association reaction of Gln-polyamine bond in protein.  相似文献   

7.
Two new photoaffinity derivatives of polyamines have been synthesized by the reaction of spermine or spermidine with methyl 4-azidobenzimidate. The new compounds were purified chromatographically and characterized by several methods including proton magnetic resonance spectroscopy. The spermine derivative is N1-ABA-spermine [(azidobenzamidino)spermine], and the spermidine derivative is a mixture of N1- and N8-ABA-spermidine. ABA-spermine stabilizes nucleosome core particles in thermal denaturation experiments, with similar but not identical effects when compared with the parent polyamine, spermine. In circular dichroism experiments, ABA-spermine was capable of producing a B----Z transition in poly(dG-m5dC) at a concentration of 30 microM, compared with 5 microM required to produce the same effect with spermine. On the other hand, ANB-spermine [(azidonitrobenzoyl)spermine; Morgan, J. E., Calkins, C. C., & Matthews, H. R. (1989) Biochemistry 28, 5095-5106] stabilized the B form of poly(dG-br5dC). ABA-spermine is a potent inhibitor of ornithine decarboxylase from Escherichia coli, giving 50% inhibition at 0.12 mM, while ANB-spermine is a modest inhibitor, comparable to spermine or spermidine. Under conditions of nitrogen-limited growth, yeast take up ABA-spermine and ABA-spermidine at approximately one-third to half the rate of spermidine or spermine. In contrast, ANB-spermine was not significantly taken up. The photoaffinity polyamines were used to photoaffinity label the DNA in nucleosome core particles, and the sites of labeling were determined by exonuclease protection. All photoaffinity reagents showed both nonspecific labeling and specific sites of higher occupancy. However, the positions of the sites varied: the ANB-spermine sites confirmed those previously reported (Morgan et al., 1989); the ABA-spermine and ABA-spermidine sites were spaced at 9.8 bp intervals from the 3' end of each DNA strand. This observation, together with the effect of spermine on the circular dichroism of DNA in nucleosome core particles, implies that polyamines alter the helical twist of DNA in nucleosome core particles. The ABA-polyamines are offered as general-purpose photoaffinity polyamine reagents.  相似文献   

8.
The binding of polyamines, including spermidine ( 1 ) and spermine ( 2 ), to poly[d(G-C) · d(G-C) ] was probed using spectroscopic studies of anthracene-9-carbonyl-N1-spermine ( 3 ); data from normal absorption, linear dichroism (LD), and circular dichroism (CD) are reported. Ligand LD and CD for transitions located in the DNA region of the spectrum were used. The data show that 3 binds to DNA in a manner characteristic of both its amine and polycyclic aromatic parts. With poly [(dG-dC) · (dG-dC)], binding modes are occupied sequentially and different modes correspond to different structural perturbations of the DNA. The most stable binding mode for 3 with poly[d(G-C) · d(G-C)] has a site size of 6 ± 1 bases, and an equilibrium binding constant of (2.2 ± 1.1) × 107 M?1 with the anthracene moiety intercalated. It dominates the spectra from mixing ratios of approximately 133:1 until 6:1 DNA phosphate: 3 is reached. The analogous data for poly [d(A-T) · d(A-T)] between mixing ratios 36:1 and 7:1 indicates a site size of 8.3 ± 1.1 bases and an equilibrium binding constant of (6.6 ± 3.3) × 105 M?1. Thus, 3 binds preferentially to poly [d(G-C) · d(G-C)] at these concentrations. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
The binding modes of three benzopyrido [4,3-b]indole derivatives (and one benzo[-f]pyrido [4-3b] quinoxaline derivative) with respect to double helical poly(dA) · poly(dT) and poly[d(A-T)]2 and triple-helical poly(dA) · 2poly(dT) have been investigated using linear dichroism (LD) and CD: (I) 3-methoxy-11-amino-BePI where BePI = (7H-8-methyl-benzo[e]pyrido [4,3-b]indole), (II) 3-methoxy-11-[(3′-amino) propylamino]-BePI, (III) 3-methoxy-7-[(3′-diethylamino)propylamino] BgPI where BgPI = (benzo[g]pyrido[4,3-b]indole), and (IV) 3-methoxy-11-[(3′-amino)propylamino] B f P Q where B f P Q = {benzo[-f]pyrido[4-3b]quinoxaline}. The magnitudes of the reduced LD of the electronic transitions of the polynucleotide bases and of the bound ligands are generally very similar, suggesting an orientation of the plane of the ligands' fused-ring systems preferentially perpendicular to the helix axis. The LD results suggest that all of the ligands are intercalated for all three polynucleotides. The induced CD spectrum of the BePI chromophore in the (II-BePI)-poly[d(A-T)]2 complex is almost a mirror image of that for the (I-BePI)-poly(dA) · poly(dT) and (I-BePI)-poly(dA) · 2poly(dT) complexes, suggesting an antisymmetric orientation of the BePI moiety upon intercalation in poly[d(A-T)]2 compared to the other polynucleotides. The induced CD of I-BePI bound to poly(dA) · 2poly(dT) suggests a geometry that is intermediate between that of its other two complexes. The concluded intercalative binding as well as the conformational variations between the different BePI complexes are of interest in relation to the fact that BePI derivatives are triplex stabilizers. © 1997 John Wiley & Sons, Inc. Biopoly 42: 101–111, 1997  相似文献   

