首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid and extensive bone loss, one of the skeletal complications after spinal cord injury (SCI) occurrence, drastically sacrifices the life quality of SCI patients. It has been demonstrated that microRNA (miRNA) dysfunction plays an important role in the initiation and development of bone loss post-SCI. Nevertheless, the effect of miR-19b-3p on bone loss after SCI is unknown and the accurate mechanism is left to be elucidated. The present work was conducted to explore the role of miR-19b-3p/phosphatase and tensin homolog deleted on chromosome ten (PTEN) axis on osteogenesis after SCI and further investigates the underlying mechanisms. We found that miR-19b-3p level was increased in the femurs of SCI rats with decreased autophagy. The overexpression of miR-19b-3p in bone marrow mesenchymal stem cells (BMSCs) targeted down-regulation of PTEN expression, facilitated protein kinase B (Akt) and mammalian target of rapamycin (mTOR) phosphorylation, and thereby suppressing BMSCs osteogenic differentiation via autophagy. Besides, the inhibiting effects of miR-19b-3p on osteogenic differentiation of BMSCs could be diminished by autophagy inducer rapamycin. Meanwhile, bone loss after SCI in rats was also reversed by antagomir-19b-3p treatment, suggesting miR-19b-3p was an essential target for osteogenic differentiation via regulating autophagy. These results indicated that miR-19b-3p was involved in bone loss after SCI by inhibiting osteogenesis via PTEN/Akt/mTOR signalling pathway.  相似文献   

2.
3.
已知miR-144与细胞活化和增殖有关,然而其具体分子机制尚不明确。本研究发现miR-144通过靶向GRK5促进脊髓星形胶质细胞的活化。运用real-time PCR检测脊髓损伤和正常大鼠的脊髓组织及其脊髓星形胶质细胞中miR-144的表达,发现与正常的组织和细胞相比,miR-144在脊髓损伤组织和星形胶质细胞中的表达水平显著降低;Western印迹检测到脊髓损伤大鼠的星形胶质细胞中GFAP蛋白的表达显著低于正常大鼠,而GRK5蛋白的表达高于正常大鼠;MTT分析结果显示转染miR-144可显著提高脊髓损伤大鼠的星形胶质细胞活性,但对细胞增殖无明显作用;酶活性试剂盒分析发现miR-144显著提高了SOD和GSH活性;生物学信息分析和萤光素酶报告基因检测结果显示miR-144能靶向结合GRK5,并下调GRK5的表达;MiR-144 mimic转染或miR-144 mimic与pcDNA-GRK5共转染脊髓损伤的星形胶质细胞,发现miR-144转染能通过激活NF-κB通路消除pcDNA-GRK5引起的细胞活化抑制。综上所述,miR-144通过靶定结合癌基因GRK5来促进脊髓星形胶质细胞细胞的活化。  相似文献   

4.
5.
6.
The over-activation of inflammation is involved in the pathogenesis of smoke-induced lung injury (SILI), while Rb3 treatment may alleviate smoke-induced lung injury by down-regulating the expression of H19, a regulator of miR-29b expression. Moreover, HMGB1 is an important mediator of inflammation. Therefore, in this study, we set up an animal model of SILI and treated it with Rb3 to study the effect of Rb3 on the treatment of SILI and the involvement of H19/miR-29b/HMGB1/TLR4 signalling. SILI mice treated with Rb3 before H&E staining and TUNEL assay were conducted to observe the pathological damages and status of apoptosis in each group. Real-time PCR, Western blot, computational analysis and luciferase assays were utilized to establish the signalling pathway involved in the pathogenesis of SILI and the action of Rb3 treatment. Rb3 treatment alleviated pathological changes in the lungs while decreasing the levels of W/D ratio and cell apoptotic index. H19 was validated to sponge miR-29b-3p, while HMGB1 mRNA was validated to be a target gene of miR-29b-3. As a result, a signalling pathway of H19/miR-29b-3p/HMGB1 was established. Cell viability was evidently reduced after 72 hours of treatment with CSE, but the treatment of Rb3 elevated the expression of H19 and HMBG1 in the presence of CSE. Also, CSE-induced inhibition of miR-29b-3p expression was restored by Rb3. The findings of this study collectively demonstrated that Rb3 exhibited its therapeutic effect during the treatment of SILI via modulating the H19/miR-29b-3p/HMBG1 signalling pathway.  相似文献   

