首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochemical techniques have been used to study the distribution of nonhistone proteins in sections of interphase nuclei and mitotic chromosomes. Condensed chromatin, including the heterochromatin of interphase nuclei from frog liver, and mitotic metaphase and anaphase chromosomes from bovine kidney, show little or no staining for nonhistone protein. Regions of frog liver nuclei which contain extended chromatin (euchromatin) stain intensely for nonhistone protein. These differences in nonhistone staining of condensed and extended chromatin support the suggestion that regions of condensed chromatin contain considerably less nonhistone protein than regions of extended chromatin. The results suggest further that there may be considerably less nonhistone protein associated with chromosomes and interphase heterochromatin than has been reported in most previous analyses of isolated chromatin and chromosome preparations.  相似文献   

2.
The pattern of staining for DNA, histone, and nonhistone protein has been studied in whole cells and in nuclei and chromosomes isolated by surface spreading. In whole interphase cells from bovine kidney tissue culture, nuclear staining for DNA and histones reveals numerous small, intensely stained clumps, surrounded by more diffusely stained material. Nuclei in whole cells stained for nonhistone proteins also contain intensely stained regions surrounded by diffuse stain. These intensely stained regions also stain for RNA, indicating that the regions contain nucleolar material. Electron microscopy of kidney cells confirms that multiple nucleoli are present. Kidney nuclei isolated by surface spreading show an even distribution of stain for DNA, histones, and nonhistone proteins, indicating that the surface forces disperse both condensed chromatin and nucleoli. DNA and protein staining was also studied in metaphase chromosomes from testes of the milkweed bug, Oncopeltus fasciatus. Staining for DNA and histones in metaphase chromosomes is essentially the same in sections of fixed and embedded testes as in preparations isolated by surface spreading. However, striking differences are noted in the distribution of nonhistone proteins. In sections, nonhistone stain is concentrated in extrachromosomal areas; metaphase chromosomes do not stain for nonhistone proteins. Chromosomes isolated by surface spreading, however, stain intensely for nonhistone proteins. This suggests that nonhistone proteins are bound to the chromosomes as a contaminant during the isolation procedure. The relationship of these findings to current work with chromosomes isolated for electron microscopy is discussed.  相似文献   

3.
The pattern of staining for DNA, histone, and nonhistone protein has been studied in whole cells and in nuclei and chromosomes isolated by surface spreading. In whole interphase cells from bovine kidney tissue culture, nuclear staining for DNA and histones reveals numerous small, intensely stained clumps, surrounded by more diffusely stained material. Nuclei in whole cells stained for nonhistone proteins also contain intensely stained regions surrounded by diffuse stain. These intensely stained regions also stain for RNA, indicating that the regions contain nucleolar material. Electron microscopy of kidney cells confirms that multiple nucleoli are present. Kidney nuclei isolated by surface spreading show an even distribution of stain for DNA, histones, and nonhistone proteins, indicating that the surface forces disperse both condensed chromatin and nucleoli. DNA and protein staining was also studied in metaphase chromosomes from testes of the milkweed bug, Oncopeltus fasciatus. Staining for DNA and histones in metaphase chromosomes is essentially the same in sections of fixed and embedded testes as in preparations isolated by surface spreading. However, striking differences are noted in the distribution of nonhistone proteins. In sections, nonhistone stain is concentrated in extrachromosomal areas; metaphase chromosomes do not stain for nonhistone proteins. Chromosomes isolated by surface spreading, however, stain intensely for nonhistone proteins. This suggests that nonhistone proteins are bound to the chromosomes as a contaminant during the isolation procedure. The relationship of these findings to current work with chromosomes isolated for electron microscopy is discussed.  相似文献   

