首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown recently that kinins are generated during experimentally induced allergic rhinitis in man, and have demonstrated that substrates for kinin-forming enzymes are provided during the allergic response by a transudation of kininogens from plasma into nasal secretions. In light of this increased vascular permeability during the allergic reaction, we have extended our studies on the mechanisms of kinin formation to examine the potential involvement of plasma kallikrein. Allergic individuals (n = 7) and nonallergic controls (n = 7) were challenged intranasally with an allergen, and nasal lavages, obtained before and after challenge, were assayed for immunoreactive human plasma kallikrein/prekallikrein (iHPK). Post-challenge iHPK values were significantly elevated (p less than 0.01) in the allergic group (353 +/- 394 ng/ml; x +/- SD) as compared to the nonallergics (19 +/- 22 ng/ml), and correlated with increases in kinins, histamine, and N-alpha-tosyl-L-arginine methyl esterase (TAME-esterase) activity and with the onset of clinical symptoms. Gel filtration studies revealed that plasma prekallikrein is activated during the allergic response and contributes to kinin formation prior to interaction with plasma protease inhibitors. We also show that the majority of the TAME-esterase activity detected in nasal secretions during the allergic response is due to activities consistent with a plasma kallikrein/alpha 2-macroglobulin complex and with mast cell tryptase.  相似文献   

2.
We have previously shown that both bradykinin and lysylbradykinin are generated in nasal secretions upon nasal challenge of allergic individuals with appropriate allergen and have suggested that these potent pro-inflammatory peptides may contribute to the pathogenesis of the allergic response. In this study we used a variety of synthetic substrates together with both thin layer and high performance liquid chromatography systems to examine the metabolism of these peptides in nasal secretions obtained by lavage. We now demonstrate that in addition to low levels of angiotensin-converting enzyme, nasal lavages contain an aminopeptidase activity that converts lysylbradykinin to bradykinin, and a carboxypeptidase that removes the C-terminal arginine from bradykinin and lysylbradykinin. The levels of all these activities are significantly increased after allergen challenge of allergic, but not nonallergic, individuals. The aminopeptidase and carboxypeptidase activities present in post-challenge lavages from allergic individuals convert lysylbradykinin to intermediate products (bradykinin and des (Arg10) lysylbradykinin) and eventually to des (Arg9) bradykinin. The nasal carboxypeptidase was activated 475% by 0.1 mM CoCl2 and was inhibited by the carboxypeptidase N inhibitor, MERGETPA (D-L-mercaptomethyl-3-guanidino-ethylthiopropanoic acid) (IC50 = 10 microM). The aminopeptidase activity was not affected by MERGETPA but was potently inhibited by amastatin and bestatin (IC50 = 0.05 microM and 3.0 microM, respectively). The activity of the aminopeptidase against its synthetic substrate was also inhibited by lysylbradykinin (IC50 = 50 microM). Both the carboxypeptidase and aminopeptidase activities had neutral pH optima and were inhibited by o-phenanthroline, but were unaffected by inhibitors of neutral endopeptidases (phosphoramidon) or angiotensin-converting enzyme (Captopril). The Km of bradykinin for the nasal carboxypeptidase was 139 +/- 14 microM (n = 3). We conclude that during the allergic response, nasal secretions contain aminopeptidase and carboxypeptidase activities that convert lysylbradykinin and bradykinin (B2 agonists) to des (Arg9) bradykinin (a B1 agonist). Because the nature of the kinin receptors in the nasal mucosa are currently unknown, it remains to be determined whether this metabolism results in the termination of biologic activity or the production of a biologically active moiety.  相似文献   

3.
A new kinin moiety in human plasma kininogens   总被引:1,自引:0,他引:1  
Recently, we isolated a new kinin from human urine and tentatively identified it as [Ala3]-Lys-bradykinin. However, there were inconsistencies between the properties of the naturally occurring new kinin and synthetic [Ala3]-Lys-bradykinin. In the present work, we determined whether the new kinin was released from human plasma kininogen, and further investigated the structure of the new kinin. After incubation of plasma (n = 6) with human urinary kallikrein, kinins were separated by HPLC and measured by RIA. The new kinin and Lys-bradykinin were found representing 23 +/- 3 and 76 +/- 6%, respectively, of total kinins released (2.0 +/- 0.4 micrograms/ml). The new kinin was also released from both purified low- and high-molecular-weight kininogens, representing 40-42% of total kinins released. Amino acid sequencing and composition analysis indicated that the structure of the new kinin was [Hyp3]-Lys-bradykinin (Lys-Arg-Pro-Hyp-Gly-Phe-Ser-Pro-Phe-Arg) and not [Ala3]-Lys-bradykinin. We conclude that an important proportion of human kininogens contain hydroxyproline instead of proline in position three of the bradykinin moiety.  相似文献   