7.
8.
Reactive astrocytes are implicated in traumatic spinal cord injury (TSCI). Interestingly, naïve astrocytes can easily transform into neurotoxic reactive astrocytes (A1s) with inflammatory stimulation. Previous studies demonstrated that microRNA(miR)-21a-5p was up-regulated in spinal cord tissue after TSCI; however, it is not clear whether this affected reactive astrocyte polarization. Here, we aim to detect the effects of miR-21a-5p on the induction of A1 formation and the underlying mechanisms. Our study found that the expression of miR-21a-5p was significantly increased while that of Cntfr α was decreased, since naïve astrocytes transformed into A1s 3 days post-TSCI; the binding site between miR-21a-5p and Cntfr α was further confirmed in astrocytes. After treatment with CNTF, the levels of A1 markers decreased while that of A2 increased. The expression of A1 markers significantly decreased with the downregulation of miR-21a-5p, while Cntfr α siRNA treatment caused the opposite both in vitro and in vivo. To summarize, miR-21a-5p/Cntfr α promotes A1 induction and might enhance the inflammatory process of TSCI; furthermore, we identified, for the first time, the effect and potential mechanism by which CNTF inhibits naïve astrocytes transformation into A1s. Collectively, our findings demonstrate that targeting miR-21a-5p represents a prospective therapy for promoting the recovery of TSCI.  相似文献   

9.
Spinal cord injury (SCI) is a devastating disease. Strategies that enhance the intrinsic regenerative ability are very important for the recovery of SCI to radically prevent the occurrence of sensory disorders. Epidermal growth factor (EGF) showed a limited effect on the growth of primary sensory neuron neurites due to the degradation of phosphorylated-epidermal growth factor receptor (p-EGFR) in a manner dependent on Casitas B-lineage lymphoma (CBL) (an E3 ubiquitin-protein ligase). MiR-22-3p predicted from four databases could target CBL to inhibit the expression of CBL, increase p-EGFR levels and neurites length via STAT3/GAP43 pathway rather than Erk1/2 axis. EGF, EGFR, and miR-22-3p were downregulated sharply after injury. In vivo miR-22-3p Agomir application could regulate CBL/p-EGFR/p-STAT3/GAP43/p-GAP43 axis, and restore spinal cord sensory conductive function. This study clarified the mechanism of the limited promotion effect of EGF on adult primary sensory neuron neurite and targeting miR-22-3p could be a novel strategy to treat sensory dysfunction after SCI.  相似文献   

10.
Papillary thyroid cancer (PTC) is a kind of thyroid cancer and frequently presents with epithelial–mesenchymal transition (EMT). MicroRNAs (miRNAs) were previously reported to be associated with PTC. Thus, this study aims to define the role of microRNA-520a-3p (miR-520a-3p) in PTC through the JAK/STAT signaling pathway by targeting JAK1. The PTC and normal thyroid tissues of 137 PTC patients were collected. First of all, the expression pattern of miR-520a-3p, JAK1, JAK2, STAT3, E-cadherin, and vimentin in PTC was identified. The relationship between miR-520a-3p and JAK1 was predicted and analyzed. And a series of miR-520a-3p mimic or inhibitor, or siRNA JAK1 introduced into PTC cells were applied to examine the effect of miR-520a-3p on PTC cell viability, migration, invasion, cell cycle, apoptosis, and EMT. Meanwhile, the regulatory effect of miR-520a-3p and JAK1 on the JAK/STAT signaling pathway was also determined. The expression of JAK1, JAK2, STAT3, and vimentin increased yet miR-520a-3p and E-cadherin decreased in PTC tissue. JAK1 was negatively regulated by miR-520a-3p. Functionally, EMT induction was prevented by miR-520a-3p upregulation through downregulating JAK1. When upregulating miR-520a-3p or silencing JAK1 in PTC cells, PTC cell viability, migration, and invasion were inhibited yet cell apoptosis promoted with cells arrested at G1 phase, indicating that miR-520a-3p prevented PTC progression by downregulating JAK1. Moreover, miR-520a-3p elevation or JAK1 inhibition inactivated the JAK/STAT signaling pathway. Collectively, miR-520a-3p prevents cancer progression through inactivating the JAK/STAT signaling pathway by downregulating JAK1 in PTC.  相似文献   