4.
Condensed Y chromosomes in Rumex acetosa L. root-tip nuclei were studied using 5-azaC treatment and immunohistochemical detection of methylated histones. Although Y chromosomes were decondensed within root meristem in vivo, they became condensed and heteropycnotic in roots cultured in vitro. 5-azacytidine (5-azaC) treatment of cultured roots caused transitional dispersion of their Y chromosome bodies, but 7 days after removal of the drug from the culture medium, Y heterochromatin recondensed and again became visible. The response of Rumex sex chromatin to 5-azaC was compared with that of condensed segments of pericentromeric heterochromatin in Rhoeo spathacea (Sw.) Steam roots. It was shown that Rhoeo chromocentres, composed of AT-rich constitutive heterochromatin, did not undergo decondensation after 5-azaC treatment. The Y-bodies observed within male nuclei of R. acetosa were globally enriched with H3 histone, demethylated at lysine 4 and methylated at lysine 9. This is the first report of histone tail-modification in condensed sex chromatin in plants. Our results suggest that the interphase condensation of Y chromosomes in Rumex is facultative rather than constitutive. Furthermore, the observed response of Y-bodies to 5-azaC may result indirectly from demethylation and the subsequent altered expression of unknown genes controlling tissue-specific Y-inactivation as opposed to the global demethylation of Y-chromosome DNA.  相似文献   

5.
RIBONUCLEIC ACID AND PROTEIN SYNTHESIS IN MITOTIC HELA CELLS   总被引:22,自引:5,他引:17  
HeLa cells arrested in mitosis were obtained in large numbers, with only very slight interphase cell contamination, by employing the agitation method of Terasima and Tolmach, and Robbins and Marcus. Protein synthesis and RNA synthesis were almost completely suppressed in mitotic cells. Active polyribosomes were nearly absent in mitotic cells as compared with interphase cells treated in the same way. Cell-free protein synthesis and RNA polymerase activity were also greatly depressed in extracts of metaphase cells. The deoxyribonucleoprotein (DNP) of condensed chromosomes from mitotic cells was less efficient as a template for Escherichia coli RNA polymerase than was DNP from interphase cells, although isolated DNA from both sources was equally active as a primer. Despite very poor endogenous amino acid incorporation by extracts of metaphase cells, polyuridylate stimulated phenylalanine incorporation by a larger factor in mitotic cell extracts than it did in interphase cell extracts. These results suggest that RNA synthesis is suppressed in mitotic cells because the condensed chromosomes cannot act as a template, and that protein synthesis is depressed at least in part because messenger RNA becomes unavailable to ribosomes. This conclusion was supported by the demonstration that cells arrested in metaphase supported multiplication of normal yields of poliovirus, thereby showing that the mitotic cell is capable of considerable synthesis of RNA and protein.  相似文献   

6.
A method has been developed for isolating metaphase chromosomes from Microtus agrestis fibroblasts in relatively large quantities with recovery of about 50% of the chromosomes present in the metaphase cells. The method employs pressure homogenisation to release the chromosomes from the cells. The average chemical composition of the Microtus chromosome preparations is 24.6% DNA, 19.9% RNA and 55.5% protein. The isolated chromosomes were fractionated by sedimentation velocity in a density gradient into three size groups in one of which 75–80% of the chromosomes were the large sex-chromosomes. The relative composition of this fraction containing most of the heterochromatin of the cell was DNA: 100, RNA: 59, acid-soluble protein: 54, acid-insoluble protein: 178. — Disc electrophoresis studies revealed no significant difference in the histone patterns between the euchromatic and heterochromatic chromosomes of the three chromosome size-groups. Metaphase chromosomes appear to have a lower lysine-rich histone content than interphase nuclei.  相似文献   

