首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
These studies were designed to compare the effects of nitric oxide (NO) generating compounds with those of several iron containing, compounds which do not generate NO on glutamate receptor function. Stimulation of primary cultures of cerebellar granule cells with N-methyl-D-aspartate (NMDA) or kainate results in the elevation of intracellular calcium ([Ca2+]i) and cGMP and the release of glutamate. The iron containing compounds, sodium nitroprusside (SNP), potassium ferrocyanide (K4Fe(CN)6) and potassium ferricyanide (K3Fe(CN)6) decrease the NMDA-induced release of glutamate. SNP is the only compound of the above 3 agents which generates NO. A non-iron, NO generating compound, S-nitroso-N-acetylpenicillamin (SNAP), has no effect on the NMDA-induced glutamate release. Potassium ferrocyanide (Fe II), but not potassium ferricyanide (Fe III), blocks NMDA-induced cGMP elevations after 3 min exposure times. This contrasts with the NO generating compounds (both SNP and SNAP) which elevate cGMP levels. Furthermore, both potassium ferrocyanide (Fe II) and SNP (Fe II) suppress the elevation of [Ca2+]i induced by NMDA but neither potassium ferricyanide (Fe III) nor SNAP are effective in this regard. These effects are also independent of cyanide as another Fe II compound, ferrous sulfate (FeSO4) is also able to suppress NMDA-induced elevations of [Ca2+]i SNP was unable to suppress kainate receptor functions. Collectively, these results indicate that Fe II, independently of NO, has effects on NMDA receptor function.  相似文献   

2.
The effects of nitric oxide (NO) on caulogenesis, shoot organogenesis and rhizogenesis from hypocotyl explants of Linum usitatissimum were investigated. Exogenously supplied NO donors, 5 μM sodium nitroprusside (SNP), 2 μM S-nitroso-N-acetylpenicillamine (SNAP) and 2 μM 3-morpholinosydnonimine (SIN-1), significantly promoted shoot differentiation from the hypocotyl explants of L. usitatissimum excised from its in vitro raised seedlings. Potassium ferrocyanide, a structural analogue of SNP, lacking NO group, did not promote shoot organogenesis. Likewise, products of NO, \textNO2 - {\text{NO}}_{2}^{ - } and \textNO3 - {\text{NO}}_{3}^{ - } supplied as 5 μM NaNO2 and 5 μM NaNO3 did not enhance shoot differentiation. Another source of NO, a mixture of sodium nitrite (SN) provided along with ascorbic acid (AsA), also caused significant promotion in the average number of shoots per responding explant. SNP also augmented the rhizogenic response of the microshoots in terms of percentage of responding explants, number of roots per responding explant and average root length. The NO scavengers, 2-(4-carboxy-phenyl)-4, 4, 5, 5-tetramethylimideazoline-1-oxyl-3-oxide (cPTIO) or methylene blue (MB), provided along with SNP, SNAP, SIN-1 or SN + AsA, at concentrations equimolar to the optimum concentration of the donors, reversed the promotory influence, thereby, confirming the role of NO in promotion of in vitro morphogenesis. However, NO scavengers individually did not affect the observed morphogenic processes. Morphological and histological studies of hypocotyl segments cultured on BM or BM + SNP for 4, 8 and 12 days demonstrated that SNP enhanced shoot differentiation by inducing a higher number of shoot primordia, each of which develops into a single shoot.  相似文献   

3.
Nitric oxide (NO) plays diverse roles in the growth and development of plants and in their responses to various abiotic and biotic stresses. It has also been reported to repress flowering in Arabidopsis thaliana. In the present study, NO donors sodium nitroprusside (SNP), S-nitroso-N-acetyl penicillamine (SNAP), and 3-morpholinosydnonimine (SIN-1) induced flowering in Lemna aequinoctialis 6746 (a short-day strain) and in L. aequinoctialis LP6 (a photoperiod-insensitive strain) under noninductive conditions. Nitrate and nitrite, two stable metabolites of NO, did not induce flowering. On the other hand, cyanide donors potassium ferricyanide {K3[Fe(CN)6]} and potassium cyanide (KCN) induced flowering in both strains under noninductive conditions. The flowering induced under a 8-h daily photoperiod regime in the short-day strain L. aequinoctialis 6746 was inhibited by NO and cyanide donors. Vegetative multiplication of both strains was adversely affected by NO and cyanide donors, irrespective of the photoperiod conditions. The observed effects of NO donors on flowering were substantially negated by NO scavengers c-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] and methylene blue. This confirmed the role of NO in induction of flowering. The inductive effect of CN also appeared to be partly mediated through NO as NO scavengers partially negated the effect of CN.  相似文献   

