首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In bacterial biofilms, which are often involved in chronic infections, cells are surrounded by a self‐produced extracellular matrix that contains amyloid fibres, exopolysaccharides and other biopolymers. The matrix contributes to the pronounced resistance of biofilms against antibiotics and host immune systems. Being highly inflammatory, matrix amyloids such as curli fibres of Escherichia coli can also play a role in pathogenicity. Using macrocolony biofilms of commensal and pathogenic E. coli as a model system, we demonstrate here that the green tea polyphenol epigallocatachin gallate (EGCG) is a potent antibiofilm agent. EGCG virtually eliminates the biofilm matrix by directly interfering with the assembly of curli subunits into amyloid fibres, and by triggering the σE cell envelope stress response and thereby reducing the expression of CsgD – a crucial activator of curli and cellulose biosynthesis – due to csgD mRNA targeting by the σE‐dependent sRNA RybB. These findings highlight EGCG as a potential adjuvant for antibiotic therapy of biofilm‐associated infections. Moreover, EGCG may support therapies against pathogenic E. coli that produce inflammatory curli fibres along with Shigatoxin.  相似文献   

2.
3.
Minicell-producing strains of Escherichia coli K-12 seem to produce extra membranous material yielding internal cross membranes, “piggy-back” minicell forms, and unusual vesicles.  相似文献   

4.
Like all macroorganisms, plants have to control bacterial biofilm formation on their surfaces. On the other hand, biofilms are highly tolerant against antimicrobial agents and other stresses. Consequently, biofilms are also involved in human chronic infectious diseases, which generates a strong demand for anti-biofilm agents. Therefore, we systematically explored major plant flavonoids as putative anti-biofilm agents using different types of biofilms produced by Gram-negative and Gram-positive bacteria. In Escherichia coli macrocolony biofilms, the flavone luteolin and the flavonols myricetin, morin and quercetin were found to strongly reduce the extracellular matrix. These agents directly inhibit the assembly of amyloid curli fibres by driving CsgA subunits into an off-pathway leading to SDS-insoluble oligomers. In addition, they can interfere with cellulose production by still unknown mechanisms. Submerged biofilm formation, however, is hardly affected. Moreover, the same flavonoids tend to stimulate macrocolony and submerged biofilm formation by Pseudomonas aeruginosa. For Bacillus subtilis, the flavonone naringenin and the chalcone phloretin were found to inhibit growth. Thus, plant flavonoids are not general anti-biofilm compounds but show species-specific effects. However, based on their strong and direct anti-amyloidogenic activities, distinct plant flavonoids may provide an attractive strategy to specifically combat amyloid-based biofilms of some relevant pathogens.  相似文献   

5.
Polynucleotide sequence similarity tests were carried out to determine the extent of divergence present in a number of Escherichia coli strains, obtained from diverse human, animal, and laboratory sources, and closely related strains of Shigella, Salmonella, and the Alkalescens-Dispar group. At 60 C, relative reassociation of deoxyribonucleic acid (DNA) from the various strains with E. coli K-12 DNA ranged from 100 to 36%, with the highest level of reassociation found for three strains derived from K-12, and the lowest levels for two “atypical” E. coli strains and S. typhimurium. The change in thermal elution midpoint, which indicates the stability of DNA duplexes, ranged from 0.1 to 14.5 C, with thermal stability closely following the reassociation data. Reassociation experiments performed at 75 C, at which temperature only the more closely related DNA species form stable duplexes, gave similar indications of relatedness. At both temperatures, Alkalescens-Dispar strains showed close relatedness to E. coli, supporting the idea that they should be included in the genus Escherichia. Reciprocal binding experiments with E. coli BB, 02A, and K-12 yielded different reassociation values, suggesting that the genomes of these strains are of different size. The BB genome was calculated to be 9% larger than that of K-12, and that of 02A 9% larger than that of BB. Calculation of genome size for a series of E. coli strains yielded values ranging from 2.29 × 109 to 2.97 × 109 daltons. E. coli strains and closely related organisms were compared by Adansonian analysis for their relatedness to a hypothetical median strain. E. coli 0128a was the most closely related to this median organism. In general, these data compared well with the data from reassociation experiments among E. coli strains. However, anomalous results were obtained in the cases of Shigella flexneri, S. typhimurium, and “atypical” E. coli strains.  相似文献   