7.
Summary Rumex acetosa (sorrel) is a dioecious plant with a XX/XY1Y2 sex chromosome system. Both the Y chromosomes are nearly entirely heterochromatic and it has been hypothesised that they can persist as chromocenters in male interphase nuclei. Using specific antibodies against 5-methylcytosine and histone H4 acetylated at terminal lysine 5, global levels of DNA methylation and histone acetylation were studied on the sex chromosomes and autosomes of both sexes. The heterochromatic Y chromosomes did not display a higher methylation level compared to the autosomes. The only prominent hypermethylation signals were found at two nucleolar organising regions located on the autosome pair V, as confirmed by in situ hybridisation with 25S rDNA probe and staining. Immunoanalysis of DNA methylation on female and male interphase nuclei neither revealed any sex-specific differences. Two active (silverpositive) nucleoli and two likely inactive nucleolar organising regions (displaying prominent methylation signals) were found in both sexes. In a fraction of nuclei isolated from leaf cells, two peripheral bodies strongly positive for 4,6-diamidino-2-phenylindole were observed only in males, never in females. These heterochromatin regions were depleted in histone H4 acetylation at terminal lysine 5 and corresponded, according to in situ hybridisation with a Y-chromosome-specific repetitive probe, to the two Y chromosomes. We conclude that the peripheral condensed bodies observed exclusively in male nuclei represent the constitutive heterochromatin of the Y chromosomes which is characterised by a substantial histone H4 underacetylation.  相似文献   

8.
Interphase nuclear structure was studied in 15 leguminous species. Eleven species showed chromocentric interphase nuclei while the remaining 4 had reticulate nuclei. The number of chromocenters appeared to be dependent on the number of chromosomes (2n). The total proportion of condensed chromatin as determined by planimetry was found to vary from 11–24% in chromocentric nuclei and 29–62% in reticulate nuclei. The condensed chromatin amount showed a direct correlation with the nuclear DNA content (2C). Though the interphase nuclear structure remained same in differentiated cells, the amount of condensed chromatin was considerably less than that in the meristematic cells, indicating underreplication of heterochromatin during differentiation. HCl-Giemsa method seems to be the simplest method for detection of underreplication in plants.1. NCL Communication No. 35942. To whom all the correspondence should be addressed  相似文献   

9.
J. Żuk 《Chromosoma》1969,27(3):338-353
The Y chromosome heterochromatin in Rumex thyrsiflorus has been analyzed. In natural populations the Y chromosome shows a higher morphological variability than the X chromosome. The total duration of replication of Y chromosomes is about 2 hrs longer than that of euchromatin. Autoradiography with tritiated thymidine showed that chromocentres formed by Y chromosomes in interphase nuclei retain their heterochromatic form during DNA replication. — Y chromosome heterochromatin in interphase nuclei is stained pink, while the rest of the nucleus stains green after fast green-eosin staining for histones. — During the premeiotic stage of PMC development Y chromosomes are no longer visible as compact bodies and become more fuzzy in appearance. A diffuse state of Y coincides with intense RNA synthesis. Therefore genetic activity of Y chromosomes or their parts during premeiotic stage of microsporogenesis is postulated.  相似文献   

10.
Fundamental differences were previously discovered in the ADP-ribosylation of proteins from metaphase chromosomes and interphase nuclei of HeLa cells. The number of modified nonhistone species was found to be dramatically reduced for metaphase chromosomes. An investigation has therefore been made of factors which could influence, and therefore be responsible for, this change in ADP-ribosylation during the cell cycle. Modified proteins were detected by autoradiography of sodium dodecyl sulfate-polyacrylamide gels containing mitotic and interphase samples from permeabilized cells that had been incubated with [32P]NAD. Whole cells showed a difference between interphase and metaphase similar to that for isolated nuclei and chromosomes. Chromosome expansion, disruption of chromosomes or nuclei, DNA nicking, and cellular growth activity significantly changed the incorporation of 32P label. Inhibitors of protein, RNA, and DNA synthesis did not, however, greatly affect ADP-ribosylation. The pattern of labeled species was not altered by the presence of nonradioactive NAD, though the extent of labeling declined. The results were not artifactually due to the procedure used to arrest cells in mitosis. Similar results were found with Novikoff rat hepatoma cells, demonstrating that the difference between metaphase and interphase is not confined to HeLa cells.  相似文献   

