首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
1.  Optical and electrophysiological measurements on the eyes of living moths,Ephestia kuehniella, show that aggregation of secondary pigment cell granules occurs only in the temperature range 5 to 37°C. At temperatures outside this range the granules are always dispersed, even when the moths are in the dark. The state of aggregation is maximal at about 20°C, as measured by reflectance. The temperature-dependent decrease in reflectance induced by test illuminations (identical in wavelength, intensity and flash duration), as an indication of the translocation of the granules towards the dispersed state, is strongest at about 25°C.
2.  Electroretinograms (ERGs) were recorded in the range from –5 to 42°C. The temperature dependence of ERGs gives an asymmetrical curve with a maximum between 10 and 15°C. The difference in the position of this maximum compared to those of reflectance values is discussed, together with results from a white-eyed mutant.
3.  Oxygen consumption of moth heads is independent of light or dark adaptation in both wildtype and mutant moths. TheQ 10 values of oxygen consumption are between 2 and 3. Inhibition of the aggregation of screening pigment granules by colchicine does not change O2 consumption. When mixtures of oxygen and nitrogen (O2/N2) are applied to mealmoths, aggregation of granules does not occur with less than 3% O2. At O2 levels between 10% and 100%, granule migration is constant. At O2 levels between 3 and 10%, change in reflectance after a given light stimulus increases with decreasing O2 concentration.
  相似文献   

2.
Migration of screening pigment granules was studied in the secondary pigment cells of the compound eye of the tobacco hornworm moth Manduca sexta. The granules aggregate at the distal ends of these elongate cells during dark-adaptation, and disperse proximally during light-adaptation, to provide a longitudinal pupil regulating the entrance of light into the eye. Pigment position was measured directly during the couse of migration in sectioned quick-frozen eyes, and the pupillary response was measured in the intact eyes of living moths by reflectance microscopy. The influences of nitrogen and carbon dioxide anaesthesia on pigment migration were investigated in the light of earlier studies on other speicies showing that hypoxia results in dispersal. In accordance with these previous studies, rapid dispersal results from nitrogen hypoxia in Manduca, the pigment spreading farther than it does in light-adaptation. By contrast, the pigment disperses only slightly in response to carbon dioxide hypoxia. Carbon dioxide also inhibits the rapid, extensive dispersal caused by light and nitrogen. Thus the pseudopupil of the eye remains dilated in carbon dioxide anaesthetized moths even under bright illumination. Light-induced dispersal is restored with the addition of oxygen to the carbon dioxide atmosphere. These results suggest, contrary to the conclusions of earlier studies, that pigment dispersal in light-adaptation requires metabolic energy. The inhibition of pigment migration by carbon dioxide is unlikely to be the result of hypoxia; we suggest that low cellular pH affects the mechanism of pigment-granule motility.  相似文献   

3.
Metabolic responses of sand fiddler crab, Uca pugilator, populations in northwest Florida are greatly influenced by seasonal temperature fluctuations. Crabs acclimated at 20 °C and immediately transferred to either 14 or 26 °C produced an acute metabolic response with respective temperature quotient (Q10) values of 3.46 and 3.91. Crabs acclimated at 10 and 20 °C exhibited a Q10 of 2.62 indicating a partial compensation response. A brumation (reverse) response (Q10 value of 20.11) was observed for acclimated crabs between 5 and 10 °C. Brumation is advantageous during winter when food supplies are scarce and crabs must survive extensive periods of inactivity.  相似文献   

4.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

5.
The effects of oxygen conditions and temperature on dynamics of greenhousegases (CH4, CO2, N2O) and nutrients(NH4 +, NO2 +NO3 , tot-P) were studied in sediment of hyper-eutrophic LakeKevätön, Finland. Undisturbed sediment cores were incubated at 6, 11,16, and 23 °C in a laboratory microcosm using a continuouswater flowtechnique with an oxic or anoxic water flow. The production of CO2increased with increasing temperature in both oxic (Q10 3.2 ±0.6) and anoxic (Q10 2.3 ± 0.4) flows. The release ofCH4 increased with temperature in anoxic conditions (Q102.3 ± 0.2), but was negligible with the oxic flow at all temperatures.The release of NH4 + increased with temperature with the oxic and anoxic flows(Q10 2.4 ± 0.1). There was a net production of NO2 , NO3 and N2O with the oxic flow at temperatures below16 °C. The release of phosphorus was greater from the anoxicsediments and increased with temperature with both the anoxic (Q102.9 ± 0.5) and oxic (Q10 1.9 ± 0.1) flows. It isprobable that the temperature of boreal lakes and the associated oxygendeficiency will increase as the climate becomes warmer. Our experiments showedthat this change would increase the global warming potential of greenhousegasesreleased from sediments of eutrophic lakes predominately attributable to theincrease in the CH4 production. Furthermore, warming would alsoaccelerate the eutrophication of lakes by increasing release of phosphorus andmineral nitrogen from sediments, which further enhance CH4productionin sediments.  相似文献   

