首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 542 毫秒
1.
Detergent extraction of plasma membranes from differentiated HL60 cells, specifically labeled with the chemoattractant, formyl-Nle-Leu-Phe-Nle-[125I-Tyr] Lys, resulted in the solubilization of a receptor-radioligand complex. GTP-binding activity coeluted with the radioligand when the sodium cholate extract was purified by chromatography on wheat germ agglutinin-Sepharose 6MB. A molecular size of approximately 59 A was estimated for the lectin-Sepharose-purified receptor complex by gel filtration chromatography on Ultrogel AcA 34. The isolated complex eluted from the gel filtration column exhibited an enhanced rate of ligand dissociation in response to GTP gamma S. Approximately 0.65 mol of pertussis toxin substrate/mol of receptor was estimated following partial purification of the receptor-ligand complex by sequential chromatography on wheat germ agglutinin-Sepharose, DEAE-Fractogel, and Ultrogel AcA 34. The pertussis toxin substrate which copurified with the receptor was compared with two distinct G proteins, containing alpha-subunits of 40 and 41 kDa, previously purified from HL60 cell plasma membranes. Approximately 86% of the pertussis toxin substrate identified in the receptor preparation consisted of the 40-kDa polypeptide. Differences in the peptide maps indicate that the predominant G protein which coelutes with the receptor is distinct from the purified G protein with an alpha-subunit of 41 kDa but homologous to the purified G protein with an alpha-subunit of 40 kDa.  相似文献   

2.
Arachidonate cyclo-oxygenase (prostaglandin synthetase; prostaglandin endoperoxide synthetase; EC 1.14.99.1) was purified from sheep platelets. The purification procedure involved hydrophobic column chromatography using either Ibuprofen-Sepharose, phenyl-Sepharose or arachidic acid-Sepharose as the first step followed by metal-chelate Sepharose and haemin-Sepharose affinity chromatography. The purified enzyme (Mr approximately 65,000) was homogeneous as observed by SDS/polyacrylamide-gel electrophoresis and silver staining. The enzyme was a glycoprotein with mannose as the neutral sugar. Haemin or haemoglobin was essential for activity. The purified enzyme could bind haemin exhibiting a characteristic absorption maximum at 410 nm. The enzyme after metal-chelate column chromatography could undergo acetylation by [acetyl-3H]aspirin. The labelled acetylated enzyme could not bind to haemin-Sepharose, presumably due to acetylation of a serine residue involved in the binding to haemin. The acetylated enzyme also failed to show its characteristic absorption maximum at 410 nm when allowed to bind haemin.  相似文献   

3.
Purification of the D-2 dopamine receptor from bovine striatum   总被引:2,自引:0,他引:2  
The D-2 dopamine receptor has been purified 21500 fold from bovine striatal membranes. Solubilized receptor preparation was partially purified by affinity chromatography on a haloperidol adsorbent followed by gel filtration on a Sephacryl S-300 column. The fractions eluted from this column which contained the ligand binding activity were further chromatographed on wheat germ agglutinin conjugated to Sepharose. The resulting receptor preparation displays a major polypeptide band of an apparent molecular weight of 92 kDa, and exhibits a specific binding activity of 2490 pmol spiperone per mg protein. This purified receptor preparation can reabsorb specifically to the haloperidol affinity column indicating that the 92 kDa polypeptide represents the ligand binding unit of the D-2 dopamine receptor.  相似文献   

4.
A protein has been isolated from human plasma by gel filtration followed by affinity chromatography with a derivative of wheat germ agglutinin and ion exchange chromatography. This protein showed one peak in high performance liquid chromatography but in gel electrophoresis, in the presence of sodium dodecyl sulfate and β-mercaptoethanol, revealed two major components of 74 kDa and 55 kDa. These results indicate that the protein probably exists as a complex of the two polypeptides. This protein complex enhanced platelet aggregation by thrombin while aggregation induced by ADP was not significantly affected. Similarly, the rate of thrombin action on fibrinogen and N-benzoylarginine ethyl ester as measured in a spectrophotometer was increased in the presence of this plasma protein. These results suggest the presence of a protein complex in human plasma which can directly interact with thrombin and enhance its reactivity.  相似文献   