4.
The involvement of NO in O2 ·− generation, rootlet development and antioxidant defence were investigated in the adventitious root cultures of mountain ginseng. Treatments of NO producers (SNP, sodium nitroprusside; SNAP, S-nitroso-N-acetylpenicillamine; and sodium nitrite with ascorbic acid), and NO scavenger (PTIO, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide) revealed that NO is involved in the induction of new rootlets. Severe decline in number of new rootlets compared to the control under PTIO treatment indicates that NO acts downstream of auxin action in the process. NO producers (SNP, SNAP and sodium nitrite with ascorbic acid) activated NADPH oxidase activity, resulting in greater O2 ·− generation and higher number of new rootlets in the adventitious root explants. Moreover, treatment of diphenyliodonium chloride, a NADPH oxidase inhibitor, individually or along with SNP, inhibited root growth, NADPH oxidase activity and O2 ·− anion generation. NO supply also enhanced the activities of antioxidant enzymes that are likely to be responsible for reducing H2O2 levels and lipid peroxidation as well as modulation of ascorbate and non-protein thiol concentrations in the adventitious roots. Our results suggest that NO-induced generation of O2 ·− by activating NADPH oxidase activity is related to adventitious root formation in mountain ginseng.  相似文献   

5.
Abstract: Nitric oxide (NO)-generating compounds (NO donors) such as sodium nitroprusside, S-nitroso-N-acetylpenicillamine, S-nitroso-l -glutathione, 3-morpholinosyndnonimine (SIN-1), (dl )-(E)-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide, and 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene inhibited the Na+,K+-ATPase activity purified from porcine cerebral cortex. NO-reducing or -scavenging agents, such as superoxide dismutase or N-(dithiocarbamate)-N-methyl-d -glucamine sodium salt, l -ascorbic acid, and sulfhydryl (SH) compounds, such as dithiothreitol or the reduced form of glutathione, but not α-tocopherol, prevented the inhibition of the enzyme activity by all NO donors except sodium nitroprusside. Enzyme inhibition could also be reversed by these SH compounds, but not by superoxide dismutase, l -ascorbic acid, and α-tocopherol. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide (PTIO), which is able to scavenge NO radicals and generate nitrogen dioxide radicals (?NO2), potentiated the inhibition of this enzyme activity induced by all NO donors (except SIN-1). PTIO did not potentiate, but rather attenuated, the SIN-1-induced inhibition. SIN-1 has been reported to release both NO and superoxide and thereby to rapidly form peroxynitrite (ONOO?). These potentiated and attenuated inhibitions of the enzyme activity induced by PTIO plus all of the NO donors except sodium nitroprusside were prevented by SH compounds, but not by superoxide dismutase, l -ascorbic acid, and α-tocopherol. These results suggest that NO donors may release NO or NO-derived products, presumably ?NO2 and ONOO?, and may inhibit the Na+,K+-ATPase activity by interacting with a SH group at the active site of the enzyme.  相似文献   

6.
GABA is the inhibitory neurotransmitter in most brain stem nuclei. The properties of release of preloaded [3H]GABA were now investigated with slices from the mouse brain stem under normal and ischemic (oxygen and glucose deprivation) conditions, using a superfusion system. The ischemic GABA release increased about fourfold in comparison with normal conditions. The tyrosine kinase inhibitor genistein had no effect on GABA release, while the phospholipase inhibitor quinacrine reduced both the basal and K+-evoked release in normoxia and ischemia. The activator of protein kinase C (PKC) 4β-phorbol 12-myristate 13-acetate had no effects on the releases, whereas the PKC inhibitor chelerythrine reduced the basal release in ischemia. When the cyclic guanosine monophosphate (cGMP) levels were increased by superfusion with zaprinast and other phosphodiesterase inhibitors, GABA release was reduced under normal conditions. The NO donors S-nitroso-N-acetylpenicillamine (SNAP) and hydroxylamine (HA) enhanced the basal and K+-stimulated release by acting directly on presynaptic terminals. Under ischemic conditions GABA release was enhanced when cGMP levels were increased by zaprinast. This effect was confirmed by inhibition of the release by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The NO-producing agents SNAP, HA, and sodium nitroprusside potentiated GABA release in ischemia. These effects were reduced by the NO synthase inhibitor NG-nitro-l-arginine, but not by ODQ. The results show that particularly NO and cGMP regulate both normal and ischemic GABA release in the brain stem. Their effects are however complex.  相似文献   