11.
V I Stobetski? 《Tsitologiia》1976,18(6):742-744
Condensed interphase chromosomes of the cultured human lymphocytes obtained by the fusion of interphase and metaphase cells were studied using C- and Q-bands techniques. The appearance and localization of the constitutive heterochromatin blocks on condensed chromosomes at G1-period were the same as on the metaphase ones. These characters were used for a group and individual identification of some chromosomes condensed at G1-period and for a study of the association of the constitutive heterochromatin blocks in the interphase nuclei. The fluorescent analysis of the chromosomes condensed at G1-period detected some bright fluorescent blocks of the constitutive heterochromatin.  相似文献   

12.
DNA-protein binding in interphase chromosomes   总被引:1,自引:1,他引:0       下载免费PDF全文
The metachromatic dye, azure B, was analyzed by microspectrophotometry when bound to DNA fibers and DNA in nuclei with condensed and dispersed chromatin. The interaction of DNA and protein was inferred from the amount of metachromasy (increased β/α-peak) of azure B that resulted after specific removal of various protein fractions. Dye bound to DNA-histone fibers and frog liver nuclei fixed by freeze-methanol substitution shows orthochromatic, blue-green staining under specific staining conditions, while metachromasy (blue or purple color) results from staining DNA fibers without histone or tissue nuclei after protein removal. The dispersed chromatin of hepatocytes was compared to the condensed chromatin of erythrocytes to see whether there were differences in DNA-protein binding in "active" and "inactive" nuclei. Extraction of histones with 0.02 N HCl, acidified alcohol, perchloric acid, and trypsin digestion all resulted in increased dye binding. The amount of metachromasy varied, however; removal of "lysine-rich" histone (extractable with 0.02 N HCl) caused a blue color, and a purplish-red color (µ-peak absorption) resulted from prolonged trypsin digestion. In all cases, the condensed and the dispersed chromatin behaved in the same way, indicating the similarity of protein bound to DNA in condensed and dispersed chromatin. The results appear to indicate that "lysine-rich" histone is bound to adjacent anionic sites of a DNA molecule and that nonhistone protein is located between adjacent DNA molecules in both condensed and dispersed chromatin.  相似文献   

13.
The early stages of nuclear differentiation in spermatids of the house cricket are described with regard to the fine structural elements and chemical components which occur. Particular attention is given to the loss of nonhistone protein from the nucleus and its relation to chromatin structure. Granular elements about 25 to 80 mµ in diameter, and fibers about 8 mµ in diameter occur in the earliest spermatid nucleus. The fibers are found in diffuse and condensed chromatin while granules are found only in diffuse material. DNA and histone parallel the chromatin fibers in distribution, while nonhistone protein and RNA parallel the granules in distribution. The granules and most of the nonhistone protein are lost, simultaneously, after the early spermatid stage. The protein loss occurs without detectable change in the structure of chromatin fibers. Chromatin fibers first show a structural change in mid spermiogenesis, when they become thicker and very contorted. Unusually thin fibers (about 5 mµ) also appear in mid spermatid nuclei; they are apparently composed of nonhistone protein and free of DNA and histone.  相似文献   

14.
In spermatogonial cells of the mealy bug, Planococcus citri, at interphase the five maternal chromosomes appear as diffuse euchromatin and the five paternal chromosomes are heterochromatic, genetically inactive, and incorporate tritiated uridine into RNA at a diminished rate. Testes squashes were treated with 2–10 mg/ml of the polyanion, polystyrene sulfonate (PSS). The gonial cell nuclei decondensed and after 15 minutes they became uniformly granular and similar in appearance to wholly euchromatic nuclei. When testis expiants were incubated with PSS (2–10 mg/ml) for from 15 to 120 minutes, all stages of deheterochromatization were recovered. The Feulgen reaction revealed that the uniform granules contained DNA; methyl-green-thionin staining indicated that the nucleolus contained RNA. When tritiated uridine was added after 15 minutes of PSS and then incubation continued, autoradiography revealed incorporation into euchromatin and decondensing heterochromatin. Incorporation of uridine increased with dosage of PSS up to 4 mg/ml. PSS (20 mg/ml) was toxic to the cells: They incorporated no uridine and were badly damaged. RNAase treated controls were also devoid of label.—PSS treated cells showed a negative alkaline-fast-green reaction for histone. In vitro a complex was formed between calf thymus histone and PSS which was soluble only above pH 8.5, but not separable on a Dowex acetate ion exchange column. These findings suggest that, probably by disrupting the structure of the DNA-histone complex, polystyrene sulfonate brings about structural decondensation of heterochromatin and enables it (and euchromatin) to incorporate tritiated uridine into RNA at an increased rate.  相似文献   