5.
The alpha 1-adrenergic receptor has been solubilized in active form from rat hepatic membranes with the nonionic detergent, digitonin, and purified by affinity and gel filtration chromatography to homogeneity with a specific activity of 14,400 pmol/mg of protein. The affinity chromatographic steps of the purification procedure were achieved by the use of a newly synthesized analog (2-[4(2-succinoyl)piperazin-1-yl]-4-amino-6,7-dimethoxyquinazoline, CP-57,609) of the highly selective alpha 1-adrenergic antagonist, prazosin, immobilized via an amide linkage to agarose. The resulting purified receptor bound [3H]prazosin and a variety of adrenergic agents with the specificity, stereoselectivity, and affinities equivalent to those observed with membrane-bound and solubilized receptor preparations. The purified receptor.digitonin complex had a Stokes radius of 49 A and a sedimentation coefficient (s20w) of 7.1, as determined by AcA-34 gel filtration chromatography and sucrose gradient density centrifugation, respectively. Based on these hydrodynamic parameters, the calculated molecular weight of the receptor.digitonin complex was estimated at 147,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis following the final purification step revealed a single band of protein at 59,000 daltons from which [3H]prazosin binding activity could be recovered after renaturation of the receptor protein. These findings indicate that the protein purified from rat hepatic membranes is the hormone binding component of the alpha 1-adrenergic receptor and that the receptor molecule most likely contains more than one Mr = 59,000 subunit.  相似文献   

6.
A proteinase, which cleaves human third component of complement, was solubilized from erythrocyte membranes then purified by gel filtration chromatography, fluid phase electrophoresis, and hydroxylapatite chromatography. Labeling of the purified material by 125I or 3H-DFP and measurement of proteolytic activity subsequently isolated by SDS-polyacrylamide gel electrophoresis allowed to identify a 57 kDa single band, in non reducing conditions. Inhibition of this activity by PMSF supports covalent modification of an active serine residue. This membrane serine proteinase cleaved alpha and beta chains of human third component of complement, suggesting that p-57 is distinct from plasma serine proteinases.  相似文献   

7.
A vasoactive intestinal peptide (VIP) binding protein was purified in active form by detergent solubilization of lung membranes, gel filtration, VIP-Sepharose affinity chromatography, reverse phase high performance liquid chromatography, and anion exchange chromatography. The mass of this protein was estimated at 18 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 17 kDa by gel filtration. The binding of VIP by this protein was inhibited by Mg2+, covalent cross-linking of [Tyr10-125I]VIP to the protein produced two radioactive bands at 22 and 26 kDa identified by electrophoresis, and the purified protein exhibited saturable and high affinity binding of VIP and the related neuropeptide, rat growth hormone releasing factor.  相似文献   

8.
Extraordinarily high concentrations of Zn (300-500 microg/[g fresh tissue]) are often found in the digestive tract tissue of common carp Cyprinus carpio, and most of the Zn is bound to membrane protein located on plasma membranes that are attached to basal laminae. To isolate the Zn-binding protein, the basolateral plasma membranes were separated from the extracellular matrix by treating the nuclei/cell debris fraction of the tissue with collagenase type IV and Arg-Gly-Asp (RGD) peptide. The Zn-binding protein was isolated from the separated plasma membranes by immobilized metal affinity chromatography and affinity chromatography on laminin-Sepharose. A 43 kDa protein was bound by the laminin-Sepharose and specifically eluted with tirofiban (a mimic of RGD). Affinity chromatography on wheat germ agglutinin and concanavalin A-Sepharose showed that the 43 kDa protein is a glycoprotein. The 43 kDa protein was labelled with 65Zn and became incorporated into liposomes at a high efficiency. Liposomes containing this protein were bound to laminin-Sepharose or reconstituted basement membrane. We propose that the Zn-binding protein is a cell surface receptor involved in the adhesion of cells to laminin.  相似文献   

9.
Purification of the gastrin-releasing peptide (GRP) or bombesin receptor has proved elusive in part due to technical difficulties. In the present studies, the problem of oxidized radioligand was avoided by the use of 125I-GRP, which was verified to be not oxidized by high performance liquid chromatography. Specific 125I-GRP binding (at 0 degrees C) to intact human small cell lung carcinoma NCI-H345 cells which had been subjected to a dilute acid wash was 6 fmol/10(6) cells. Inhibition of GRP degradation by human H345 cell membranes through the use of phenanthroline or phosphoramidon permitted the development of binding assays for the GRP receptor in detergent-solubilized crude membrane preparations. The solubilized GRP receptor exhibited saturable, high affinity (KD = 1.3 nM), temperature-dependent specific binding averaging 402 +/- 65 fmol/mg protein (mean +/- S.E. for eight separate membrane preparations with 125I-GRP concentration = 3 nM), with a Bmax = 434 fmol/mg protein using a gel filtration binding assay. That the GRP receptor had been solubilized was demonstrated by its failure to pellet when centrifuged at 100,000 x g for 60 min, its passage through a 0.22-micron filter without loss of binding activity, and its elution in the void volume of a Sephadex G-50 gel filtration column, but within the inclusion volume of a Sephacryl S-200 column (Ve/V0 = 1.1). Isolation of the GRP receptor from human H345 cell-solubilized membranes was achieved by ligand affinity chromatography. A unique 70-kDa band on silver-stained reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis was reproducibly eluted from GRP14-27 affinity columns by an acidic high salt buffer, but binding activity was denatured by these conditions. The protein nature of the GRP receptor was demonstrated by its sensitivity to proteases after isolation. In addition, two unique bands of 65 and 70 kDa were eluted from the GRP14-27 affinity column with GRP14-27 in neutral buffer, and this eluate possessed specific 125I-GRP binding with a stoichiometry of approximately 1:1. Thus, reported here is the isolation of a functional membrane-associated, saturable, high affinity GRP receptor with temperature-dependent binding from the solubilized membranes of human H345 cells.  相似文献   