4.
The types of kinins excreted in fresh urine of dogs, rats, and humans were compared. Urinary kinins were separated by reverse-phase (C18) high performance liquid chromatography and quantitated by radioimmunoassay using an antibody directed against the COOH-terminal region of the peptide. Kinins were found in the following proportions: 53 +/- 3% bradykinin, 23 +/- 4% Lys-bradykinin, and 13 +/- 7% des-Arg1-bradykinin in dog urine; 67 +/- 6% bradykinin, 6 +/- 3% Lys-bradykinin, and 10 +/- 3% des-Arg1-bradykinin in rat urine; and 12 +/- 4% bradykinin, 30 +/- 3% Lys-bradykinin, 2 +/- 1% des-Arg1-bradykinin, and 41 +/- 3% unknown kinin in human urine. The unknown kinin was purified from a pool of human urine. Amino acid sequencing revealed a structure similar to Lys-bradykinin except that proline in position 4 was replaced by alanine ([Ala3]Lys-bradykinin). Synthetic and endogenous [Ala3]Lys-bradykinins had similar high performance liquid chromotography elution volumes and both had vasodilator activity and contracted the rat uterus. Human urinary kallikrein incubated with semipurified human low molecular weight kininogen released 76% of the total kinins as Lys-bradykinin, 7% as bradykinin, and 17% as [Ala3]Lys-bradykinin. In contrast, rat urinary kallikrein released 86% bradykinin, 18% Lys-bradykinin, and negligible amounts of [Ala3]Lys-bradykinin. The study revealed the presence of a new kinin, [Ala3]Lys-bradykinin, in human urine and it also proves that the types of kinins generated intrarenally are species-dependent.  相似文献   

5.
Human high Mr kininogen was purified from normal plasma in 35% yield. The purified high Mr kininogen appeared homogeneous on polyacrylamide gels in the presence of sodium dodecyl sulfate and mercaptoethanol and gave a single protein band with an apparent Mr = 110,000. Using sedimentation equilibrium techniques, the observed Mr was 108,000 +/- 2,000. Human plasma kallikrein cleaves high Mr kininogen to liberate kinin and give a kinin-free, two-chain, disulfide-linked molecule containing a heavy chain of apparent Mr = 65,000 and a light chain of apparent Mr = 44,000. The light chain is histidine-rich and exhibits a high affinity for negatively charged materials. The isolated alkylated light chain quantitatively retains the procoagulant activity of the single-chain parent molecule. 125I-Human high Mr kininogen undergoes cleavage in plasma during contact activation initiated by addition of kaolin. This cleavage, which liberates kinin and gives a two-chain, disulfide-linked molecule, is dependent upon the presence of prekallikrein and Factor XII (Hageman factor) in plasma. Addition of purified plasma kallikrein to normal plasma or to plasmas deficient in prekallikrein or Factor XII in the presence or absence of kaolin results in cleavage of high Mr kininogen and kinin formation.  相似文献   

6.
Focused microwave irradiation was employed to stabilize endogenous whole rat brain bradykinin levels prior to a simple extraction procedure. Skull microwave exposure (2450 MHz, 3.8 kW., 2.45 sec) resulted in inactivation to less than 5% of control of whole brain kallikrein and kininase activity. Using this adequate exposure duration whole rat brain kinin levels as measured by a sensitive radio-immunoassay were approximately 0.6 pmol/g (wet weight). Further purification of irradiated brain extracts using HPLC revealed that immunoreactive kinin eluted as a single peak that co-chromatographed with authentic bradykinin. Microwave fixation duration of 1.25 sec yielded greatly increased levels of immunoreactive kinin which following HPLC purification eluted in two peaks, corresponding to authentic bradykinin and T-kinin, respectively. The tissue injury resulting from incomplete microwave fixation resulted in the release of kinins. This excess immunoreactive kinin may be derived from cerebral blood, since the predominant form of kinin-generating protein in plasma is T-kininogen.  相似文献   