11.
There is increasing evidence regarding the pivotal roles of microRNAs (miRNAs) and histone deacetylases (HDACs) in the development of osteoarthritis (OA). This study aimed to determine whether miR-193b-5p regulates HDAC7 expression directly to affect cartilage degeneration. Expression levels of miR-193b-5p, HDAC7, matrix metalloproteinase 3 (MMP3), and MMP13 were determined in normal and OA cartilage and primary human chondrocytes (PHCs) stimulated with interleukin-1β (IL-1β). PHCs were transfected with a miR-193b-5p mimic or inhibitor to verify whether miR-193b-5p influences the expression of HDAC7 and MMPs. A luciferase reporter assay was performed to demonstrate the binding between miR-193b-5p and the 3′-untranslated region (UTR) of HDAC7. Expression of miR-193b-5p was reduced in IL-1β-stimulated PHCs and in OA cartilage compared to that in normal cartilage. Luciferase reporter assay exhibited the repressed activity of the reporter construct containing the 3′UTR of HDAC7. Both miR-193b-5p overexpression and HDAC7 inhibition decreased the expression of MMP3 and MMP13, whereas the inhibition of miR-193b-5p enhanced HDAC7, MMP3, and MMP13 expression. miR-193b-5p downregulates HDAC7 directly and, as a result, inhibits MMP3 and MMP13 expression, which suggests that miR-193b-5p has a protective role in OA.  相似文献   

12.
13.
《Genomics》2021,113(3):1338-1348
BackgroundExosomes are involved in intercellular communication via specialized molecular cargo, such as microRNAs (miRNAs). However, the mechanisms underlying exosomal miR-19b-1-5p in bladder cancer remain largely unknown, thus, we aim to investigate the effect of exosomal miR-19b-1-5p on bladder cancer with the involvement of non-receptor protein tyrosine kinase Arg (ABL2).MethodsmiR-19b-1-5p and ABL2 expression were tested in bladder cancer. miR-19b-1-5p inhibition/elevation assays were conducted to determine its role in bladder cancer. Exosomes were extracted from bone marrow mesenchymal stem cells (BMSCs). Exosomes and T24 cells were co-cultured to verify their function in biological characteristics of bladder cancer cells.ResultsmiR-19b-1-5p was down-regulated while ABL2 was upregulated in bladder cancer. Exosomal miR-19b-1-5p suppressed malignant behaviors of bladder cancer cells, and also inhibited tumor growth in vivo. Up-regulated ABL2 mitigated the effects of miR-19b-1-5p up-regulation on bladder cancer cells.ConclusionBMSCs-derived exosomal miR-19b-1-5p suppresses bladder cancer growth via decreasing ABL2.  相似文献   