7.
《Inorganica chimica acta》1988,146(2):187-191
Lithium penta(cyano-13C)nitrosylruthenate (2-), Li2[Ru(13CN)5NO], in which the anion is the ruthenium analogue of the nitroprusside ion, has been synthesized at 90% isotopic enrichment, and characterized spectroscopically. Despite the very high level of 13C enrichment, no two-bond coupling 2J(13Cax-Ru13Ceq) was detected in the high-frequency 13C NMR spectrum of Li2[Ru(13CN)5NO], nor was any such coupling observed in Li4[Ru(13CN)5(15NO2)] although both two-bond couplings to 15N, 2J(13Cax-Ru15NO2) and 2J(13CeqRu15N) were observed. Li2[Ru(13CN)5(14NO)] reacted with excess of Li[15NO2] to yield Li4[Ru(13CN)5(15NO2)] only: no Li2[Ru(13CN)5(15NO)] was observed. Li4[Ru(13CN)5(14NO2)] however showed no exchange with Li[15NO2]. While [Ru(CN)5NO]2− reacted with both OH and SH in reactions similar to those of [Fe(CN)5NO]2−, no reactions were detected between [Ru(CN)5NO]2− and piperidine, [CH(CN)2], [CH(COCH3)2], MeS, or [S2O4]2−, all of which are known to react readily with [Fe(CN)5NO]2−  相似文献   

8.
Abstract: To understand the possible mechanism of nitric oxide (NO)-mediated cytotoxicity, we investigated the effect of NO on the endogenous antioxidant enzymes (AOEs) catalase, glutathione peroxidase (GPX), and CuZn- and Mn-superoxide dismutases (SODs) in rat C6 glial cells under conditions in which these cells expressed oligodendrocyte-like properties as evidenced by the expression of 2′,3′-cyclic-nucleotide 3′-phosphohydrolase. The 24-h treatment with S-nitroso-N-acetylpenicillamine (SNAP), a NO donor, decreased the activities and the protein levels of catalase, GPX, and Mn-SOD in a dose-dependent manner. Alternatively, the activity and the protein level of CuZn-SOD were increased. 2-Phenyl-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a NO scavenger, blocked the effect of SNAP. Moreover, the treatment of C6 cells with sodium nitroprusside, another NO donor, or with a combination of lipopolysaccharide (LPS) and interferon-γ (IFN-γ), which induce excessive production of NO, also significantly modulated the AOE activities in a manner similar to that seen with SNAP treatment. The compounds/enzymes that inhibit the production of NO (e.g., N-nitro-l -arginine methyl ester hydrochloride, arginase, and PTIO) blocked the effects of LPS and IFN-γ on the activities of AOEs. Treatment with SNAP and a combination of LPS and IFN-γ also modulated the mRNA levels of AOEs, parallel to the changes in their protein levels and activities, except for Mn-SOD where the combination of LPS and IFN-γ markedly stimulated the mRNA expression. In spite of the stimulation of mRNA level, LPS and IFN-γ significantly inhibited the activity of Mn-SOD within the first 24 h of incubation; however, Mn-SOD activity gradually increased with the increase in time of incubation. These results suggest that alterations in the status of AOEs by NO may be the basis of NO-induced cytotoxicity in disease states associated with excessive NO production.  相似文献   

9.
《Inorganica chimica acta》1988,151(4):281-286
Spin echo 1H NMR spectroscopy showed that when the hypotensive agent sodium nitroprusside, Na2[Fe(CN)5NO]·2H2O, was incubated with intact erythrocytes in 2H2O saline, glutathione in the erythrocytes was oxidised to diglutathione. This was confirmed by 1H FT NMR for the in vitro reaction. 13C FT NMR showed that the stoichiometry of the glutathione nitroprusside reaction was 1:1; the inorganic products were nitric oxide and hexacyanoferrate(II), [Fe(CN)6]. At no stage was free cyanide liberated. The reaction of nitroprusside with glutathione, which occurs after the nitroprusside has crossed the erythrocyte membrane, is compared with the reaction of nitroprusside with haemoglobin. In neither of these reactions with major erythrocyte components was any free cyanide liberated by sodium nitroprusside.  相似文献   

10.

