首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Three methods of estimating bacterial productivity were compared using parallel samples of Atlantic Ocean water (within 0.25–15 km of the Georgia coast). The frequency-of-dividing cells (FDC) method and the [3H]thymidine incorporation method gave results which were strongly correlated (r=0.97), but the FDC estimates were always higher (X2 to X7) than the [3H]thymidine estimates. Estimates of bacterial productivity ranged from 2–4×108 cells·l–1·h–1 at 0.25 km from shore to 1–9×107cells·l–1·h–1 at 15 km. A method involving incubation of 3-m filtrates and direct counting gave results that could not be easily translated into estimates of bacterial productivity. Application of the FDC method to sediment samples gave high productivity estimates, which could be not reconciled with productivity estimates based on sediment oxygen uptake.  相似文献   

2.
The in situ rates of oxygen consumption by benthic nitrifiers were estimated at 11 study sites in 4 streams. Two methods were used: an in situ respiration chamber method and a method involving conversion of nitrifying potential measurements to in situ rates. Estimates of benthic nitrogenous oxygen consumption (BNOC) rate ranged from 0–380 mmol of O2 m–2·day–1, and BNOC contributed between 0–85% of the total benthic oxygen consumption rate. The activity of nitrifiers residing in the sediments was influenced by O2 availability, temperature, pH, and substrate. Depending upon site, nitrification could approximate either first-order or zero-order kinetics with respect to ammonium concentration. The source of ammonium for benthic nitrifiers could be either totally from within the sediment or totally from the overlying water. Nitrate produced in the sediments could flux to the water above or be lost within the sediment. The sediments could act as a source (positive flux) or sink (negative flux) for both ammonium (–185 mmol·m–2·day–1 to +195 mmol·m–2·day–1) and nitrate (–135 mmol·m–2·day–1 to +185 mmol·m–2·day–1).This study provides evidence to suggest that measurements of down-stream mass flow changes in inorganic nitrogen forms may give poor estimates of in situ rates of nitrification in flowing waters.  相似文献   

3.
Summary Daily rates of gross and net primary production were calculated in the Scotia-Weddell Sea sector of the Southern Ocean during spring 1988 (EPOS, Leg 2) on the basis of kinetic experiments, which combine radiotracer technology and classic biochemical procedures, and by taking into account the light regime, the physical structure of the water column, the vertical distribution of chlorophyll a, and the protozoan grazing pressure. From these calculations, three distinct sub-areas were identified: the Closed Pack Ice Zone (CPIZ), characterized by the lowest average gross primary production (0.36 gC · m–2 · day–1); the Marginal Ice Zone (MIZ) with a maximum mean value of 1.76 gC · m–2 · day–1; and the Open Ocean Zone off the ice edge (OOZ) with an intermediate mean value of 0.87 gC · m–2 · day–1. Net primary production fluctuated nearly in the same proportions, averaging 0.55, 0.2 and 1.13 gC · m–2 · day–1 in the OOZ, CPIZ and MIZ respectively, representing 53% of the total photo-assimilated carbon under heavy ice cover (CPIZ) and 64% in the two other areas. Available light, strongly dependent on the ice cover, was shown to control the level of primary production in the sea ice associated sub-areas, whilst protozoa grazing on phytoplankton determined the moderate primary production level characteristic of the well illuminated OOZ area.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

4.
Light dependent sediment-water exchange rates of dissolved reactive silicon (DRSi) and phosphorus (DRP) were studied on field station Archipel (3 m water depth) in Lake Grevelingen (SW Netherlands). Bell jars, either light or darkened, were fixed permanently over a productive microflora mat of mainly Navicula spp.; sediment-water exchange was monitored over an 11 days period. Gross primary production values in the mat amounted to 1000 mg C·m–2·day–1.In the dark bell jar, DRSi and DRP release rates from the sediment were ca. 275 and 85 mg·m–2·day–1, respectively. Release rates in the light bell jars were on average only 15% of these values. Parallel bell jar experiments under different environmental conditions indicate a direct relationship between the primary production figures and nutrient sediment-water exchange rates.Communication nr. 369 of the Delta Institute for Hydrobiological Research, Yerseke, the Netherlands. This paper was presented at the first International Workshop on phosphorus fractionation, availability and release of the Sediment Phosphorus Group, held in Vienna, 23–26 March, 1986.  相似文献   