7.
This is the first report to demonstrate that chloro(N alpha-p-tosyllysyl)methane (TosLys-CH2Cl) inhibits mammalian glandular kallikrein activities. The inhibitory effect of TosLysCH2Cl on purified rat urinary kallikrein was carried out with three assay methods: 1) Tos-Arg-OMe hydrolysis activity measured by a radiochemical method; 2) kininogenase activity using purified bovine low molecular weight kininogen as substrate and the released kinins subsequently measured by radioimmunoassay; 3) bioassay using isolated rat uterus preparation. Purified rat urinary kallikrein was inhibited by TolLysCH2Cl in a dose and time-dependent manner with all three methods used. The inhibition of purified human urinary kallikrein esterase and kinin-releasing activities were also demonstrated. The results indicate that TosLysCH2Cl inactivates kallikrein activity and support the notion that reactive histidine residue(s) participates in the active center of Kallikrein for catalysis.  相似文献   

8.
Traumatic shock was induced by the tourniquet method compressing one thigh during 10 hours. Venous blood samples were taken from control animals, as well as twice in the nervous phase of shock - after application and before removal of the tourniquet, and in the humoral-toxic phase - 1, 3 and 5 hours after tourniquet removal, in groups of 10 animals. Determinations included blood kinin level, and plasma kininogen level, and the activity of kallikreins and kininases in the plasma. It was found that during tourniquet shock a significant change occurred in the whole blood kinin system. Proportionally to the severity of shock the level of free kinins and kallikrein activity increased 3-4, times and the level of kininogen and the activity of kininases decreased, especially 3 hours after tourniquet removal.  相似文献   

9.
Renal kininogen was detected in human medullary tissue as well as human medullary tubule suspensions. After treatment with pig pancreatic kallikrein or human renal cortical homogenate liberated kinin was measured by bradykinin radioimmunoassay. In the absence of inhibitors kinins were degraded by kininases located in the same part of the kidney. Several known inhibitors of kininase I and II did not inhibit this activity. Endogenous medullary kininase was inhibited by preincubation of homogenates at 56 degrees C for one hour or by addition of 0.25 mmol/l HgCl2. Under these conditions endogenous medullary kinin release amounted to 9-26 nmol/g protein. The action of renal cortical kininogenase on kinin formation from papillary kininogen was completely inhibited by addition of 1 mumol/l aprotinin. Kininogen examined in renal tubule suspensions revealed an increase in amount per g protein compared to homogenates, confirming the tubular localization of renal kininogen.  相似文献   

10.
Three highly specific trypsin-like proteases from mouse submaxillary gland; nerve growth factor gamma subunit, beta nerve growth factor-endopeptidase, and epidermal growth factor-binding protein were tested for kallikrein activity. Low molecular weight kininogen was purified from mouse plasma and used as substrate for the three enzymes, and the kinin released by the enzymes was assayed by its ability to induce contraction of isolated rat uterus. All three enzymes were found to have significant kininogenase activity, and the most active enzyme, beta nerve growth factor-endopeptidase, has activity comparable to authentic kallikreins from other glandular sources. Essentially all of the kininogenase activity of submaxillary gland co-purifies with beta nerve growth factor-endopeptidase. Hence, beta nerve growth factor-endopeptidase appears to be identical with submaxillary gland kallikrein. Nerve growth factor gamma subunit, epidermal growth factor-binding protein, and beta nerve growth factor-endopeptidase have similar amino acid compositions and molecular weights, and are immunologically similar. Comparison of published partial primary sequence data confirms our conclusion that nerve growth factor gamma subunit, epidermal growth factor-binding protein, and kallikrein are very closely related enzymes. It is postulated that these three enzymes are members of a larger family of similar enzymes, all of which are involved in the processing of precursors to polypeptide hormones and growth factors.  相似文献   