IWF, intercellular washing fluid
pCMB, p-chloromercuribenzoic acid
SNAP, S-nitroso-N-acetyl-penicillamine SNP, sodium nitroprusside
TMB, 3,3’,5,5’- tetramethylbenzidine

Sodium nitroprusside (SNP) and S-nitroso-N-acetyl-penicillamine (SNAP) are two nitric oxide (NO)-releasing compounds that, when used at 5·0 mol m–3 concentrations, are capable of releasing NO in the aqueous phase at a rate of 35 ± 4 and 47 ± 5 μmol m–3 s–1, respectively. For this reason, the effect of SNP and SNAP on coniferyl alcohol peroxidase and on H2O2 production by the lignifying xylem of Zinnia elegans (L.) has been studied in order to ascertain whether NO, which is a synchronizing chemical messenger in animals and an air pollutant, has any effect on these plant-specific metabolic aspects. The results showed that both SNP and SNAP provoke an inhibition in the mol m–3 concentration range of the coniferyl alcohol peroxidase activity of a basic peroxidase isoenzyme present in the intercellular washing fluid of Z. elegans. The effect of these NO-releasing compounds on peroxidase was confirmed through histochemical studies, which showed that xylem peroxidase was totally inhibited by treatment with these NO donors at 5·0 mol m–3, and by NO at a concentration change rate of 55 ± 5 and 110 ± 9 μmol m–3 s–1. However, SNP, at 5·0 mol m–3, does not have any effect on H2O2 production by the xylem of Z. elegans. The fact that SNP and SNAP are two structurally dissimilar compounds which only share the common ability to release NO in aqueous buffer, and that similar results were obtained when using NO itself, suggest that NO could be considered as an inhibitor of coniferyl alcohol peroxidase which does not affect H2O2 production in the xylem of Z. elegans.  相似文献   

11.
Abstract: It has been shown that nitric oxide (NO) regulates NO synthase (NOS) activity through negative feedback in cytosolic enzyme preparations in various cell types. We compared the effects of the NO-generating compounds S-nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine (SIN-1), and sodium nitroprusside (SNP) on NOS activity in intact neuroblastoma N1E-115 cells and in the cytosol obtained from the same cells. Enzyme activity was measured by the conversion of l -[3H]arginine into l -[3H]citrulline. At concentrations that elicit almost complete inhibition of NOS activity in cytosolic enzyme preparations of these cells, SIN-1 and SNP did not cause significant attenuation of enzyme activity measured at 45 min in intact cells. It is surprising that SIN-1 and SNP markedly stimulated l -[3H]citrulline formation in a time- and concentration-dependent manner when cells were incubated with the compounds for >1.5 h. Neither inhibitory nor stimulatory effects of SNAP on NOS were observed in intact N1E-115 cells. This is in contrast to the inhibitory effects of SNAP in cytosolic preparations of the enzyme. The increased NOS activity by SIN-1 or SNP in intact cells was dependent on the presence of extracellular Ca2+, suggesting that it might be due to increased Ca2+ influx. On the other hand, measurements of the activity of lactate dehydrogenase showed that there was no generalized increase in cell permeability in response to SIN-1 or SNP. There was no agreement in the rank order of potencies of these compounds in activating guanylate cyclase and in affecting NOS activity, both in broken-cell preparations and in intact cells. Thus, modulation of NOS activity by NO-releasing compounds is not dependent on cyclic GMP formation and might not be related in a simple fashion to NO generation. Alternatively, activation of guanylate cyclase and stimulation of NOS activity might require different redox species of NO. Our present findings might be of clinical relevance in relation to long-term use of NO-generating compounds as therapeutic agents.  相似文献   