6.
Under most conditions of growth, the most abundant protein in the outer membrane of most strains of Escherichia coli is a protein designated as “protein 1” or “matrix protein”. In E. coli B, this protein has been shown to be a single polypeptide with a molecular mass of 36,500 and it may account for more than 50% of the total outer membrane protein. E. coli K-12 contains a very similar, although probably not identical, species of protein 1. Some pathogenic E. coli strains contain very little protein 1 and, in its place, make a protein designated as protein 2 which migrates faster on alkaline polyacrylamide gels containing sodium dodecyl sulfate and which gives a different spectrum of CNBr peptides. An E. coli K-12 strain which had been mated with a pathogenic strain was found to produce protein 2, and a temperate bacteriophage was isolated from this K-12 strain after induction with UV light. This phage, designated as PA-2, is similar in morphology and several other properties to phage lambda. When strains of E. coli K-12 are lysogenized by phage PA-2, they produce protein 2 and very little protein 1. Adsorption to lysogenic strains grown under conditions where they produce little protein 1 and primarily protein 2 is greatly reduced as compared to non-lysogenic strains which produce only protein 1. However, when cultures are grown under conditions of catabolite repression, protein 2 is reduced and protein 1 is increased, and lysogenic and non-lysogenic cultures grown under these conditions exhibit the same rate of adsorption. Phage PA-2 does not adsorb to E. coli B, which appears to have a slightly different protein 1 from K-12. These results suggest that protein 1 is the receptor for PA-2, and that protein 2 is made to reduce the superinfection of lysogens.  相似文献   

7.
Periodontitis is an infectious inflammatory disease that results in the destruction of the tooth-supporting (periodontal) tissues. The Gram-negative anaerobic species Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, (also known as the “red complex” species) are highly associated with subgingival biofilms at periodontitis-affected sites. A major chemokine produced by the gingival epithelium in response to biofilm challenge, is interleukin (IL)-8. The aim of this in vitro study was to investigate the relative effect of the “red complex” species as constituents of subgingival biofilms, on the regulation of IL-8 by gingival epithelia. Multi-layered organotypic human gingival epithelial cultures were challenged with a 10-species in vitro subgingival biofilm model, or its 7-species variant, excluding the “red complex”. IL-8 gene expression and secretion analyses were performed by qPCR and ELISA, respectively. After 3 h, both biofilms up-regulated IL-8 gene expression, but the presence of the “red complex” resulted in 3-fold greater response. IL-8 secretion was also up-regulated by both biofilms, with no differences between them. After 24 h, the 10-species biofilm reduced IL-8 secretion to 50% of the control, but this was not affected when the “red complex” was absent. In conclusion, as part of biofilms, “red complex” species differentially regulate IL-8 in gingival epithelia, potentially affecting the chemotactic responses of the tissue.  相似文献   

8.
Bacteria are ubiquitously distributed throughout our planet, mainly in the form of adherent communities in which cells exhibit specific traits. The mechanisms underpinning the physiological shift in surface-attached bacteria are complex, multifactorial and still partially unclear. Here we address the question of the existence of early surface sensing through implementation of a functional response to initial surface contact. For this purpose, we developed a new experimental approach enabling simultaneous monitoring of free-floating, aggregated and adherent cells via the use of dispersed surfaces as adhesive substrates and flow cytometry analysis. With this system, we analyzed, in parallel, the constitutively expressed GFP content of the cells and production of a respiration probe—a fluorescent reduced tetrazolium ion. In an Escherichia coli strain constitutively expressing curli, a major E. coli adhesin, we found that single cell surface contact induced a decrease in the cell respiration level compared to free-floating single cells present in the same sample. Moreover, we show here that cell surface contact with an artificial surface and with another cell caused reduction in respiration. We confirm the existence of a bacterial cell “sense of touch” ensuring early signalling of surface contact formation through respiration down modulation.  相似文献   