15.
Recent advances demonstrate that epigenome changes can also cause phenotypic diversity and can be heritable across generations, indicating that they may play an important role in evolutionary processes. In this study, we analyzed the chromosomal distribution of several histone modifications in five elite maize cultivars (B73, Mo17, Chang7-2, Zheng58, ZD958) and their two wild relatives (Zea mays L. ssp. parviglumis and Zea nicaraguensis) using a three-dimensional (3D) epigenome karyotyping approach by combining immunostaining and 3D reconstruction with deconvolution techniques. The distribution of these histone modifications along chromosomes demonstrated that the histone modification patterns are conserved at the chromosomal level and have not changed significantly following domestication. The comparison of histone modification patterns between metaphase chromosomes and interphase nuclei showed that some of the histone modifications were retained as the cell progressed from interphase into metaphase, although remodelling existed. This study will increase comprehension of the function of epigenetic modifications in the structure and evolution of the maize genome.  相似文献   

16.
The centromeric dodeca-satellite of Drosophila forms altered DNA structures in vitro in which its purine-rich strand (G-strand) forms stable fold-back structures, while the complementary C-strand remains unstructured. In this paper, the purification and characterization of DDP1, a single-stranded DNA-binding protein of high molecular mass (160 kDa) that specifically binds the unstructured dodeca-satellite C-strand, is presented. In polytene chromosomes, DDP1 is found located at the chromocentre associated with the pericentric heterochromatin but its distribution is not constrained to the dodeca-satellite sequences. DDP1 also localizes to heterochromatin in interphase nuclei of larval neuroblasts. During embryo development, DDP1 becomes nuclear after cellularization, when heterochromatin is fully organized, being also associated with the condensed mitotic chromosomes. In addition to its localization at the chromocentre, in polytene chromosomes, DDP1 is also detected at several sites in the euchromatic arms co-localizing with the heterochromatin protein HP1. DDP1 is a multi-KH domain protein homologous to the yeast Scp160 protein that is involved in the control of cell ploidy. Expression of DDP1 complements a Deltascp160 deletion in yeast. These results are discussed in view of the possible contribution of DNA structure to the structural organization of pericentric heterochromatin.  相似文献   

17.
The chromatin in interphase nuclei is much less condensed than are metaphase chromosomes, making the resolving power of fluorescence in situ hybridization (FISH) two orders of magnitude higher in interphase nuclei than on metaphase chromosomes. In mammalian species it has been demonstrated that within a certain range the interphase distance between two FISH sites can be used to estimate the linear DNA distance between the two probes. The intephase mapping strategy has never been applied in plant species, mainly because of the low sensitivity of the FISH technique on plant chromosomes. Using a CCD (charge-coupled device) camera system, we demonstrate that DNA probes in the 4 to 8 kb range can be detected on both metaphase and interphase chromosomes in maize. DNA probes pA1-Lc and pSh2.5·SstISalI, which contain the maize locia1 andsh2, respectively, and are separated by 140 kb, completely overlapped on metaphase chromosomes. However, when the two probes were mapped in interphase nuclei, the FISH signals were well separated from each other in 86% of the FISH sites analyzed. The average interphase distance between the two probes was 0.50 µm. This result suggests that the resolving power of interphase FISH mapping in plant species can be as little as 100 kb. We also mapped the interphase locations of another pair of probes, ksu3/4 and ksu16, which span theRp1 complex controlling rust resistance of maize. Probes ksu3/4 and ksu16 were mapped genetically approximately 4 cM apart and their FISH signals were also overlapped on metaphase chromosomes. These two probes were separated by an average of 2.32 µm in interphase nuclei. The possibility of estimating the linear DNA distance between ksu3/4 and ksu16 is discussed.  相似文献   