12.
The TUNEL method is used to quantify the proapoptotic effects of an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), in NG108-15 cells. Unlike sodium nitroprusside used in previous studies, SNAP does not release cyanide along with NO, thus NO toxicity was determined without concurrent cyanide toxicity. The present study also determined if pretreatment with ANP could protect against NO-induced apoptosis in NG108-15 cells. Cell death at 24 h following SNAP treatment was associated with apoptotic DNA fragmentation. SNAP at 0.5, 0.75, 1.0, and 2.0 mM caused significant (P<0.05) increases in the percentage of TUNEL-labeled cells from a control of 0.90% to 6.19%, 6.36%, 7.25%, and 15.1%, respectively. Thus, SNAP caused concentration-dependent induction of apoptosis in NG108-15 cells. SNAP-induced apoptosis was confirmed by morphological changes and increased levels of polynucleosome-sized fragments of DNA assessed by capillary electrophoresis. Preincubation for 24 h with ANP at 0.01, 0.1, and 1.0 M, before the SNAP, significantly (P<0.05) decreased the percentage of labeled cells from 7.25% to 5.10%, 4.36%, and 3.24% in the presence of SNAP (1 mM) and from 15.1% to 7.91%, 6.64%, and 5.60% in the presence of SNAP (2 mM), respectively, representing protection of 24.0%, 34.0%, and 57.0% against SNAP (1 mM) and 26.0%, 37.0%, and 50.9% against SNAP (2 mM). Thus, prior activation of a cGMP-mediated neuroprotective mechanism induced by ANP appears to counterbalance, at least partially, the proapoptotic effects of excess NO. This neuroprotective mechanism involving cGMP may be especially important in protecting against the development of neurodegenerative diseases in which excess NO is thought to contribute to neuronal apoptosis.  相似文献   

13.
Abstract: The existence of both nitric oxide synthase (NOS) immunoreactive interneurons and amino acid neurotransmitter-mediated nitric oxide (NO) release in the striatum suggests a role for NO in modulating striatal function. To explore the potential interaction between NO and dopaminergic neurotransmission, the NO-releasing agent (±)-S-nitroso-N-acetylpenicillamine (SNAP) was administered locally into the anterior medial striatum of chloral hydrate-anesthetized rats. SNAP, at 0.5, 1, and 2 mM concentrations, elevated striatal extracellular (EC) dopamine (DA) to 200 ± 42, 472 ± 120, and 2,084 ± 496%, respectively, above baseline levels. Perfusion with (±)-penicillamine (PEN, 1 mM), the non-NO-containing carrier component of SNAP, was ineffective, indicating that PEN is not responsible for SNAP-mediated DA release. Additional microdialysis experiments suggest SNAP-mediated DA release is not due to NO-induced neurotoxicity or blockade of the DA transporter. The DA-releasing effect of SNAP was attenuated under calcium-free conditions and abolished in rats pretreated with reserpine (5 mg/kg), implicating a calcium-sensitive vesicular-dependent release process. To determine the mechanism of SNAP-mediated DA release, the guanylyl cyclase (GC) inhibitor LY 83583 (100 µM) was administered 100 min before and during the SNAP pulse. LY 83583 elevated EC DA levels approximately fivefold and potentiated the DA-releasing effect of SNAP to 2,598 ± 551% above basal DA levels. Similar pretreatments with both the noncompetitive N-methyl-d -aspartate (NMDA) antagonist MK-801 (10 µM) and the competitive NMDA-receptor antagonist (±)-3-(carboxypiperazin-4-yl)propyl-1-phosphonic acid [(±)-CPP, 100 µM] blocked SNAP-mediated DA release. SNAP-mediated DA release was also significantly blunted by pretreatment and coperfusion with MgSO4 (10 mM) and 6,7-dinitroquinoxaline-2,3-dione (DNQX, 10 µM) but not (+)-2-amino-3-phosphonopropionic acid (AP-3, 10 µM). These results suggest that NO releases DA via a calcium-sensitive vesicular-dependent process that is independent of GC activation. In addition, NMDA and kainate/(±)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated mechanisms are implicated in NO-induced DA release.  相似文献   