14.
Preeclampsia (PE), a pregnancy-specific disorder, is a leading cause of perinatal maternal and fetal mortality and morbidity. Impaired migration and invasion of trophoblastic cells and an imbalanced systemic maternal inflammatory response have been proposed as possible causes of pathogenesis of PE. Comparative analysis of PE-affected placentas and healthy placentas has uncovered differentially expressed long noncoding RNAs, microRNAs, and mRNAs. This study was conducted to investigate the effect of a regulatory network among these RNAs on PE pathogenesis. Long noncoding RNA WDR86-AS1, microRNA miR-10b-3p, and mRNA of protein LITAF were identified by screening of genes in existing databases with aberrant expression in PE-affected placentas and potential mutual interactions as revealed by TargetScan, miRanda, and PicTar analyses. This study identified their expression in PE-affected and healthy placentas by RT-PCR. An in vitro experiment was performed on human trophoblast HTR-8/SVneo cells cultured under normoxic or hypoxic conditions. MiR-10b-3p targets were identified in luciferase reporter assays and RNA pull-down assays. The mouse model of PE was set up using a soluble form of FLT-1 for in vivo testing. Lower levels of miR-10b-3p but higher expression of WDR86-AS1 and LITAF were observed in PE-affected placentas and trophoblast cells under hypoxia. WDR86-AS1 and LITAF mRNA were confirmed as targets of miR-10b-3p. WDR86-AS1 downregulated miR-10b-3p but promoted LITAF expression. Microarray analyses revealed that LITAF controlled the inflammatory responses and migration and proliferation of HTR-8/SVneo cells under hypoxia. Indeed, knockdown of WDR86-AS1 and LITAF or overexpression of miR-10b-3p attenuated the hypoxia-induced inhibition of cellular viability, migration, and invasion. Moreover, miR-10b-3p overexpression attenuated the pathological symptoms caused by soluble FLT-1 in vivo. In summary, the WDR86-AS1/miR-10b-3p/LITAF network is probably involved in PE pathogenesis.  相似文献   

15.
Spinal cord injury (SCI) has been a major burden on the society because of the high rate of disability. Receptor-interacting protein 3 (RIP3)-mediated necroptosis is a newly discovered pathway of programmed cell death and is involved in multiple pathologies of various human diseases. Micro RNAs (miRNAs) have been shown to be a potential target for therapeutic interventions after SCI. The aim of the present study is to explore the potential role of miR-223-3p and possible mechanism in SCI. We found that miR-223-3p was significantly downregulated in spinal neurons after H2O 2-induced damage, while RIP3-mediated necroptosis was elevated. Accordingly, RIP3-mediated necroptosis and the inflammatory factor secretion could be significantly inhibited by Nec-1 treatment. In adittion, overexpression of miR-223-3p in spinal neurons protected against H 2O 2-induced necroptosis, and ablation of miR-223-3p exhibited the opposite effect. We found that miR-223-3p bound to the 3′-untranslated region of RIP3 mRNA to negatively regulate the expression of RIP3. Moreover, the activated RIP3 reversed the inhibition of RIP3 and MLKL expression and the levels of TNF-α, IL-1β, and lactate dehydrogenase, which were induced by transfection with miR-223-3p in a H 2O 2-induced model. Finally, these results indicate that miR-223-3p negatively regulates the RIP3 necroptotic signaling cascades and inflammatory factor secretion, which significantly relieves injury of spinal neurons. The miR-223-3p/RIP3 pathway offers a novel therapeutic target for the protection of spinal neurons after SCI.  相似文献   

16.
17.
为了探讨长链非编码RNA干扰素活化基因的反义核糖核酸(lncRNA IFNG-AS1)对氧化型低密度脂蛋白(oxLDL)诱导的人脐静脉血管内皮细胞EVC-304增殖、凋亡的影响和调控机制,该研究采用100 μg/mL的oxLDL分别处理转染si-IFNG-AS1、miR-19b-1-5p mimics或共转染si-IF...  相似文献   