11.
Human low molecular weight kininogen was partially purified and applied to the measurement of human glandular kallikrein as a substrate. The prepared human low molecular weight kininogen did not contain any significant amounts of kinin generating or destroying enzymes. When ethanol was added to the assay tube to stop the enzyme reaction, the substrate was almost completely removed from the incubation solution. Moreover, less than 1.25% ethanol had no effect on the kinin radioimmunoassay. These data suggest that the measurement of generated kinin can be done directly after the addition of ethanol. In this assay system, control tubes were unnecessary since the small volume of the urine samples (0.5 to 2.0 nl) contained negligible amounts of endogenous kinin. In a comparison of the availability as a substrate for human urinary kallikrein among human, dog and bovine low molecular weight kininogens, the enzyme activity was 5 or 100 times as high in the human substrate as in the dog and bovine substrates, suggesting that a human substrate is best for the human enzyme. A significant correlation was found between our previous method using bovine substrate and this method for human urinary kallikrein activity. In both methods, urinary kallikrein excretions were significantly lower in patients with essential hypertension and higher in those with primary aldosteronism, respectively. This simple, specific and sensitive kininogenase assay system seems to be very useful for investigating the physiological or pathophysiological role of the renal kallikrein-kinin system in hypertensive and renal diseases.  相似文献   

12.
Two peptides exhibiting kinin activity in an isolated rat uterus assay were purified from pasteurized skim bovine milk. The amino acid sequence of the more prominent peptide was found to be that of bradykinin. Partially purified kinin preparations were also obtained from N-tosyl-L-phenylalanyl chloromethyl ketone-treated trypsin digests of non-fat dry milk and insoluble lactalbumin. The application of fast atom bombardment/mass spectrometry permitted detection of the bradykinin protonated molecular ion in each of these samples. Collision-activated decomposition of the ion of m/z 1061 confirmed it to be the protonated molecular ion of bradykinin. Fast atom bombardment/mass spectrometry analysis further confirmed the occurrence of bradykinin in a pancreatic kallikrein digest of a partially purified bovine milk kininogen preparation. In apparent contrast with bovine plasma kininogens, the forms of kininogen which occur in milk include a high Mr kininogen (Mr greater than 68,000) and a low Mr kininogen (Mr 16,000-17,000). Kinin formation from the high Mr kininogen is catalyzed by porcine pancreatic kallikrein or trypsin.  相似文献   

13.
Aside from bradykinin (BK), a novel kinin, [Hydroxyproline3]-bradykinin ( [Hyp3]-BK), was isolated from the reaction mixture of human plasma and plasma protein Cohn's fraction IV-4 with trypsin. The liberated kinins were isolated based on procedures which we previously described for the isolation of [Hyp3]-lysyl-bradykinin ( [Hyp3]-Lys-BK) formed by kallikrein. The ratio of the amounts of two kinins thus formed from human plasma protein Cohn's fraction IV-4 were [Hyp3]-BK 25 +/- 4% and BK 75 +/- 4%, similarly to that of [Hyp3]-Lys-BK and Lys-BK, formed by kallikrein, but it varied by persons. The isolation of [Hyp3]-BK and [Hyp3]-Lys-BK suggests that a novel kininogen containing hydroxyproline in the third position of the bradykinin sequence in human plasma protein, possibly undergone post-translational modifications.  相似文献   

14.
Kininogens are multifunctional proteins involved in a variety of regulatory processes including the kinin-formation cascade, blood coagulation, fibrynolysis, inhibition of cysteine proteinases etc. A working hypothesis of this work was that the properties of kininogens may be altered by oxidation of their methionine residues by reactive oxygen species that are released at the inflammatory foci during phagocytosis of pathogen particles by recruited neutrophil cells. Two methionine-specific oxidizing reagents, N-chlorosuccinimide (NCS) and chloramine-T (CT), were used to oxidize the high molecular mass (HK) and low molecular mass (LK) forms of human kininogen. A nearly complete conversion of methionine residues to methionine sulfoxide residues in the modified proteins was determined by amino acid analysis. Production of kinins from oxidized kininogens by plasma and tissue kallikreins was significantly lower (by at least 70%) than that from native kininogens. This quenching effect on kinin release could primarily be assigned to the modification of the critical Met-361 residue adjacent to the internal kinin sequence in kininogen. However, virtually no kinin could be formed by human plasma kallikrein from NCS-modified HK. This observation suggests involvement of other structural effects detrimental for kinin production. Indeed, NCS-oxidized HK was unable to bind (pre)kallikrein, probably due to the modification of methionine and/or tryptophan residues at the region on the kininogen molecule responsible for the (pro)enzyme binding. Tests on papain inhibition by native and oxidized kininogens indicated that the inhibitory activity of kininogens against cysteine proteinases is essentially insensitive to oxidation.  相似文献   