5.
A rich and varied meiofauna inhabits a Cornish mudflat near the mouth of the Tamar River in southwestern England. Population densities range from 117 to 943 individuals · g–1 (wet) sediment (1.4–11.4 × 106 individuals · m–2), with foraminifera, harpacticoid copepods and nematodes appearing in nearly equal numbers and comprising most of the meiofauna. Seasonally, meiofaunal numbers rise and fall with solar radiation and vary inversely with river discharge. Two species, the atestate allogromiid A and the calcareous Haynesina germanica (Ehrenberg), far outnumber other foraminifera; their population densities and growth rates reach maxima in spring and summer.Monthly rates of sediment respiration are locally variable, but clearly increase from winter (4.13 ml O2 · m–2 · h–1 in December) to spring (38.87 ml O2 · m–2 · h–1 in April). Experiments and calculations ascribe approximately 30% of this total to the meiofauna (including microfauna and microflora), 50% to bacteria and less than 20% to chemical oxidation. A tentative energy budget for the mudflat suggests that secondary production by meiofauna is small as compared with coastal environments elsewhere, and that meiofaunal production (426 Kcal · m–2 · y–1) is nearly twice meiofaunal respiration (252 Kcal · m–2 · yr–1).  相似文献   

6.
Summary Seedlings of Scots pine (Pinus sylvestris L.) from Russia (59°58N) and Poland (53°34N) were grown for 4 months in controlled environment chambers, simulating the photoperiod conditions of 50° and 60° N. The Russian population grown at 50° N showed earlier height growth cessation than the Polish population. Photoperiodic conditions of 60° N increased proportional allocation of dry mass to shoots and lowered allocation to roots in the Russian population, which also had greater allocation to roots than the Polish population in both treatments. Total non-structural carbohydrate concentrations in roots and secondary needles of both populations were significantly higher at the end of the 4 month growing season at 50° compared to 60° N. Net photosynthesis rates were similar for both provenances and both treatments. The rate of transpiration was higher and water-use efficiency lower for plants grown in long-day conditions of 60° N. The mean respiration rate of roots ranged between 30 and 36 nmol CO2 · g-1 dry mass · s-1 and was 2–4 times higher than values observed for needles. Root respiration rates were greater in the Polish than the Russian population. Despite this, the greater allocation to root dry mass of the Russian population resulted in greater root respiratory cost as a proportion of daily carbon gain. Overall, root respiration accounted for between 18 to 34% of the total daily net carbon assimilation of these populations. Root and total respiration as a proportion of net daily carbon assimilation were greater at 50° than 60°N. Mean net integrated CO2 gains were 2.2–2.5 mmol CO2 · day-1 for seedlings from Russia compared to 3 mmol CO2 · day-1 for Poland.  相似文献   

7.
Fractional rates (% · day–1) of synthesis and degradation were determined by measuring the output of N-methylhistidine (MeHis) in the excreta at 4 and 8 weeks of age in the chicken. At 4 weeks of age, the fractional rate of synthesis of the meat-type stock was twice that of the egg-type stock (White Leghorn), but the fractional rates of synthesis at 8 weeks of age were similar (4.1–5.1% · day–1) among stocks. The fractional rate of degradation (1.3–1.5% · day–1) of the meat-type stock at 8 weeks of age was less than half the rate of the egg-type stock (2.9% · day–1). The fractional rates of synthesis and degradation at 4 weeks of age in the Satsuma native fowl were relatively high compared with those in the other stocks. In particular, the rate of degradation (8.6% · day–1) at 4 weeks of age was approximately twice that of other stocks. These results show that fractional rates of synthesis and degradation of muscle protein in the chicken differ among genetically diverse groups. The effect of changes in rates of synthesis and degradation on the change in fractional growth rate also differed. From regression coefficients (bK s · FGR and bK d · FGR) of these rates in skeletal muscle protein on the fractional growth rate, it was recognized that the change in growth rate accompanies the changes in both synthesis and degradation in White Leghorn and commercial broilers but only the change in synthesis in White Plymouth Rock (dw) and Satsuma native fowl.  相似文献   