14.
Advanced glycation end products (AGE) and angiotensin II were closely correlated with the progression of diabetic nephopathy (DN). Nitric oxide (NO) is a protective mediator of renal tubular hypertrophy in DN. Here, we examined the molecular mechanisms of angiotensin-converting enzyme inhibitor (ACEI) and NO signaling responsible for diminishing AGE-induced renal tubular hypertrophy. In human renal proximal tubular cells, AGE decreased NO production, inducible NOS activity, guanosine 3′,5′-cyclic monophosphate (cGMP) synthesis, and cGMP-dependent protein kinase (PKG) activation. All theses effects of AGE were reversed by treatment with ACEIs (captopril and enalapril), the NO donor S-nitroso-N-acetylpenicillamine (SNAP), and the PKG activator 8-para-chlorophenylthio-cGMPs (8-pCPT-cGMPs). In addition, AGE-enhanced activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) were clearly reduced by captopril, enalapril, SNAP, and 8-pCPT-cGMPs. The abilities of ACEIs and NO/PKG activation to inhibit AGE-induced hypertrophic growth were verified by the observation that captopril, enalapril, SNAP, and 8-pCPT-cGMPs decreased protein levels of fibronectin, p21 Waf1/Cip1, and receptor for AGE. The results of the present study suggest that ACEIs significantly reduced AGE-increased ERK/JNK/p38 MAPK activation and renal tubular hypertrophy partly through enhancement of the NO/PKG pathway.  相似文献   

15.
Mn‐based hexacyanoferrate NaxMnFe(CN)6 (NMHFC) has been attracting more attention as a promising cathode material for sodium ion storage owing to its low cost, environmental friendliness, and its high voltage plateau of 3.6 V, which comes from the Mn2+/Mn3+ redox couple. In particular, the Na‐rich NMHFC (x > 1.40) with trigonal phase is considered an attractive candidate due to its large capacity of ≈130 mAh g?1, delivering high energy density. Its unstable cycle life, however, is holding back its practical application due to the dissolution of Mn2+ and the trigonal‐cubic phase transition during the charge–discharge process. Here, a novel hexacyanoferrate (Na1.60Mn0.833Fe0.167[Fe(CN)6], NMFHFC‐1) with Na‐rich cubic structure and dual‐metal active redox couples is developed for the first time. Through multiple structural modulation, the stress distortion is minimized by restraining Mn2+ dissolution and the trigonal‐cubic phase transition, which are common issues in manganese‐based hexacyanoferrate. Moreover, NMFHFC‐1 simultaneously retains an abundance of Na ions in the framework. As a result, Na1.60Mn0.833Fe0.167[Fe(CN)6] electrode delivers high energy density (436 Wh kg?1) and excellent cycle life (80.2% capacity retention over 300 cycles), paving the way for the development of novel commercial cathode materials for sodium ion storage.  相似文献   

16.
A study of the metal-to-metal charge-transfer (MMCT) transition within the binuclear cyano-bridged complexes cis-[L13CoIII(μ-NC)FeII(CN)5] (L13 = 12-methyl-1,4,7,10-tetraazacyclotridecan-12-amine), trans-[L14CoIII(μ-NC)FeII(CN)5] (L14 = 6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine) and trans-[L15CoIII(μ-NC)FeII(CN)5] (L15 = 10-methyl-1,4,8,12-tetraazacyclopentadecan-10-amine) has been carried out in electrolyte solutions at varying concentrations. Using these data, as well as the reaction free energies obtained from electrochemical measurements, the reorganisation and activation free energies for the forward and reverse thermal electron-transfer processes have been estimated. The changes of these parameters with the electrolyte concentration, as well as those of the energy of the maximum MMCT band and the reaction free energy, are mainly due to ion-pairing effects.  相似文献   

17.
The plasma factor XIII (FXIII) is a transglutaminase which catalyzes the cross-linking of fibrin monomers during blood coagulation. S-nitrosylation of protein sulfhydryl groups has been shown to regulate protein function. Therefore, to establish whether nitric oxide (NO) affects the enzymatic activity of FXIII, we studied the effect of the NO-donorS-nitroso-N-acetylpenicillamine (SNAP) in a blood coagulation testin vitro. High concentrations of SNAP were found to have inhibitory effects on clot formation. Moreover, specific formation of γ-dimers through the action of FXIII is selectively inhibited by high concentrations of SNAP, as revealed by Western blot. Purified activated FXIII and plasma preparations were then exposed to NO-donor compounds and the enzyme activity was assayed by measuring the incorporation of [3H] putrescine into dimethylcasein. The NO donors, SNAP, spermine-NO (SPER-NO) and 3-morpholinosydnonimine (SIN-1), and the NO-carrier, S-nitrosoglutathione (GSNO), inhibited FXIII activity in a dose-dependent manner, in both purified enzyme and plasma preparations. Titration of -SH groups of FXIII with [14C] iodoacetamide has shown that the number of titratable cysteines per monomer of FXIII decreased from 1 (in absence of NO donors) to 0 (in the presence of NO donors). These results demonstrate that blood coagulation FXIII is a target for NO bothin vitroandin vivo,and that inhibition occurs by S-nitrosylation of a highly reactive cysteine residue. In conclusion, we show that inhibition of FXIII activity by NO may represent an additional regulatory mechanism for the formation of blood clot with physio-pathological implications.  相似文献   