6.
The visual pigment in the peripheral retinular cells of the hoverfly Syrphus balteatus was investigated by absorbance difference measurements. Different visual pigments were found in the dorsal versus the ventral part of the eye in the male, but not in the female. In the male in the dorsal part of the eye the visual pigment has an isosbestic point at 513 nm; in the ventral part this value is 490 nm. The latter value is found in the female in both parts of the eye.Prolonged pupillary responses were studied in the male Syrphus and appeared to be most marked in the ventral part of the eye. In both hoverfly and blowfly prolonged pupillary responses are induced by short wavelength light only; i.e., by light which excessively can convert rhodopsin into metarhodopsin. By contrast, in butterflies red light (and a long dark adaptation time) is necessary to evoke a prolonged pupillary response. It was demonstrated in both hoverfly and blowfly that long wavelength light, which reconverts metarhodopsin into rhodopsin, inhibits a prolonged pupillary response; or, accelerates pupil opening.Based on material presented at the European Neurosciences Meeting, Florence, September 1978  相似文献   

7.
The effect of an acute temperature increase on the control of the heart of the Antarctic teleost Pagothenia borchgrevinki was examined. Heart rate was thermally independent over the range −1.2°C to 3°C, although increasing the temperature from −1.2°C to 3°C elicited a decrease in ventral aortic pressure. Administration of the muscarinic receptor antagonist atropine and the β-adrenoreceptor antagonist sotalol abolished the thermal independence of heart rate, with heart rate increasing at Q10=2. As temperature was increased from −1.2°C to 3°C, cholinergic tone on the heart also increased, from 44.6±4.2% to 70.0±8.4%. At the same time the adrenergic tone increased from 35.5±3.3% to 43.0±3.1%, but the effect on the heart was masked by the increase of cholinergic tone, leading to the thermal independence of heart rate.  相似文献   

8.
Simčič  Tatjana  Brancelj  Anton 《Hydrobiologia》2000,437(1-3):157-163
Electron transport system (ETS) activity was measured in Chirocephalus croaticus from the intermittent lake, Petelinjsko Jezero. The ETS activities were measured at 5, 10, 15, 20, and 25 °C, and were studied separately in juveniles, females and males. Juveniles had significantly higher activity than adults at a standard temperature of 20 °C. The mass-specific ETS activity decreased with increasing size of the animals; the value b was 0.787. Respiration rates (R) were determined at 20 °C and the ratio ETS/R (±standard deviation) for C. croaticus was 1.43±0.46 (n=38). ETS activity increased with temperature. Females had higher Q10 than males in higher temperature range (t-test; t=2.50; d.f.=8; p<0.05). Activation energy Ea was higher for females than males (t-test; t=2.35; d.f.=8; p<0.05). Females exhibited lower ETS activity than males over the lower temperature range, but their ETS could function more efficient at higher temperature.  相似文献   

9.
H. Kubo  H. Mihara 《Planta》1986,168(3):337-339
Sporangiophore initiation in Pilobolus crystallinus grown in white light was induced by either a dark or a low-temperature treatment. The period of darkness necessary to induce sporangiophore initiation was shortened by lowering the temperature. Arrhenius plots for the sporangiophore-suppressing reaction in both light and darkness consisted of two straight lines with a Q10 of about 2 at lower temperatures and 8–11 at higher temperatures. The temperature at which the Q10 changed was the lower, the higher the fluence rate: 14° C at 8 W/m2, 19.5° C at 0.24 W/m2 and 24.5° C in darkness. Possible interpretations of these results are briefly presented.Abbreviations %SP percentage of trophocysts initiating sporangiophores - D50% duration of treatment required to 50% sporangiophore initiation  相似文献   