18.
MicroRNAs (miRNAs) are small, short noncoding RNAs that modulate the expression of numerous genes by targeting their mRNA. Numerous abnormal miRNA expression patterns are observed in various human malignancies, and certain miRNAs can act as oncogenes or tumor suppressors. Astrocytoma, the most common neuroepithelial cancer, represents the majority of malignant brain tumors in humans. In our previous studies, we found that the downregulation of miR-181b-5p in astrocytomas is associated with a poor prognosis. The aim of the present study was to investigate the functional role of miR-181b-5p and its possible target genes. miR-181b-5p was significantly downregulated in astrocytoma specimens, and the reduced expression of miR-181b-5p was inversely correlated with the clinical stage. The ectopic expression of miR-181b-5p inhibited proliferation, migration and invasion and induced apoptosis in astrocytoma cancer cells in vitro. The NOVA1 (neuro-oncological ventral antigen 1) gene was further identified as a novel direct target of miR-181b-5p. Specifically, miR-181b-5p bound directly to the 3''-untranslated region (UTR) of NOVA1 and suppressed its expression. In clinical specimens, NOVA1 was overexpressed, and its protein levels were inversely correlated with miR-181b-5p expression. Furthermore, the changing level of NOVA1 was significantly associated with a poor survival outcome. Similar to restoring miR-181b-5p expression, downregulating NOVA1 inhibited cell growth, migration and invasion. Overexpression of NOVA1 reversed the inhibitory effects of miR-181b-5p. Our results indicate that miR-181b-5p is a tumor suppressor in astrocytoma that inhibits tumor progression by targeting NOVA1. These findings suggest that miR-181b-5p may serve as a novel therapeutic target for astrocytoma.  相似文献   

19.
In this study, we investigated the role ofhistone deacetylase 4 (HDAC4) and MEG3/miR-125a-5p/interferonregulatoryfactor 1 (IRF1) on vascular smooth muscle cell (VSMCs)proliferation. Platelet derived growth factor (PDGF)-BB was used toinduce the proliferation and migration of VSMCs. The expressionsof MEG3, miR-125a-5p, HDAC4 and IRF1in VSMCs were detectedby qRT-PCR and western blot, respectively. ChIP assay was usedto determine the relationship between MEG3 and HDAC4. Doubleluciferase reporter assay was used to test the regulation betweenmiR-125-5p and IRF1. Results showed that PDGF-BB decreasedthe expression of MEG3 and IRF1, while increased the expressionof miR-125a-5p and HDAC4. In addition, HDAC4 knockdowninhibited the proliferation and migration of VSMCs via upregulatingMEG3 and downregulating miR-125a-5p. MiR-125a-5p inhibitorcould repress the proliferation and migration of VSMCs andalleviate intimal hyperplasia (IH) by directly upregulating IRF1expression. These results suggested that HDAC4 interferenceinhibited PDGF-BB-induced VSMCs proliferation via regulatingMEG3/miR-125a-5p/IRF1 axis, and then alleviated IH.  相似文献   

20.
MicroRNA-30e-5p (miR-30e-5p) is a tumor suppressor that is known to be downregulated in non-small cell lung cancer (NSCLC). However, how miR-30e-5p inhibits NSCLC tumorigenesis is not known. Ubiquitin-specific peptidase 22 (USP22) is upregulated in NSCLC and promotes tumorigenesis via a Sirt1-JAK-STAT3 pathway. In this study, we investigated whether miR-30e-5p inhibits tumor growth by targeting USP22 in NSCLC. Our results reveal that miR-30e-5p expression was correlated negatively with USP22 in NSCLC tissues. Luciferase reporter assays showed that miR-30e-5p negatively regulated USP22 expression by binding to a specific sequence in the 3?UTR. MiR-30e-5p overexpression and USP22 knockdown significantly inhibited tumor growth in vivo and induced cell cycle arrest and apoptosis in NSCLC cells in vitro. The effects of miR-30e-5p inhibition were prevented by USP22 knockdown. MiR-30e-5p inhibited SIRT1 expression and increased expression of p53 and the phosphorylated form of STAT3 (pSTAT3). Furthermore, miR-30e-5p prevented USP22-mediated regulation of SIRT1, pSTAT3, and p53 expression. Taken together, these findings suggest that miR-30e-5p suppresses NSCLC tumorigenesis by downregulatingUSP22-mediated Sirt1/JAK/STAT3 signaling. Our study has identified miR-30e-5p as a potential therapeutic target for the treatment of NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号