8.
Dynamics of bacterioplankton in a mesotrophic French reservoir (Pareloup)   总被引:1,自引:1,他引:0  
Bacterioplankton abundance, biomass and production were studied at a central station (35 m depth) from April 1987 to September 1988 in a mesotrophic reservoir. Bacterial production was calculated by the (3H) thymidine method.For the water column, integrated estimates of bacterioplankton abundance ranged from 2.3 109 to 4.6 109 cells l–1, and carbon biomass from 0.037 to 0.068 mg C l–1; the thymidine incorporation rates ranged from 0.8 to 17.2 picomoles l–1 h–1, leading to net bacterial production estimates of less than 0.7 µg C l–1 d–1 in winter to 18 µg C l–1 d–1 in summer. About 55% of the production occurred in the euphotic layers.Over the year, the bacterial carbon requirement represented 90% of the autotrophic production for the whole lake. It was five times lower than autotrophic production in spring, but twice as high in summer. This important temporal lack of balance suggests that not all the spring primary production products are consumed immediately and/or that other carbon sources probably support bacterial growth in summer.  相似文献   

9.
During a winter expedition to the western Barents Sea in March 2003, benthic amphipods of the species Anonyx sarsi were observed directly below pack ice. Only males and juveniles [16.0–37.0 mm long, 16.2–120.8 mg dry mass (DM)] were collected. Guts contained macroalgal fibres, fish eggs and flesh from large carrion. Amphipods had very low levels of total lipids (2.7–17.2% DM). Analysis of lipid biomarkers showed that some of the specimens had preyed on pelagic copepods. Individual respiration rates ranged over 0.4–1.7 ml O2 day–1 (mean: 1.2 ml, SD: 0.5 ml). Individual ammonia excretion rates varied between 7.8 g and 49.3 g N day–1 (mean: 30.7 g, SD: 15.2 g). The atomic O:N ratio ranged over 35 to 71 (mean: 55, SD: 14), indicating lipid-dominated metabolism. Mass-specific respiration ranged over 9.8–16.6 ml O2 day–1 g DM–1 (mean: 13.1 ml, SD: 2.2 ml). The metabolic rates of A. sarsi were twice as high as those of the truly sympagic amphipod Gammarus wilkitzkii, which is better adapted to the under-ice habitat by its energy-saving attached lifestyle. It is concluded that males and juveniles of A. sarsi were actively searching for food in the water column and at the ice underside, but that the nutritional status of the amphipods in late Arctic winter was generally very poor.  相似文献   

10.
Bacterial productivity and microbial biomass in tropical mangrove sediments   总被引:14,自引:0,他引:14  
Bacterial productivity (3H-thymidine incorporation into DNA) and intertidal microbenthic communities were examined within five mangrove estuaries along the tropical northeastern coast of Australia. Bacteria in mangrove surface sediments (0–2 cm depth) were enumerated by epifluorescence microscopy and were more abundant (mean and range: 1.1(0.02–3.6)×1011 cells·g DW–1) and productive (mean: 1.6 gC·m–2· d–1) compared to bacterial populations in most other benthic environments. Specific growth rates (¯x=1.1) ranged from 0.2–5.5 d–1, with highest rates of growth in austral spring and summer. Highest bacterial numbers occurred in winter (June–August) in estuaries along the Cape York peninsula north of Hinchinbrook Island and were significantly different among intertidal zones and estuaries. Protozoa (105–106·m–2, pheopigments (0.0–24.1g·gDW–1) and bacterial productivity (0.2–5.1 gC·m–2·d–1) exhibited significant seasonality with maximum densities and production in austral spring and summer. Algal biomass (chlorophylla) was low (mean: 1.6g·gDW–1) compared to other intertidal sediments because of low light intensity under the dense forest canopy, especially in the mid-intertidal zone. Partial correlation analysis and a study of possible tidal effects suggest that microbial biomass and bacterial growth in tropical intertidal sediments are regulated primarily by physicochemical factors and by tidal flushing and exposure. High microbial biomass and very high rates of bacterial productivity coupled with low densities of meiofaunal and macroinfaunal consumers observed in earlier studies suggest that microbes may be a sink for carbon in intertidal sediments of tropical mangrove estuaries.  相似文献   