10.
Various 2-thiopyrimidine derivatives have been synthesized by an efficient, one-pot reaction of functionalized amines with either 4-isothiocyanato-4-methyl-2-pentanone or 3-isothiocyanatobutanal. All the synthesized compounds were fully characterized by elemental analysis (CHN), FT-IR, (1)H NMR, and mass spectral data. One of the compounds, 7,7,8a-trimethyl-hexahydro-thiazolo[3,2-c]pyrimidine-5-thione (17) showed good anti-inflammatory (37.4% at 100 mg/kg p.o.) and analgesic activity (75% at 100 mg/kg p.o.). 7-(1-Mercapto-3,3,4a-trimethyl-4,4a,5,9b-tetrahydro-3H-pyrido[4,3-b]indol-7-yl)-3,3,4a-trimethyl-3,4,4a,5-tetrahydro-benzo[4,5]imidazo[1,2-c]pyrimidine-1-thiol (3) showed moderate activity against CDK-1 (IC(50)=5 microM). The other compounds showed moderate anti-inflammatory (5-20%), analgesic (25-75%) and protein kinase (CDK-5, GSK-3) inhibitory activities (IC(50)> 10 microM).  相似文献   

11.
While the role of polyamines in DNA synthesis during the S phase of the cell cycle has been repeatedly postulated, recent studies point also to polyamine involvement in the early phase of the G0-S transition. In order to determine polyamine-dependent steps in the cell cycle we have studied the effects of inhibitors of polyamine biosynthesis and exogenous polyamines on the proliferation of T lymphocytes as well as on the expression of some growth-regulated genes. The ability of Con A-stimulated mouse T lymphocytes to enter DNA synthesis was markedly inhibited by methylglyoxal bis(guanylhydrazone) in a dose-dependent manner. This inhibitory effect was stronger in the presence of fetal calf serum containing a high level of activities of polyamine oxidases than in the presence of horse serum. Putrescine and spermine added to T splenocyte culture instead of mitogen-Con A stimulated [3H]thymidine incorporation with kinetics similar to that observed with Con A. The growth-stimulating effects of polyamines were concentration-dependent. Polyamines at optimal growth-stimulating concentrations (10 microM spermine and 80 microM putrescine) induced the expression of genes encoding the cytoskeletal proteins beta-actin, vimentin, and alpha-tubulin to an extent and with kinetics similar to those of Con A. The results presented herein suggest that polyamines are capable of stimulating the transition of G0 cells to the S phase and that this effect may be mediated by their influence on the gene expression.  相似文献   