15.
Macrophages at an inflammatory site release massive amounts of proteolytic enzymes, including lysosomal cysteine proteases, which colocalize with their circulating, tight-binding inhibitors (cystatins, kininogens), so modifying the protease/antiprotease equilibrium in favor of enhanced proteolysis. We have explored the ability of human cathepsins B, K and L to participate in the production of kinins, using kininogens and synthetic peptides that mimic the insertion sites of bradykinin on human kininogens. Although both cathepsins processed high-molecular weight kininogen under stoichiometric conditions, only cathepsin L generated significant amounts of immunoreactive kinins. Cathepsin L exhibited higher specificity constants (kcat/Km) than tissue kallikrein (hK1), and similar Michaelis constants towards kininogen-derived synthetic substrates. A 20-mer peptide, whose sequence encompassed kininogen residues Ile376 to Ile393, released bradykinin (BK; 80%) and Lys-bradykinin (20%) when incubated with cathepsin L. By contrast, cathepsin K did not release any kinin, but a truncated kinin metabolite BK(5-9) [FSPFR(385-389)]. Accordingly cathepsin K rapidly produced BK(5-9) from bradykinin and Lys-bradykinin, and BK(5-8) from des-Arg9-bradykinin, by cleaving the Gly384-Phe385 bond. Data suggest that extracellular cysteine proteases may participate in the regulation of kinin levels at inflammatory sites, and clearly support that cathepsin K may act as a potent kininase.  相似文献   

16.
The ratio of kininogen that is substrate of plasma kallikrein to kininogen, which is not substrate of plasma kallikrein in canine plasma, was about 1:3.6 by differential assay of kininogens. When the plasma was gel-filtered through a column of Sephacryl S-300 superfine, two fractions, which released kinin by trypsin, were obtained. These results indicate that two kininogens with different molecular weights are present in the plasma and they show different susceptibility to plasma kallikrein. One kininogen was purified by ion-exchange and zinc-chelating affinity chromatographies. Purified kininogen showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing condition and its molecular weight was 125 kDa. Released kinin from the kininogen by trypsin was bradykinin. The kininogen inhibited papain and ficin but did not inhibit bromelain at the concentration used. The kininogen bound to carboxymethylated-papain and this binding was dissociated by 3M NaSCN. Canine plasma shortened the abnormal clotting time of human high molecular weight kininogen-deficint plasma. The kininogen also shortened the abnormal clotting time of the plasma. From these results, the purified kininogen was high molecular weight kininogen and it was multi-functional protein.  相似文献   

17.
It has been proposed that a cysteine proteinase inhibitor (CPI) found in the ascitic fluid of Sarcoma 180 tumor-bearing mice is a kind of kininogen (Itoh, N., Yokota, S., Takagishi, U., Hatta, A., and Okamaoto, H. (1987) Cancer Res. 47, 5560-5565). The first 40 NH2-terminal residues and 54 residues of the COOH-terminal sequence, including the bradykinin moiety of highly purified ascites CPI, were determined and compared with those of mammalian low molecular weight kininogens (LMWK). The significant identity between these amino acid sequences with those of other mammalian LMWKs suggests that ascites CPI corresponds precisely to mouse LMWK. This kininogen has a light chain composed of 43 amino acid residues, which contains a unique Met-Ala-Arg-bradykinin sequence. Hydroxyproline, which was recently identified in the bradykinin sequence of kininogen from the ascitic fluid of a cancer patient, was not found in the kinin moiety of this mouse kininogen. Among purified glandular kallikreins from human, hog, rat, and mouse, only mouse submaxillary gland kallikrein was able to release bradykinin from this kininogen. Kinetic studies using a newly synthesized fluorogenic substrate, N-t-butoxycarbonyl-Met-Ala-Arg-MCA, revealed that mouse kallikrein hydrolyzes this substrate approximately 80-fold faster than does hog kallikrein, suggesting that the unique Met-Ala-Arg-bradykinin sequence is responsible for the varied susceptibility of mouse kininogen to different kallikreins.  相似文献   