10.
When frozen plasma membranes isolated from maize seedling roots are thawed, a significant portion of GTP-binding activity goes into solution. The GTP-binding protein was purified by ion exchange chromatography on Mono-Q and gel filtration on Superose 6. Its molecular weight was estimated at 61 kDa by gel filtration. The same molecular weight was obtained upon solubilization of the GTP-binding protein with cholic acid followed by gel filtration in the presence of this detergent. SDS-PAGE demonstrated that the isolated GTP-binding protein consists of two types of subunit of molecular weights 27 kDa and 34 kDa.  相似文献   

11.
A vasopressin receptor was purified, using a novel affinity column, from rat liver plasma membranes treated with guanosine 5'-(3-O-thio)triphosphate and solubilized with 0.8% cholate. Incubation of the membranes with the GTP analogue resulted in a dissociation of the receptor-guanine nucleotide regulatory protein complex. This manipulation, although resulting in a low-affinity state of the receptor, facilitated purification. The solubilized receptor was assayed using a new reconstitution procedure in which the soluble extracts were inserted into lipid vesicles composed of phosphatidylcholine and phosphatidylinositol. The receptor was purified by sequential chromatography on Q-Sepharose and hydroxyapatite. The use of a novel affinity column, a V1-vasopressin antagonist-agarose, resulted in a near-homogeneous preparation of a protein which exhibited an Mr = 58,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of purified receptor, as well as crude membrane preparations cross-linked to [125I]arginine vasopressin, also revealed a protein band with an approximate Mr = 58,000. These findings indicate that V1-antagonist affinity chromatography should be useful for purifying adequate amounts of the receptor for studies of structure and function.  相似文献   

12.
Purification of the human placental alpha 2-macroglobulin receptor   总被引:7,自引:0,他引:7  
The alpha 2-macroglobulin receptor was solubilized from human placental membranes, purified and characterized. Affinity cross-linking of labelled ligand to intact membranes showed a receptor size compatible with 400-500 kDa. The membranes were solubilized in 3-[(3-cholamidopropyl)dimethylammonio]propane sulfonate (CHAPS) and affinity chromatography was performed using Sepharose-immobilized alpha 2-macroglobulin-methylamine with elution in buffer containing 2 mM EDTA, pH 6.0. SDS-PAGE of the resulting receptor preparation showed a predominant approx. 440 kDa band (reducing conditions) and some minor accompanying proteins of 70-90 kDa and 40 kDa. The yield was 400-800 micrograms receptor preparation per placenta. The receptor preparation immobilized on nitrocellulose bound the alpha 2-macroglobulin-trypsin complex with a dissociation constant of about 400 pM. 125I-iodinated receptor preparation bound almost quantitatively to Sepharose-immobilized alpha 2-macroglobulin-methylamine in the presence of CHAPS alone, and bound 70-80% in the presence of 0.2% SDS. The labelled proteins were separated in the presence of 0.2% SDS by gel filtration or SDS-PAGE (unboiled samples). The 440 kDa protein accounted for the major part of the binding, although some approx. 80 kDa proteins, perhaps proteolytic degradation products, also showed binding activity.  相似文献   

13.
We describe a general method for isolating a class of 40 kDa plasma membrane fatty acid binding proteins which have been identified previously only in rat liver and jejunum. Proteins extracted with 2 M salt from rat adipocyte and cardiac myocyte plasma membranes were subjected to preparative isoelectric focusing. Fractions with pI's greater than or equal to 9.0 were further purified by oleate-agarose affinity chromatography and HPLC. Each tissue yielded a single 40 kDa protein which co-chromatographed with [3H]-oleate on gel permeation HPLC, and reacted on Western blots with an antibody to the corresponding hepatic membrane protein. Related plasma membrane fatty acid binding proteins have now been isolated from each of the major sites of fatty acid transport.  相似文献   