12.
The association of dicationic polycyclic ligands, namely, four diazoniapentaphene derivatives, three diazoniaanthra[1,2-a]anthracenes, diazoniahexaphene, and a partly saturated hydroxy-substituted diazoniapentaphene with double-stranded and triple-helical DNA, was investigated by spectrophotometric and viscosimetric titrations, CD and LD spectroscopy, DNA melting experiments, and molecular modeling studies. All experimental and theoretical data reveal an intercalative DNA-binding mode of the diazoniapentaphenes and diazoniaanthra[1,2-a]anthracenes; the latter have approximately 10-fold higher affinity for the DNA duplex. CD spectroscopic investigations and molecular modeling studies show that only one azonianaphthalene part of the ligand is intercalated between the DNA base pairs, whereas the remaining part of the ligand points outside the intercalation pocket. In contrast, the diazoniahexaphene is a DNA groove binder, which binds selectively to [poly(dAdT)]2. At low ligand-to-DNA ratios (r < 0.15), the diazoniahexaphene also behaves as an intercalator; however, all spectroscopic and viscosimetric data are consistent with significant groove binding of this ligand at r > 0.2. Studies of the interaction of diazoniapolycyclic ions with triplex DNA reveal a preferential binding of both diazoniapentaphenes and diazoniaanthra[1,2-a]anthracenes to the triplex and stabilization thereof. These properties are more pronounced in the case of the hexacyclic diazoniaanthra[1,2-a]anthracenes; however, the diazoniahexaphene shows no preferential binding to the triplex. The DNA binding properties of the diazoniapentaphene derivatives remain essentially the same upon variation of the positions of nitrogen atoms or substitution with methyl groups. In contrast, the interactions of the diazoniaanthra[1,2-a]anthracence isomers with triplex DNA are slightly different. Notably, the 14a,16a-diazoniaanthra[1,2-a]anthracene is among the most efficient triplex stabilizers, with a 9-fold larger binding affinity for the triplex than for the DNA duplex. Moreover, the diazoniapentaphene and diazoniaanthra[1,2-a]anthracene derivatives represent the first examples of triplex-DNA binders that do not require additional aminoalkyl side chains for efficient triplex stabilization.  相似文献   

13.
The effect of a series of aminooxy analogues of the biogenic polyamines spermidine and spermine on the conformation of calf thymus DNA is studied. These new molecules are isosteric and charge insufficient analogues that are suitable to study the roles of both charge distribution and structural requirements in the molecular physiology of the biogenic polyamines. They are also evidenced as useful tools to inhibit polyamine biosynthesis and cell growth. Circular dichroism (CD) spectra of solutions containing DNA and the aminooxy analogues at different concentrations (100-1000 microM) and different pH values, (5-7.5) are recorded. We use both sonicated and highly polymerized calf thymus DNA. The CD spectra of sonicated DNA showed the formation of Psi-DNA, a highly ordered aggregated structure similar to liquid crystals, in the presence of the aminooxy analogues. Aggregation induced by an aminooxy derivative of spermine is followed by DNA collapse when increasing the polyamine concentration. The features of Psi-DNA are not detected for highly polymerized DNA. Temperature melting measurements support a high degree of structural order of the aggregates. The CD experiments indicate that dications are unable to induce major changes on the macromolecular structure of DNA. In addition, aggregation is only observed when the trimethylene moiety is present between two adjacent positive charges. The observed differences among the CD spectra of DNA solutions with different aminooxy derivatives of spermidine indicate different roles for different amino groups of this biogenic polyamine when interacting with DNA. Our results support the idea that aminooxy analogues can be used as good models in studying the physiological functions of biogenic polyamines.  相似文献   