9.
In a previous study, we identified Congo red-binding and -nonbinding phase variants of Escherichia coli serotype O157:H7 strain ATCC 43895. The Congo red-binding variant, strain 43895OR, produced a dry, aggregative colony that was similar to the red, dry, and rough (rdar) phenotype characteristic of certain strains of Salmonella. In contrast, variant 43895OW produced a smooth and white colony morphology. In this study, we show that, similar to rdar strains of Salmonella enterica serovar Typhimurium, strain 43895OR forms large aggregates in broth cultures, firm pellicles at the air-medium interface on glass, and dense biofilms on glass and polystyrene. However, unlike S. enterica serovar Typhimurium, strain 43895OR does not stain positive for cellulose production. When strain 43895OR was fixed on agar, scanning electron microscopy showed cells expressing extracellular matrix (ECM) containing curli fibers. Strain 43895OW was devoid of any ECM or curli fibers on agar but showed expression of curli fibers during attachment to glass. Strain 43895OR produced >4-fold-larger amounts of biofilm than strain 43895OW on polystyrene, glass, stainless steel, and Teflon; formation was >3-fold higher in rich medium than in nutrient-limited medium. Biofilm-associated cells of both strains showed statistically greater resistance (P < 0.05) to hydrogen peroxide and quaternary ammonium sanitizer than their respective planktonic cells. This study shows that the rdar phenotype of E. coli O157:H7 strain 43895OR is important in multicellular growth, biofilm formation, and resistance to sanitizers. However, the lack of cellulose production by strain 43895OR indicates important differences in the ECM composition compared to that of Salmonella.  相似文献   

10.
Enteric bacteria, such as Escherichia coli, are exposed to a variety of stresses in the nonhost environment. The development of biofilms provides E. coli with resistance to environmental insults, such as desiccation and bleach. We found that biofilm formation, specifically production of the matrix components curli and cellulose, protected E. coli against killing by the soil-dwelling nematode Caenorhabditis elegans and the predatory bacterium Myxococcus xanthus. Additionally, matrix-encased bacteria at the air-biofilm interface exhibited ∼40-fold-increased survival after C. elegans and M. xanthus killing compared to the non-matrix-encased cells that populate the interior of the biofilm. To determine if nonhost Enterobacteriaceae reservoirs supported biofilm formation, we grew E. coli on media composed of pig dung or commonly contaminated foods, such as beef, chicken, and spinach. Each of these medium types provided a nutritional environment that supported matrix production and biofilm formation. Altogether, we showed that common, nonhost reservoirs of E. coli supported the formation of biofilms that subsequently protected E. coli against predation.  相似文献   

11.
May T  Okabe S 《Journal of bacteriology》2008,190(22):7479-7490
It has been shown that Escherichia coli harboring the derepressed IncFI and IncFII conjugative F plasmids form complex mature biofilms by using their F-pilus connections, whereas a plasmid-free strain forms only patchy biofilms. Therefore, in this study we investigated the contribution of a natural IncF conjugative F plasmid to the formation of E. coli biofilms. Unlike the presence of a derepressed F plasmid, the presence of a natural IncF F plasmid promoted biofilm formation by generating the cell-to-cell mating F pili between pairs of F+ cells (approximately two to four pili per cell) and by stimulating the formation of colanic acid and curli meshwork. Formation of colanic acid and curli was required after the initial deposition of F-pilus connections to generate a three-dimensional mushroom-type biofilm. In addition, we demonstrated that the conjugative factor of F plasmid, rather than a pilus synthesis function, was involved in curli production during biofilm formation, which promoted cell-surface interactions. Curli played an important role in the maturation process. Microarray experiments were performed to identify the genes involved in curli biosynthesis and regulation. The results suggested that a natural F plasmid was more likely an external activator that indirectly promoted curli production via bacterial regulatory systems (the EnvZ/OmpR two-component regulators and the RpoS and HN-S global regulators). These data provided new insights into the role of a natural F plasmid during the development of E. coli biofilms.  相似文献   