14.
Antibody against cMyc cross-reacted strongly with the CupB protein tagged with His6-cMyc (HM) in thylakoid membrane of Synechocystis sp. strain PCC 6803 but only faintly with the cytoplasmic membrane fraction. The protein was not detected in the membranes of the DeltandhD4 and DeltandhF4 mutants in which CupB was tagged with HM. We concluded that a CupB complex containing NdhD4 and NdhF4 is largely, if not exclusively, confined to the thylakoid membrane. Both CupB and NdhH were detected in a fraction containing protein complexes of > 450 kDa, obtained after nickel column and gel filtration chromatography of the membranes solubilized with n-dodecyl-beta-maltoside.  相似文献   

15.
Synthetic gonadotropin-releasing hormone (GnRH) was monoiodinated at a high specific radioactivity with 125I. The iodinated hormone retained full biological activity as assessed by the release of luteinizing hormone in vitro from bovine anterior pituitary tissue slices. Specific binding of 125I-labeled gonadotropin-releasing hormone of high affinity and low capacity was obtained using dispersed bovine anterior pituitary cells. The binding had sigmoid characteristics, compatible with the presence of more than one binding site. The subcellular fraction responsible for binding was identified with the plasma membranes. However, significant binding also occurred in the secretory granules fraction. The plasma membranes were solubilized with sodium dodecyl sulfate. Using gonadotropin-releasing hormone covalently coupled to a solid phase, a protein was purified by an affinity technique from the solubilized plasma membrane preparation which possessed similar binding propperties as plasma membranes, both intact and solubilized. The protein migrated as a single component on polyacrylamide gel in sodium dodecyl sulfate and the estimated molecular weight was 60 000. The character of the gonadotropin-releasing hormone concentration dependence binding as well as association kinetics were multiphasic and suggested the presence of more than one binding site. When analyzed by the Hill plot, the Hill coefficient of all binding curves was always greater than one which is compatible with positive cooperativity. This was further supported by the dissociation studies where the dissociation rate was inversely proportionate to both the gonadotropin-releasing hormone concentration and the time interval during which the gonadotropin-releasing hormone-gonadotropin-releasing hormone receptor protein complex was formed. Using difference chromatography, aggregation of the purified gonadotropin-releasing hormone receptor protein was demonstrated to occur upon its exposure to gonadotropin-releasing hormone. The formed macromolecular complexes bound preferentially 125I-labeled gonadotropin-releasing hormone. It is concluded that a single receptor protein is responsible for gonadotropin-releasing hormone binding in the bovine anterior pituitary. It is a part of the plasma membranes. Its interaction with gonadotropin-releasing hormone provokes transitions of the protein into different allosteric forms and this may be related to the biological effect of gonadotropin-releasing hormone on gonadotropin secretion.  相似文献   

16.
The central nervous system of Drosophila melanogaster contains an alpha-bungarotoxin-binding protein with the properties expected of a nicotinic acetylcholine receptor. This protein was purified 5800-fold from membranes prepared from Drosophila heads. The protein was solubilized with 1% Triton X-100 and 0.5 M sodium chloride and then purified using an alpha-cobratoxin column followed by a lentil lectin affinity column. The purified protein had a specific activity of 3.9 micromol of 125I-alpha-bungarotoxin binding sites/g of protein. The subunit composition of the purified receptor was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. This subunit profile was identical with that revealed by in situ labeling of the membrane-bound protein using the photolyzable methyl-4-azidobenzoimidate derivative of 125I-alpha-bungarotoxin. The purified receptor reveals two different protein bands with molecular masses of 42 and 57 kDa. From sedimentation analysis of the purified protein complex in H2O and D2O and gel filtration, a mass of 270 kDa was calculated. The receptor has a s(20,w) of 9.4 and a Stoke's radius of 7.4 nm. The frictional coefficient was calculated to be 1.7 indicating a highly asymmetric protein complex compatible with a transmembrane protein forming an ion channel. The sequence of a peptide obtained after tryptic digestion of the 42-kDa protein allowed the specific identification of the Drosophila D alpha5 subunit by sequence comparison. A peptide-specific antibody raised against the D alpha5 subunit provides further evidence that this subunit is a component of an alpha-bungarotoxin binding nicotinic acetylcholine receptor from the central nervous system of Drosophila.  相似文献   