14.
The oxidation of putrescine and spermidine were studied in embryogenic and nonembryogenic cell cultures of Picea abies (L.) Karst., with [1,4-14C]-putrescine and [1,4-14C]-spermidine as substrates. Activities of putrescine and spermidine oxidation varied at every developmental stage in both cultures. Putrescine was oxidized ca 5 times as fast both in embryogenic and non-embryogenic tissue as spermidine. Diamine and especially polyamine oxidase activity increased markedly in both tissues towards the end of the culturing. In maturing embryos and in ageing non-embryogenic cultures, enzyme activities were lower than in non-differentiated embryogenic calli. Aminoguanidine (1 m M ) inhibited di- and polyamine oxidation in non-embryogenic tissue by >60% and >30%, respectively. The pH optimum for putrescine oxidation was 8.0, but in non-embryogenic tissue spermidine was degraded even more actively at pH 5.0. [14C]-Spermidine was catabolized to [14C]-putrescine. Pyrroline dehydrogenase activity was observed in non-embryogenic spruce tissue cultures.  相似文献   

15.
A monoclonal antibody (Jel 318) was produced by immunizing mice with poly[d(TmC)].poly[d(GA)].poly[d(mCT) which forms a stable triplex at neutral pH. Jel 318 did not bind to calf thymus DNA or other non pyrimidine.purine DNAs such as poly[d(TG)].poly[d(CA)]. In addition the antibody did not recognize pyrimidine.purine DNAs containing mA (e.g. poly[d(TC)].poly[d(GmA)]) which cannot form a triplex since the methyl group blocks Hoogsteen base-pairing. The binding of Jel 318 to chromosomes was assessed by immunofluorescent microscopy of mouse myeloma cells which had been fixed in methanol/acetic acid. An antibody specific for duplex DNA (Jel 239) served as a control. The fluorescence due to Jel 318 was much weaker than that of Jel 239 but binding to metaphase chromosomes and interphase nuclei was observed. The staining by Jel 318 was unaffected by addition of E. coli DNA but it was obliterated in the presence of triplex. Since an acid pH favours triplex formation, nuclei were also prepared from mouse melanoma cells by fixation in cold acetone. Again Jel 318 showed weak but consistent staining of the nuclei. Therefore it seems likely that triplexes are an inherent feature of the structure of eucaryotic DNA.  相似文献   

16.
Poly(pyrimidine) . poly(purine) tracts have been discovered in the 5'-flanking regions of many eucaryotic genes. They may be involved in the regulation of expression since they can be mapped to the nuclease-sensitive sites of active chromatin. We have found that poly(pyrimidine) . poly(purine) DNAs which contain 5-methylcytosine (e.g. poly[d(Tm5C)] . poly[d(GA)]) will form a triplex at a pH below 8. In contrast, the unmethylated analogue, poly[d(TC)] . poly[d(GA)] only forms a triplex at pHs below 6. Synthetic DNAs containing repeating trinucleotides and poly[d(Um5C)] . poly[d(GA)] behave in a similar manner. Thus the stability of a triplex can be controlled by methylation of cytosine. This suggests a model for the regulation of expression based upon specific triplex formation on the 5'-side of eucaryotic genes.  相似文献   

17.
More than twenty repeating sequence DNAs containing phosphorothioates were prepared from the appropriate dXTPs with DNA polymerase I. The Tms of the modified DNAs were all lower than the parent polymers. A phosphorothioate group 5' to a pyrimidine gave rise to a large decrease than 5' to a purine, e.g., poly(dA).poly(dT) = 50 degrees; poly(dsA).poly(dT) = 44 degrees; poly(dA).poly(dsT) = 33 degrees; and poly(dsA).poly(dsT) = 26 degrees. The presence of phosphorothioate groups had a dramatic effect on triplex formation; poly[d(TC)].poly[d(sGsA)] spontaneously dismutases to a triplex at pH 8 whereas triplex formation in poly[d(sTsC)].poly[d(GA)] was inhibited. Surprisingly poly(dsG).poly(dC) had a Tm which initially decreased with increasing ionic strength. Resistance to digestion with pancreatic DNAse I did not correlate with phosphorothioate content. Poly[d(AsT)], poly[d(TsC)].poly[d(sGA)] and poly[d(sTG)].poly[d(sCA)] were resistant whereas poly[d(sAT)] and poly[d(sTsTG)].poly[d(CsAsA)] were rapidly degraded. Thus phosphorothioate groups cause small conformational changes and may reveal new families of conformational polymorphisms.  相似文献   