11.
Population dynamics of bacteria in Arctic sea ice   总被引:3,自引:0,他引:3  
The dynamics of bacterial populations in annual sea ice were measured throughout the vernal bloom of ice algae near Resolute in the Canadian Arctic. The maximum concentration of bacteria was 6.0·1011 cells·m–2 (about 2.0·1010 cells·l–1) and average cell volume was 0.473 m3 in the lower 4 cm of the ice sheet. On average, 37% of the bacteria were epiphytic and were most commonly attached (70%) to the dominant alga,Nitzschia frigida (58% of total algal numbers). Bacterial population dynamics appeared exponential, and specific growth rates were higher in the early season (0.058 day–1), when algal biomass was increasing, than in the later season (0.0247 day–1), when algal biomass was declining. The proportion of epiphytes and the average number of epiphytes per alga increased significantly (P<0.05) through the course of the algal bloom. The net production of bacteria was 67.1 mgC·m–2 throughout the algal bloom period, of which 45.5 mgC·m–2 occurred during the phase of declining algal biomass. Net algal production was 1942 mgC·m–2. Sea ice bacteria (both arctic and antarctic) are more abundant than expected on the basis of relationships between bacterioplankton and chlorophyll concentrations in temperate waters, but ice bacteria biomass and net production are nonetheless small compared with the ice algal blooms that presumably support them.  相似文献   

12.
The spring development of both phytoplankton and bacterioplankton was investigated between 18 April and 7 May 1983 in mesotrophic Lake Erken, Sweden. By using the lake as a batch culture, our aim was to estimate, via different methods, the production of phytoplankton and bacterioplankton in the lake and to compare these production estimates with the actual increase in phytoplankton and bacterioplankton biomass. The average water temperature was 3.5°C. Of the phytoplankton biomass, >90% was the diatom Stephanodiscus hantzchii var. pusillus, by the peak of the bloom. The 14C and O2 methods of estimating primary production gave equivalent results (r = 0.999) with a photosynthetic quotient of 1.63. The theoretical photosynthetic quotient predicted from the C/NO3 N assimilation ratio was 1.57. The total integrated incorporation of [14C]bicarbonate into particulate material (>1 μm) was similar to the increase in phytoplankton carbon determined from cell counts. Bacterioplankton increased from 0.5 × 109 to 1.52 × 109 cells liter−1 (~0.5 μg of C liter−1 day−1). Estimates of bacterioplankton production from rates of [3H]thymidine incorporation were ca. 1.2 to 1.7 μg of C liter−1 day−1. Bacterial respiration, measured by a high-precision Winkler technique, was estimated as 4.8 μg of C liter−1 day−1, indicating a bacterial growth yield of 25%. The bulk of the bacterioplankton production was accounted for by algal extracellular products. Gross bacterioplankton production (production plus respiration) was 20% of gross primary production, per square meter of surface area. We found no indication that bacterioplankton production was underestimated by the [3H]thymidine incorporation method.  相似文献   

13.
Summary Heterotrophic activity in the bottom few cm of annual sea ice in the Canadian Arctic was measured throughout the spring bloom of ice algae, using tritium-labelled thymidine and glucose. Experiments with chloramphenicol and cyclohexamide indicated that thymidine assimilation was due to procaryotic microbes but that about half of the glucose assimilation was due to eucaryotic organisms. Glucose and thymidine assimilation rates increased with salinity, from 10 ppt to 30 ppt. Thymidine assimilation rates increased from 1.16 to 4.94·10–21mol·cell–1·h–1 during the latter half of the algal bloom, while the exponential growth rate of the in situ populations decreased from 0.058 to 0.025 d–1. Bacterial production and specific growth rates calculated from thymidine assimilation were 149mgC·m–2 and 0.25 d–1 or less respectively over the 50 day observation period, compared with net primary production of 5,500 mgC·m–2. Thymidine assimilation rates suggested that about half of the bacterial production may be consumed or lost from the ice during the bloom.  相似文献   

14.
Summary The objectives of the 3 year study were to determine the relationship between bacterial numbers and phytoplankton standing crops (chlorophyll a) in sub-antarctic Marion Island lakes (33) and to determine the relative importance of labile dissolved organic carbon and water temperature as regulators of heterotrophic bacterial activity and production. Bacterial activity (the incorporation and respiration rates of 14C-labelled substrates) and production (the rate of [methyl-3H]thymidine incorporation into DNA) were measured in oligotrophic Lava Lake and Gentoo Lake, an elephant seal wallow. Samples were incubated under ambient conditions as well as at increased temperature and with additions of labile dissolved organic carbon (DOC). Bacterial numbers ranged from 2.13 × 105 cell ml–1 to 15.17 × 106 cells ml–1 in the lake survey. The chlorophyll range was 0.18 to >75 g 1–1. Bacterial numbers were not correlated to chlorophyll concentration in waters where the chlorophyll content was 5 g 1–1 but were correlated in waters with larger algal contents. Heterotrophic bacterial activity and production, which were similar to rates recorded for equivalent lower latitude systems, were higher in Gentoo Lake than in Lava Lake. As a result of qualitative and quantitative differences in the DOC pools, DOC was the stronger regulator of bacterial activity and production in Lava Lake, while temperature was the stronger factor in Gentoo Lake.  相似文献   