12.
New microbial genomes are sequenced at a high pace, allowing insight into the genetics of not only cultured microbes, but a wide range of metagenomic collections such as the human microbiome. To understand the deluge of genomic data we face, computational approaches for gene functional annotation are invaluable. We introduce a novel model for computational annotation that refines two established concepts: annotation based on homology and annotation based on phyletic profiling. The phyletic profiling-based model that includes both inferred orthologs and paralogs—homologs separated by a speciation and a duplication event, respectively—provides more annotations at the same average Precision than the model that includes only inferred orthologs. For experimental validation, we selected 38 poorly annotated Escherichia coli genes for which the model assigned one of three GO terms with high confidence: involvement in DNA repair, protein translation, or cell wall synthesis. Results of antibiotic stress survival assays on E. coli knockout mutants showed high agreement with our model''s estimates of accuracy: out of 38 predictions obtained at the reported Precision of 60%, we confirmed 25 predictions, indicating that our confidence estimates can be used to make informed decisions on experimental validation. Our work will contribute to making experimental validation of computational predictions more approachable, both in cost and time. Our predictions for 998 prokaryotic genomes include ∼400000 specific annotations with the estimated Precision of 90%, ∼19000 of which are highly specific—e.g. “penicillin binding,” “tRNA aminoacylation for protein translation,” or “pathogenesis”—and are freely available at http://gorbi.irb.hr/.  相似文献   

13.
Amyloids are highly aggregated proteinaceous fibers historically associated with neurodegenerative conditions including Alzheimers, Parkinsons, and prion-based encephalopathies. Polymerization of amyloidogenic proteins into ordered fibers can be accelerated by preformed amyloid aggregates derived from the same protein in a process called seeding. Seeding of disease-associated amyloids and prions is highly specific and cross-seeding is usually limited or prevented. Here we describe the first study on the cross-seeding potential of bacterial functional amyloids. Curli are produced on the surface of many Gram-negative bacteria where they facilitate surface attachment and biofilm development. Curli fibers are composed of the major subunit CsgA and the nucleator CsgB, which templates CsgA into fibers. Our results showed that curli subunit homologs from Escherichia coli, Salmonella typhimurium LT2, and Citrobacter koseri were able to cross-seed in vitro. The polymerization of Escherichia coli CsgA was also accelerated by fibers derived from a distant homolog in Shewanella oneidensis that shares less than 30% identity in primary sequence. Cross-seeding of curli proteins was also observed in mixed colony biofilms with E. coli and S. typhimurium. CsgA was secreted from E. coli csgB− mutants assembled into fibers on adjacent S. typhimurium that presented CsgB on its surfaces. Similarly, CsgA was secreted by S. typhimurium csgB− mutants formed curli on CsgB-presenting E. coli. This interspecies curli assembly enhanced bacterial attachment to agar surfaces and supported pellicle biofilm formation. Collectively, this work suggests that the seeding specificity among curli homologs is relaxed and that heterogeneous curli fibers can facilitate multispecies biofilm development.  相似文献   

14.
Bacterial growth in multicellular communities, or biofilms, offers many potential advantages over single-cell growth, including resistance to antimicrobial factors. Here we describe the interaction between the biofilm-promoting components curli fimbriae and cellulose of uropathogenic E. coli and the endogenous antimicrobial defense in the urinary tract. We also demonstrate the impact of this interplay on the pathogenesis of urinary tract infections. Our results suggest that curli and cellulose exhibit differential and complementary functions. Both of these biofilm components were expressed by a high proportion of clinical E. coli isolates. Curli promoted adherence to epithelial cells and resistance against the human antimicrobial peptide LL-37, but also increased the induction of the proinflammatory cytokine IL-8. Cellulose production, on the other hand, reduced immune induction and hence delayed bacterial elimination from the kidneys. Interestingly, LL-37 inhibited curli formation by preventing the polymerization of the major curli subunit, CsgA. Thus, even relatively low concentrations of LL-37 inhibited curli-mediated biofilm formation in vitro. Taken together, our data demonstrate that biofilm components are involved in the pathogenesis of urinary tract infections by E. coli and can be a target of local immune defense mechanisms.  相似文献   