18.
Polyamines are excellent stabilizers of triplex DNA. Recent studies in our laboratory revealed a remarkable structural specificity of polyamines in the induction and stabilization of triplex DNA. 1,3-Diaminopropane (DAP) showed optimum efficacy amongst a series of synthetic diamines in stabilizing triplex DNA. To utilize the potential of this finding in developing an anti-gene strategy for breast cancer, we treated MCF-7 cells with a 37mer oligonucleotide to form triplex DNA in the up-stream regulatory region of the c-myc oncogene in the presence of DAP. As individual agents, the oligonucleotide and DAP did not downregulate c-myc mRNA in the presence of estradiol. Complexation of the oligonucleotide with 2 mM DAP reduced c-myc mRNA signal by 65% at 10 microM oligonucleotide concentration. In contrast, a control oligonucleotide had no significant effect on c-myc mRNA. The expression of c-fos oncogene was not significantly altered by the triplex forming oligonucleotide (TFO). DAP was internalized within 1 h of treatment; however, it had no significant effect on the level of natural polyamines. These data indicate that selective utilization of synthetic polyamines and TFOs might be an important strategy to develop anti-gene-based therapeutic modalities for breast cancer.  相似文献   

19.
Segments of poly(A) at the 3'-termini of 5 S rRNA inhibit the activities of ribonucleases from Citrobacter, Enterobacter, bovine pancreas, human spleen and human plasma. Certain polyamines, or compounds containing polyamine substructures, mediate reversal of this inhibition. Effective compounds contain three amino groups, at least two of which are charged and are separated from the others by no less than three carbon atoms. Spermidine and 9-aminoacridines, which contain substituted propyl- or butylamino moieties at the 9-amino position and which bear two positive charges per molecule, are efficacious at low concentrations (5 microM). A decrease in effectiveness is associated with the removal of one aromatic ring from the 9-aminoacridines. However, the resulting 4-aminoquinolines, unlike the acridines, do not inhibit enzyme activity when present in concentrations above 30 microM. Relocating the diamino side chain from the 4- to the 8-position of the quinoline nucleus causes a decrease in charge density to +1, with the result that such compounds are ineffective. The orders of polyamine efficacy of reversal of inhibition were similar for enzymes from Citrobacter, bovine pancreas, and human plasma, and paralleled the order of binding of polyamines to either poly(A) or 5 S rRNA. This was not the case with Enterobacter and human spleen RNAases, indicating that the identity of the most effective polyamines depends on the RNAase studied. The combination of variable 3'-terminal poly(A) segment length and polyamine identity and concentration constitutes a system by which RNAase activities, and, therefore, substrate-degradation rates, may be easily varied.  相似文献   

20.
The regulatory roles fulfilled by polyamines by governance of chromatin structure are made possible by their strong association with cellular DNA, and hence by their ability to modulate DNA structure and function. Towards this end, it is crucial to understand the manifestation of sequence-dependent polyamine binding at the secondary and tertiary structural levels of DNA. This study utilizes circular dichroism (CD) and isothermal titration calorimetry (ITC) to address this relationship by using 20bp oligonucleotides with sequences-poly(dA):poly(dT), poly(dAdT):poly(dAdT), poly(dG):poly(dC), poly(dGdC):poly(dGdC)-that yield physiologically relevant structures, and poly(dIdC):poly(dIdC). CD studies show that at physiological ionic strength (150mM NaCl), spermine preferentially stabilizes A-tracts, and increases flexibility of the G-tract oligomer; the latter is also suggested by the larger change in entropy (DeltaS) of spermine binding to G-tracts. Given the chromatin destabilizing property of these sequences, these findings suggest a role for spermine in stabilization of non-nucleosomal A-tracts, and a compensating mechanism for incorporation of G-tracts in the chromatin structure. Other implications of these findings in sequence dependent DNA packaging are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号