10.
大草蛉成虫复眼的外部形态及其显微结构   总被引:2,自引:0,他引:2  
张海强  朱楠  范凡  魏国树 《昆虫学报》2007,50(5):454-460
用扫描电镜和光学显微镜观察了大草蛉Chrysopa pallens Ramber成虫复眼的外部形态及明、暗适应和性别对其显微结构的影响。结果发现:(1)其复眼呈半球形,位于头部两侧,略成“八”字形排列,单个复眼约由3 600个小眼组成,最前和最后小眼之间的夹角约为180°,最上和最下小眼之间的夹角约200°;(2)小眼主要由角膜、晶锥和6~8个小网膜细胞、基膜组成,外围环绕有2个初级虹膜色素细胞和6个次级虹膜色素细胞,基膜处有色素颗粒分布;(3)暗适应时,晶锥开裂程度较大,远端5~7个网膜细胞核向远端移动,与晶锥近端相接或接近,次级虹膜色素颗粒亦向远端移动包围晶锥;明适应时,晶锥开裂程度小或闭合,远端网膜细胞核向近端移动,透明带显现,大部分次级虹膜色素颗粒亦向近端移动分布在小网膜细胞柱周围,包被透明带;(4)在相同的明、暗适应下,雌、雄成虫复眼的显微结构无明显差异。结果表明大草蛉复眼为透明带明显的重叠象眼,其小眼不但具有次级虹膜色素颗粒纵向移动的常规调光机制,还存在晶锥开闭、远端网膜细胞核移动和基膜色素颗粒纵向扩散的调光新机制。  相似文献   

11.
Summary Squid giant axon could be excited in concentrated glycerol solutions containing normal concentrations of electrolytes, when osmolalities of solutions inside and outside the axon were matched. These glycerol solutions did not freeze at the temperature as low as –19°C. The nerve excitation in these solutions were observed at this low temperature. The excitation process at this low temperature was slowed down and time constants of the excitation kinetics were several hundredfold larger than those in normal seawater at 10°C, under which temperature the squid habituated. The temperature coefficients for the electrophysiological membrane parameters under this condition were larger than those in normal seawater above 0°C. The Q10 value for the conduction velocity was 2.0 and that of the duration of the action potential was around 8.5. The time course of the membrane currents was also slowed with the Q10 value of around 5 and the magnitude decreased with the Q10 value of around 2 as the temperature was lowered. The Q10 values for the kinetics of the on process of the Na-channel were around 4.5 and were almost the same as those of the off process of the Na-channel in the wide range of the temperature below 0°C. The Q10 value of the on process of K-channel was around 6.5 and was larger than those for Na-channel. The Q10 values increased gradually as the temperature was lowered.  相似文献   

12.
Thermopreference, tolerance and oxygen consumption rates of early juveniles Octopus maya (O. maya; weight range 0.38–0.78 g) were determined after acclimating the octopuses to temperatures (18, 22, 26, and 30 °C) for 20 days. The results indicated a direct relationship between preferred temperature (PT) and acclimated temperature, the PT was 23.4 °C. Critical Thermal Maxima, (CTMax; 31.8±1.2, 32.7±0.9, 34.8±1.4 and 36.5±1.0) and Critical Thermal Minima, (CTMin; 11.6±0.2, 12.8±0.6, 13.7±1.0, 19.00±0.9) increased significantly (P<0.05) with increasing acclimation temperatures. The endpoint for CTMax was ink release and for CTMin was tentacles curled, respectively. A thermal tolerance polygon over the range of 18–30 °C resulted in a calculated area of 210.0 °C2. The oxygen consumption rate increased significantly α=0.05 with increasing acclimation temperatures between 18 and 30 °C. Maximum and minimum temperature quotients (Q10) were observed between 26–30 °C and 22–26 °C as 3.03 and 1.71, respectively. These results suggest that O. maya has an increased capability for adapting to moderate temperatures, and suggest increased culture potential in subtropical regions southeast of México.  相似文献   

13.
Summary The amphipod, Orchomene plebs, and the isopod, Glyptonotus antarcticus, both adapted to live in seawater of a temperature of-2° to 0° C, were kept for 7h at the unphysiologically high temperature of +10° C. Temperature elevation appeared to mimic light adaptation with regard to the position of the screening pigment granules within the visual cells, but not with respect to ultrastructural changes in the microvillar array of the rhabdom, i.e. the visual membranes. Cellular metabolism, membranous fatty acid composition, and ion fluxes, all known to be readily affected by an increase in temperature, are thought to be responsible for the observed effects. Pigment granules could possibly cause an elevation of intracellular temperatures due to the fact that they are dark and dissipate absorbed energy as heat.  相似文献   