18.
Many of the cytopathic effects of nitric oxide (NO·) are mediated by peroxynitrite (PN), a product of the reaction between NO· and superoxide radical (O·?2). In the present study, we investigated the role of PN, O·?2 and hydroxyl radical (OH·) as mediators of epithelial hyperpermeability induced by the NO· donor, S-nitroso-N-acetylpenicillamine (SNAP), and the PN generator, 3-morpholinosydnonimine (SIN-1). Caco-2BBe enterocytic monolayers were grown on permeable supports in bicameral chambers. Epithelial permeability, measured as the apical-to-basolateral flux of fluorescein disulfonic acid, increased after 24 h of incubation with 5.0 mM SNAP or SIN-1. Addition of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, an NO· scavenger, or Tiron, an O·?2 scavenger, reduced the increase in permeability induced by both donor compounds. The SNAP-induced increase in permeability was prevented by allopurinol, an inhibitor of xanthine oxidase (a source of endogenous O·?2). Diethyldithiocarbamate, a superoxide dismutase inhibitor, and pyrogallol, an O·?2 generator, potentiated the increase in permeability induced by SNAP. Addition of the PN scavengers deferoxamine, urate, or glutathione, or the OH· scavenger mannitol, attenuated the increase in permeability induced by both SNAP and SIN-1. Both donor compounds decreased intracellular levels of glutathione and protein-bound sulfhydryl groups, suggesting the generation of a potent oxidant. These results support a role for PN, and possibly OH·, in the pathogenesis of NO· donor-induced intestinal epithelial hyperpermeability.  相似文献   

19.
The free radical, nitric oxide (√NO), is responsible for a myriad of physiological functions. The ability to verify and study √NO in vivo is required to provide insight into the events taking place upon its generation and in particular the flux of √NO at relevant cellular sites. With this in mind, several iron-chelates (Fe2+(L)2) have been developed, which have provided a useful tool for the study and identification of √NO through spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. However, the effectiveness of √NO detection is dependent on the Fe2+(L)2 complex. The development of more efficient and stable Fe2+(L)2 chelates may help to better understand the role of √NO in vivo. In this paper, we present data comparing several proline derived iron–dithiocarbamate complexes with the more commonly used spin traps for √NO, Fe2+-di(N-methyl-D-glutamine-dithiocarbamate) (Fe2+(MGD)2) and Fe2+-di(N-(dithiocarboxy)sarcosine) (Fe2+(DTCS)2). We evaluate the apparent rate constant (kapp) for the reaction of √NO with these Fe2+(L)2 complexes and the stability of the corresponding Fe2+(NO)(L)2 in presence of NOS I.  相似文献   

20.
S-nitroso-N-acetylpenicillamine (SNAP) is a pharmacological agent with diverse biological effects that are mainly attributable to its favorable characteristics as a nitric oxide (NO)-evolving agent. It is found that SNAP incorporates readily into dimyristoyl phosphatidylcholine (DMPC) bilayer membranes; and an approximate penetration profile was obtained from the depth dependence of the perturbation that it exerts on spin-labeled lipid chains. The profile of SNAP locates it deep in the hydrophobic core of both fluid- and gel-phase membranes. The spin relaxation enhancement of spin-labeled phospholipids with nitroxide group located at different depths in DMPC membranes was determined for nitric oxide (NO) and molecular oxygen (O2), at close to atomic spatial resolution. The relaxation enhancement, which is proportional to the corresponding vertical membrane profile of the concentration-diffusion product, was measured in the gel and fluid phases of the lipid bilayer. No significant membrane penetration was observed in the gel phase for the two water-dissolved gases. In the fluid phase, the transmembrane profiles of NO and O2 are similar and could be well described by a sigmoidal function with a maximum in the center of the bilayer, but that of NO is less steep and is shifted toward the center of the membrane, relative to that of O2. These differences can be attributed mainly to the difference in hydrophobicity between the two gases and the presence of the donor in the NO experiments. The biological implications of the above results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号