15.
It is now indisputable that plastics are ubiquitous and problematic in ecosystems globally. Many suggestions have been made about the role that biofilms colonizing plastics in the environment—termed the “Plastisphere”—may play in the transportation and ecological impact of these plastics. By collecting and re-analyzing all raw 16S rRNA gene sequencing and metadata from 2,229 samples within 35 studies, we have performed the first meta-analysis of the Plastisphere in marine, freshwater, other aquatic (e.g., brackish or aquaculture) and terrestrial environments. We show that random forest models can be trained to differentiate between groupings of environmental factors as well as aspects of study design, but—crucially—also between plastics when compared with control biofilms and between different plastic types and community successional stages. Our meta-analysis confirms that potentially biodegrading Plastisphere members, the hydrocarbonoclastic Oceanospirillales and Alteromonadales are consistently more abundant in plastic than control biofilm samples across multiple studies and environments. This indicates the predilection of these organisms for plastics and confirms the urgent need for their ability to biodegrade plastics to be comprehensively tested. We also identified key knowledge gaps that should be addressed by future studies.Subject terms: Microbial ecology, Soil microbiology, Water microbiology, Microbial ecology, Microbiome  相似文献   

16.
Recombineering is a widely-used approach to delete genes, introduce insertions and point mutations, and introduce epitope tags into bacterial chromosomes. Many recombineering methods have been described, for a wide range of bacterial species. These methods are often limited by (i) low efficiency, and/or (ii) introduction of “scar” DNA into the chromosome. Here, we describe a rapid, efficient, PCR-based recombineering method, FRUIT, that can be used to introduce scar-free point mutations, deletions, epitope tags, and promoters into the genomes of enteric bacteria. The efficiency of FRUIT is far higher than that of the most widely-used recombineering method for Escherichia coli. We have used FRUIT to introduce point mutations and epitope tags into the chromosomes of E. coli K-12, Enterotoxigenic E. coli, and Salmonella enterica. We have also used FRUIT to introduce constitutive and inducible promoters into the chromosome of E. coli K-12. Thus, FRUIT is a versatile, efficient recombineering approach that can be applied in multiple species of enteric bacteria.  相似文献   

17.
Bacterial biofilms are communities of bacteria entangled in a self‐produced extracellular matrix (ECM). Escherichia coli direct the assembly of two insoluble biopolymers, curli amyloid fibers, and phosphoethanolamine (pEtN) cellulose, to build remarkable biofilm architectures. Intense curiosity surrounds how bacteria harness these amyloid‐polysaccharide composites to build biofilms, and how these biopolymers function to benefit bacterial communities. Defining ECM composition involving insoluble polymeric assemblies poses unique challenges to analysis and, thus, to comparing strains with quantitative ECM molecular correlates. In this work, we present results from a sum‐of‐the‐parts 13C solid‐state nuclear magnetic resonance (NMR) analysis to define the curli‐to‐pEtN cellulose ratio in the isolated ECM of the E. coli laboratory K12 strain, AR3110. We compare and contrast the compositional analysis and comprehensive biofilm phenotypes for AR3110 and a well‐studied clinical isolate, UTI89. The ECM isolated from AR3110 contains approximately twice the amount of pEtN cellulose relative to curli content as UTI89, revealing plasticity in matrix assembly principles among strains. The two parent strains and a panel of relevant gene mutants were investigated in three biofilm models, examining: (a) macrocolonies on agar, (b) pellicles at the liquid‐air interface, and (c) biomass accumulation on plastic. We describe the influence of curli, cellulose, and the pEtN modification on biofilm phenotypes with power in the direct comparison of these strains. The results suggest that curli more strongly influence adhesion, while pEtN cellulose drives cohesion. Their individual and combined influence depends on both the biofilm modality (agar, pellicle, or plastic‐associated) and the strain itself.  相似文献   