18.
The distribution of sites capable of binding mouse satellite-complementary RNA in the cytological hybridization reaction has been examined in mouse liver and testis interphase nuclei. The approach taken has been to combine hybridization with semi-thin sectioning and autoradiography in order to obtain a clear picture of the relationship of satellite DNA-containing structures to the rest of the interphase nucleus. In liver nuclei, hybridization occurs primarily with blocks of heterochromatin associated with the nuclear envelope. The most prominent of these, in terms both of size and intensity of hybridization, is the nucleolar stalk and the rest of the nucleolus-associated heterochromatin. The nucleolar body itself is not labeled, nor is much of the peripheral condensed chromatin ; in fact, a polarized distribution of satellite DNA is evident. In Sertoli and spematid nuclei, satellite DNA is found in a small number of large heterochromatin blocks with which the nucleolus is associated; some of this material bears a relationship to the nuclear envelope in these cells also.  相似文献   

19.
B H Long  C Y Huang  A O Pogo 《Cell》1979,18(4):1079-1090
Nuclear matrices from undifferentiated and differentiated Friend erythroleukemia cells have been obtained by a method which removes DNA in a physiological buffer. These matrices preserved the characteristic topographical distribution of condensed and diffuse "chromatin" regions, as do nuclei in situ or isolated nuclei. Histone H1 was released from the nuclear matrix of undifferentiated cells by 0.3 M KCl; inner core histones were released by 1 M KCl. Nuclear matrix from differentiated cells did not maintain H1, and histone cores were fully released in 0.7 M KCl. KCl removed the core histones as an octameric structure with no evidence of preferential release of any single histone. Electron microscopy of KCl-treated matrix revealed no condensed regions but rather a network of fibrils in the whole DNA-depleted nuclei. When nuclear matrices from both types of cell were exposed to conditions of very low ionic strength, inner core histones and condensed regions remained. These observations support the contention that inner core histones are bound to matrix through natural ionic bonds or saline-labile elements, and that these interactions are implicated in chromatin condensation. hnRNA remained undegraded and tenaciously associated to the matrix fibrils, and was released only by chemical means which, by breaking hydrophobic and hydrogen bonds, produced matrix lysis. Very few nonhistone proteins were released upon complete digestion of DNA from either type of nuclei. The remaining nonhistone proteins represent a large number of species of which the majority may be matrix components. The molecular architecture in both condensed and diffuse regions of interphase nuclei appears to be constructed of two distinct kinds of fibers; the thicker chromatin fibers are interwoven with the thinner matrix fibers. The latter are formed by a heteropolymer of many different proteins.  相似文献   

20.
Histone differentiation and nuclear activity   总被引:4,自引:0,他引:4  
When fast green and eosin are used in combination to stain histones, nuclei display different affinities toward the dyes, some binding fast green exclusively, others binding eosin exclusively, and still others, both stains. In a given tissue, the frequencies of nuclei exhibiting the different colors remain fairly constant over a wide range of staining conditions. Nuclei of cells of the same type may stain differently, but when they are in the same stage of development or state of activity they tend to stain alike. Xenopus erythrocyte nuclei stain bright pink. Condensed mitotic and meiotic chromosomes stain purple. In the grasshopper spermatocyte, the main body of the interphase nucleus stains bright green, but the condensed chromosome stains purple. The mole crab sperm contains several distinct histone-like proteins, that differ in their amino acid compositions, within separate areas of the cell. In these sperms, the lysine-rich histones bind eosin, while the protamine-like protein and arginine-rich histone bind fast green. In general, the eosin and fast green bind preferentially to the lysine and arginine rich histones respectively, when the dyes are permitted to compete with one another. In several systems, including spermiogenesis and erythropoiesis, the aquisition of an eosinophilic component by the nuclei accompanies the slowing of RNA synthesis, and it is suggested that there may be a causal relationship between the two events, the eosinophilic histone effecting RNA synthesis within the nucleus as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号