17.
Coupling of the atrial natriuretic peptide (ANP) receptor to particulate guanylate cyclase has been demonstrated kinetically and chromatographically using bovine lung plasma membranes and their detergent extracts. Addition of ANP to the membrane suspension stimulated guanylate cyclase activity 2-5-fold indicating the presence of ANP-sensitive particulate guanylate cyclase. The enzyme retained the ability to respond to ANP even after solubilization with digitonin. Characterization of the solubilized enzyme by gel filtration and affinity chromatography revealed that the ANP receptor and particulate guanylate cyclase exist as a functionally but not covalently linked stable complex.  相似文献   

18.
The presence of different isoenzymes of phosphatidylinositol 4-kinase in isolated rat liver plasma membranes and their further distribution in plasma membrane domains was examined. Both wortmannin-sensitive and -insensitive PtdIns 4-kinase activities were detected in highly purified plasma membranes obtained by aqueous two-phase affinity partitioning. The wortmannin-sensitive enzyme was identified as the 230 kDa isoform by Western blotting, whereas the 92 kDa isoform was not detected in plasma membranes. The apparent molecular weights of these isoforms were 205 and 105 kDa on SDS polyacrylamide gel electrophoresis, but approximately 500 and 230 kDa respectively on gel filtration, suggesting that both enzymes either are dimers or composed of heterologous subunits. Approximately 25% of the total 230 kDa isoenzyme present in liver, and only ca 5% of the wortmannin-insensitive one, was associated with the plasma membrane fraction. Plasma membrane domains were isolated by a combination of sucrose and Nycodenz gradient centrifugations. The 230 kDa isoform was identified in the blood sinusoidal domain, but not in the bile canalicular one, and was also found in lateral plasma membranes. The wortmannin-insensitive isoenzyme was present only in this latter material. The functional implications of this distribution of PtdIns 4-kinase isoenzymes in plasma membrane regions are discussed.  相似文献   

19.
The low density lipoprotein (LDL) receptor has been solubilized from bovine adrenocortical membranes with octyl-beta-D-glucoside and purified 350-fold in the presence of the detergent. The activity of the solubilized receptor was assayed by precipitating the receptor with acetone in the presence of egg phosphatidylcholine liposomes. the receptor-phosphatidylcholine liposomes bound 125I-LDL with the same affinity and specificity as did the native LDL receptor of intact membranes. The complex of receptor and octylglucoside had a Stokes radius of 53.5 A as determined by agarose gel filtration. The sedimentation coefficient, s20,w, of the receptor . octylglucoside complex was 7.3 as determined by metrizamide density gradient centrifugation. An identical value for the sedimentation coefficient was obtained when deuterium oxide was substituted for water in the metrizamide gradient. These data were used to derive an estimate of 163,000 for the molecular weight of the LDL receptor . octylglucoside complex (range of molecular weight, 152,000 to 170,000). The receptor is an acidic protein as determined by its behavior on ion exchange chromatography. In the most highly purified LDL receptor preparation, which had been subjected to the sequential steps of solubilization, DEAE-cellulose chromatography, agarose gel filtration, and phosphatidylcholine/acetone precipitation, the receptor was estimated to constitute about 5% of the total protein. Thus, complete purification of the LDL receptor from bovine adrenocortical membranes will require an additional 20-fold purification, or a total purification of about 7,000-fold.  相似文献   

20.
The structure of the hepatic insulin receptor and insulin binding.   总被引:1,自引:1,他引:0       下载免费PDF全文
Hepatocytes or hepatic plasma membranes were photoaffinity-labelled with radioiodinated N epsilon B29-monoazidobenzoyl-insulin. Analysis of the samples by SDS/polyacrylamide-gel electrophoresis and autoradiography revealed the insulin receptor as a predominant band of 450 kDa. When hepatic plasma membranes were first treated with clostridial collagenase and then photolabelled, the insulin receptor appeared as a predominant band of 360 kDa. This effect of collagenase treatment on the insulin receptor was due to Ca2+-dependent heat-labile proteinases contaminating the preparation of collagenase, and it could be mimicked by elastase. The decrease in size of the insulin receptor to 360 kDa resulted from the loss of a receptor component that was inaccessible to photolabelling. In contrast, the size of the insulin receptor of intact cells was not affected by collagenase treatment. This suggests that the site sensitive to proteolysis was located on the cytoplasmic side of the plasma membrane. In hepatic plasma membranes that were treated with collagenase or elastase, and contained the 360 kDa form of the insulin receptor, the binding affinity for insulin was increased by up to 2-fold. These findings support the concept that a component which is either a part of, or closely associated with, the insulin receptor may regulate its affinity for insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号