14.
The temperature dependence of the rate of de-epoxidation of violaxanthin to zeaxanthin was determined in leaves of chilling-sensitive Gossypium hirsutum L. (cotton) and chilling-resistant Malva parviflora L. by measurements of the increase in absorbance at 505 nm (A 505) and in the contents of antheraxanthin and zeaxanthin that occur upon exposure of predarkened leaves to excessive light. A linear relationship between A 505 and the decrease in the epoxidation state of the xanthophyll-cycle pigment pool was obtained over the range 10–40° C. The maximal rate of de-epoxidation was strongly temperature dependent; Q10 measured around the temperature at which the leaf had developed was 2.1–2.3 in both species. In field-grown Malva the rate of de-epoxidation at any given measurement temperature was two to three times higher in leaves developed at a relatively low temperature in the early spring than in those developed in summer. Q10 measured around 15° C was in the range 2.2–2.6 in both kinds of Malva leaves, whereas it was as high as 4.6 in cotton leaves developed at a daytime temperature of 30° C. Whereas the maximum (initial) rate of de-epoxidation showed a strong decrease with decreased temperature the degree of de-epoxidation reached in cotton leaves after a 1–2 · h exposure to a constant photon flux density increased with decreased temperature as the rate of photosynthesis decrease. The zeaxanthin content rose from 2 mmol · (mol chlorophyll)–1 at 30° C to 61 mmol · (mol Chl)–1 at 10° C, corresponding to a de-epoxidation of 70% of the violaxanthin pool at 10° C. The degree of de-epoxidation at each temperature was clearly related to the amount of excessive light present at that temperature. The relationship between non-photochemical quenching of chlorophyll fluorescence and zeaxanthin formation at different temperatures was determined for both untreated control leaves and for leaves in which zeaxanthin formation was prevented by dithiothreitol treatment. The rate of development of that portion of non-photochemical quenching which was inhibited by dithiothreitol decreased with decreasing temperature and was linearly related to the rate of zeaxanthin formation over a wide temperature range. In contrast, the rate of development of the dithiothreitol-resistant portion of non-photochemical quenching was remarkably little affected by temperature. Evidently, the kinetics of the development of non-photochemical quenching upon exposure of leaves to excessive light is therefore in large part determined by the rate of zeaxanthin formation. For reasons that remain to be determined the relaxation of dithiothreitolsensitive quenching that is normally observed upon darkening of illuminated leaves was strongly inhibited at low temperatures.Abbreviations and Symbols Chl chlorophyll - DTT dithiothreitol - EPS epoxidation state - NPQ non-photochemical chlorophyll fluorescence quenching - PFD photon flux density - PSII photosystem II - F, Fm fluorescence emission at the actual, full closure of the PSII centers C.I.W.-D.P.B. Publication No. 1092We thank Connie Shih for skillful assistance in growing the plants, for conducting the HPLC analyses, and for preparing the figures. A Carnegie Institution Fellowship and a Feodor-Lynen-Fellowship by the Alexander von Humboldt-Foundation to W.B. is gratefully acknowledged. This work was supported by Grant No. 89-37-280-4902 of the Competitive Grants Program of the U.S. Department of Agriculture to O.B.  相似文献   

15.
Summary During October/November 1983 photosynthetic responses of natural phytoplankton from the Scotia Sea and Bransfield strait to light and temperature were examined in incubators. Both assimilation numbers at saturating light levels and the slopes of the light-limited portions of the photosynthesis versus irradiance curves were smaller than in algae from lower latitudes. However, both parameters increased significantly with rising temperatures. Light-saturated photosynthesis on the average exhibited a Q10-value of ca. 4.2 between-1.5°C and +2°C. Light-limited photosynthesis between-1.5°C and +5°C rose at a rate corresponding to a Q10-value of roughly 2.6. Above +5°C, temperature enhancement of both light-saturated and light-limited photosynthetic rates was minimal or absent. Our results suggest that under extremely low temperatures light-limited photosynthetic rates become temperature-dependent due to changes in maximum quantum yields.  相似文献   

16.
The linear dichroism of Photosystem I particles containing 10 chlorophylls per P700 has been investigated at 10 K. The particles were oriented by uniaxial squeezing of polyacrylamide gels. The oxidation state of P700 was altered either by incubation of the gels with redox mediators or by low temperature illumination. The QY transitions of the primary electron donor P700, of the remaining unoxidized chlorophyll in P700+ and of a chlorophyll molecule absorbing at 686 nm, which presumably corresponds to the primary electron acceptor A0, are all preferentially oriented perpendicular to the gel squeezing direction. The QY transition of the chlorophyll forms absorbing at 670 and 675 nm appear tilted at 40 ± 5° from this orientation axis. This orientation of the various chlorophylls is compared to that previously reported for more native Photosystem I particles.Abbreviations PSI Photosystem I - P700 primary electron donor of PSI - A0 primary electron acceptor of PSI  相似文献   