18.
Tissue kallikreins are present in rat uterus during the estrous cycle in luminal and glandular epithelium, in early gestation in the implantation node, and in the last third of pregnancy surrounding the sinusoids in the decidua basalis. The pattern of kinin B2 receptor expression, through which the vasoactive effect of kallikreins is exerted, was studied by in vitro autoradiography and immunohistochemistry. The kinin B2 receptor was observed in the luminal and glandular epithelium, myometrium, endothelial cells of arteries, veins and venules, and smooth muscle cells of endometrial and myometrial arterioles. Immunoblotting of crude membranes revealed a band of 69 kDa that increased in late proestrus and estrus, concordantly with the pattern of immunostaining observed in the tissue. At Day 7 of gestation, the kinin B2 receptor was expressed (binding sites and receptor protein) in the epithelium of the implantation node and decidual cells; these latter cells showed a further increase during gestational Days 9 and 10. From Days 14 to 21, the subplacental decidua became strongly immunoreactive, and on Days 16 and 21 the placental labyrinthine endothelium was intensely stained. During this period, endothelium of arteries and veins, smooth muscular cells of small diameter arterioles, and myometrium also expressed B2 receptors. In unilaterally oil-stimulated pseudopregnancy, the decidual cells and the glandular epithelium show similar immunoreactivity to that during pregnancy. The temporospatial pattern of kinin B2 receptors, coinciding with that of kallikrein or with sites accessible to the generated kinins, further supports an autocrine-paracrine role for the kallikrein-kinin system in the vasoactive changes of implantation and placental blood flow regulation.  相似文献   

19.
The types of kinins released from purified native, single chain human high and low molecular mass kininogens (HMMKs and LMMKs, respectively) by purified human urinary kallikrein were separated by reverse-phase HPLC and quantitated by the rat uterus bioassay. [Hyp3]-lysyl-bradykinin, a recently discovered kinin, represented up to 58% of the biological activity released from 4 individual HMMK preparations purified from 4 different healthy volunteers. In contrast, the majority of the biological activity released from LMMKs purified from pooled plasma was identified as Lys-bradykinin and [Hyp3]-lysyl-bradykinin represented only 6.4 +/- 3.8%. These findings indicate posttranslation hydroxylation of human kininogens and suggest a preference of HMMKs for this modification.  相似文献   

20.
A new protease has been purified to homogeneity from rat submandibular gland homogenate by using DEAE-Sephadex chromatography, chromatofocusing, aprotinin-Sepharose affinity chromatography, and high-performance liquid chromatography. The enzyme has been named esterase B, since it represents the second major esterolytic peak on DEAE-Sephadex chromatography of submandibular gland homogenate. It is an acidic protein (pI = 4.45) with an apparent molecular weight of 27 000. It is heat-stable and has an optimum pH of 9.5. Esterase B hydrolyzed the synthetic substrates tosyl-L-arginine methyl ester and Val-Leu-Arg-p-nitroanilide (S2266). It also cleaved dog plasma kininogen to produce a kinin, identified as bradykinin on reverse-phase high-performance liquid chromatography. Esterase B, however, is only a weak kininogenase, since it had only 5% of the kininogenase activity of equimolar concentrations of glandular kallikrein and had no effect on rat mean blood pressure or on the isolated rat uterus. Esterase B activated plasminogen and had caseinolytic activity. It was inhibited by aprotinin, soybean trypsin inhibitor, lima bean trypsin inhibitor, phenylmethanesulfonyl fluoride, antipain, leupeptin, and p-tosyl-L-lysine chloromethyl ketone. On double immunodiffusion, when reacted with kallikrein and tonin antisera, esterase B showed partial identity with kallikrein but not with tonin. On immunoelectrophoresis against kallikrein antisera, esterase B formed a precipitin arc at a position different from that of kallikrein. Esterase B appears to be a trypsin-like serine protease having some homology with glandular kallikrein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号