18.
Candida albicans and Candida tropicalis are polymorphic fungi that develop antimicrobial-resistant biofilm communities that are characterized by multiple cell morphotypes. This study investigated cell type interconversion and drug and metal resistance as well as community organization in biofilms of these microorganisms that were exposed to metal ions. To study this, Candida biofilms were grown either in microtiter plates containing gradient arrays of metal ions or in the Calgary Biofilm Device for high-throughput susceptibility testing. Biofilm formation and antifungal resistance were evaluated by viable cell counts, tetrazolium salt reduction, light microscopy, and confocal laser scanning microscopy in conjunction with three-dimensional visualization. We discovered that subinhibitory concentrations of certain metal ions (CrO42−, Co2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, Pb2+, AsO2, and SeO32−) caused changes in biofilm structure by blocking or eliciting the transition between yeast and hyphal cell types. Four distinct biofilm community structure types were discerned from these data, which were designated “domed,” “layer cake,” “flat,” and “mycelial.” This study suggests that Candida biofilm populations may respond to metal ions to form cell-cell and solid-surface-attached assemblages with distinct patterns of cellular differentiation.  相似文献   

19.
We herein describe Surusicaris elegans gen. et sp. nov. (in Isoxyidae, amended), a middle (Series 3, Stage 5) Cambrian bivalved arthropod from the new Burgess Shale deposit of Marble Canyon (Kootenay National Park, British Columbia). Surusicaris exhibits 12 simple, partly undivided biramous trunk limbs with long tripartite caeca, which may illustrate a plesiomorphic “fused” condition of exopod and endopod. We construe also that the head is made of five somites (= four segments), including two eyes, one pair of anomalocaridid-like frontalmost appendages, and three pairs of poorly sclerotized uniramous limbs. This fossil may therefore be a candidate for illustrating the origin of the plesiomorphic head condition in euarthropods, and questions the significance of the “two-segmented head” in, e.g., fuxianhuiids. The frontalmost appendage in isoxyids is intriguingly disparate, bearing similarities with both dinocaridids and euarthropods. In order to evaluate the relative importance of bivalved arthropods, such as Surusicaris, in the hypothetical structuro-functional transition between the dinocaridid frontal appendage and the pre-oral—arguably deutocerebral—appendage of euarthropods, we chose a phenetic approach and computed morphospace occupancy for the frontalmost appendages of 36 stem and crown taxa. Results show different levels of evolutionary decoupling between frontalmost appendage disparity and body plans. Variance is greatest in dinocaridids and “stem bivalved” arthropods, but these groups do not occupy the morphospace homogeneously. Rather, the diversity of frontalmost appendages in “stem bivalved” arthropods, distinct in its absence of clear clustering, is found to link the morphologies of “short great appendages,” chelicerae and antennules. This find fits the hypothesis of an increase in disparity of the deutocerebral appendage prior to its diversification in euarthropods, and possibly corresponds to its original time of development. The analysis of this pattern, however, is sensitive to the—still unclear—extent of polyphyly of the “stem bivalved” taxa.  相似文献   

20.
Several enzymatic properties of an endoglucanase produced in Escherichia coli by a gene from Pseudomonas fluorescens subsp. cellulosa were investigated. Gel filtration revealed a single peak of Mr 36,000 with endoglucanase activity. The pH optimum of the enzyme was 7.0. Carboxymethyl cellulose and barley β-glucan (mixed β-1,3 and 1,4 linkages) were good substrates, but not laminarin (β-1,3 linkages), amylose, filter paper, microcrystalline cellulose (Avicel), or cellotriose. The mode of action was typical of an “endo”-acting enzyme. Taken together, these properties do not correspond to those of any of the endoglucanases described in P. fluorescens subsp. cellulosa. Consequently, the gene was designated egIX. The enzyme was sensitive to end-product inhibition by cellobiose but was only moderately inhibited by glucose. The enzyme was formed constitutively in E. coli throughout the growth phase. Urea had no effect on endoglucanase synthesis, but glucose acted as a catabolite repressor. The formation of the enzyme in E. coli was partially dependent on cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号