17.
The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg–1 h–1 in 0.5-day-old larvae to 2.98±0.57 µl mg–1 h–1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg–1 h–1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg–1 h–1 CO2 at 18 °C, and 3.97±0.50 µl mg–1 h–1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.Abbreviations m body mass - R rate of development or respiration - TI inflexion point of a logistic (sigmoid) curve - TL lethal temperature - TO temperature of optimum (maximum) developmentCommunicated by G. Heldmaier  相似文献   

18.
We investigated the ability of eelgrass (Zostera marina) to adjust light requirements to seasonal changes in temperature, light and nutrient conditions through changes in metabolism, pigment and nutrient content. In agreement with expectations we found that rates of respiration and light saturated photosynthesis of summer acclimated plants peaked at higher temperatures (5 °C and 2 °C higher, respectively), and were lower than of winter acclimated plants, both at sub- and supra-optimal temperatures. Moreover respiration rates were generally more sensitive to increasing temperatures than photosynthetic rates, especially so for cold acclimated plants in February (36% higher Q10-values). These changes were accompanied by a reduction in chlorophyll a and nitrogen concentrations in leaves by 35% and 60% respectively from February to August. The critical light requirement (EC) of Z. marina to maintain a positive carbon balance increased exponentially with increasing temperature but less so for summer-acclimated than for winter-acclimated plants. However, combining EC vs temperature models for whole-plants with data on daily light availability showed that seasonal acclimation in metabolism increased the annual period, when light requirements were meet at the 2-5 m depth interval, by 32-66 days. Hence, acclimation is an important mechanism allowing eelgrass to grow faster and penetrate to deeper waters. Critical depth limits estimated for different combinations of summer temperatures and water clarity in a future climate scenario, suggested that expected increases in temperature and nutrient run-off have synergistic negative effects, especially in clear waters, stressing the importance of continued efforts to improve water clarity of coastal waters.  相似文献   

19.
The escape swimming performance of the Antarctic scallop, Adamussium colbecki, was measured in animals acclimated for 6 weeks to –1, 0 or 2°C and tested at –1.5 to +1.5°C. Clap duration and swimming velocity were significantly related to temperature, but were not affected by acclimation, demonstrating no phenotypic plasticity. Comparisons of the mean swimming velocity of A. colbecki with the published data for temperate and tropical species showed little evidence for evolutionary compensation for temperature, with all data fitting to a single exponential relationship with a Q10 of 2.08 (0–20°C). The contraction kinetics of the isolated fast adductor muscle of A. colbecki were determined and the times to 50% peak tension and 50% relaxation had Q10s (0–4°C) of 3.6 and 4.7, respectively. The Q10 of the overall relationship for pooled time to peak twitch data for four scallop species was 2.05 (0–20°C). Field studies revealed low mobility and poor escape performance in wild A. colbecki. A combination of thermodynamic constraints, reduced food supply, and lower selective pressure probably explains the low levels of swimming performance seen in A. colbecki.  相似文献   

20.
We tested the ability of sporophytes of a small kelp, Ecklonia radiata (C. Agardh) J. Agardh, to adjust their photosynthesis, respiration, and cellular processes to increasingly warm ocean climates along a latitudinal gradient in ocean temperature (~4°C). Tissue concentrations of pigment and nutrients decreased with increasing ocean temperature. Concurrently, a number of gradual changes in the metabolic balance of E. radiata took place along the latitudinal gradient. Warm‐acclimatized kelps had 50% lower photosynthetic rates and 90% lower respiration rates at the optimum temperature than did cool‐acclimatized kelps. A reduction in temperature sensitivity was also observed as a reduction in Q10‐values from cool‐ to warm‐acclimatized kelps for gross photosynthesis (Q10: 3.35 to 1.45) and respiration (Q10: 3.82 to 1.65). Respiration rates were more sensitive to increasing experimental temperatures (10% higher Q10‐values) than photosynthesis and had a higher optimum temperature, irrespective of sampling location. To maintain a positive carbon balance, E. radiata increased the critical light demand (Ec) exponentially with increasing experimental temperature. The temperature dependency of Ec was, however, weakened with increasing ocean temperature, such that the critical light demand was relaxed in kelp acclimated to higher ocean temperatures. Nevertheless, calculations of critical depth limits suggested that direct effects of future temperature increases are unlikely to be as strong as effects of reduced water clarity, another globally increasing problem in coastal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号