15.
The effects of light intensity, oxygen concentration, and pH on the rates of photosynthesis and net excretion by metalimnetic phytoplankton populations of Little Crooked Lake, Indiana, were studied. Photosynthetic rates increased from 1.42 to 3.14 mg C·mg–1 chlorophylla·hour–1 within a range of light intensities from 65 to 150E·m–2·sec–1, whereas net excretion remained constant at 0.05 mg C·mg–1 chlorophylla·hour–1. Bacteria assimilated approximately 50% of the carbon released by the phytoplankton under these conditions. Excreted carbon (organic compounds either assimilated by bacteria or dissolved in the lake water) was produced by phytoplankton at rates of 0.02–0.15 mg C·mg–1 chlorophylla·hour–1. These rates were 6%–13% of the photosynthetic rates of the phytoplankton. Both total excretion of carbon and bacterial assimilation of excreted carbon increased at high light intensities whereas net excretion remained fairly constant. Elevated oxygen concentrations in samples incubated at 150E· m–2·sec–1 decreased rates of both photosynthesis and net excretion. The photosynthetic rate increased from 3.0 to 5.0 mg C·mg–1 chlorophylla· hour–1 as the pH was raised from 7.5 to 8.8. Net excretion within this range decreased slightly. Calculation of total primary production using a numerical model showed that whereas 225.8 g C·m–2 was photosynthetically fixed between 12 May and 24 August 1982, a maximum of about 9.3 g C·m–2 was released extracellularly.  相似文献   

16.
D. M. Alongi 《Oecologia》1994,98(3-4):320-327
Benthic oxygen consumption and primary production were measured using the bell jar technique in deltaic and fringing mangrove forests of tropical northeastern Australia. In a deltaic forest, rates of sediment respiration ranged from 197 to 1645 mol O2 m–2 h–1 (mean=836), but did not vary significantly with season or intertidal zone. Gross primary production varied among intertidal zones and seasons, ranging from –281 to 1413 mol O2 m–2 h–1 (mean=258). Upon tidal exposure, rates of gross primary production increased, but respiration rates did not change significantly. In a fringing mangrove forest, benthic respiration and gross primary production exhibited strong seasonality. In both forests, rates of oxygen consumption and production were low compared to salt marshes, but equivalent to rates in other mangrove forests. The production:respiration (P/R) ratio varied greatly over space and time (range:–0.61 to 1.76), but most values were «1 with a mean of 0.15, indicating net heterotrophy. On a bare creek bank and a sandflat, rates of gross primary production and P/R ratios were generally higher than in the adjacent mangroves. Low microalgal standing stocks, low light intensity under the canopy, and differences in gross primary production between mangroves and tidal flats, and with tidal status, indicate that benthic microalgae are light-limited and a minor contributor to primary productivity in these tropical mangrove forests.  相似文献   

17.
Summary Water and sodium turnovers of 6–7 week old gentoo penguin chicks and breeding adults were measured using isotopically labelled water and sodium. Influx rates for chicks averaged 188 ml·kg-1·day-1 and 13.9 mmol·kg-1·day-1 for water and sodium, respectively. Chicks consumed an estimated 228 g·kg-1·day-1 fresh food or 886 kJ kg-1 day. These values correspond to 761 g·day-1 or 2945 kJ·day-1 for a gentoo chick mid-way through the growth period. Flux rates for adults attending chicks ranged from 199 to 428 ml·kg-1·day-1 for water and from 15 to 36 mmol·kg-1·ay-1 for sodium.  相似文献   

18.
Rates of bacterial production were measured in the water column, on the surface of plant detritus, and in the surface sediments of a freshwater marsh in the Okefenokee Swamp, Georgia, USA. Bacterioplankton production rates were not correlated with several measures of quantity and quality of dissolved organic matter, including an index of the relative importance of vascular plant derivatives. Bacterioplankton productivity was high (mean: 63 g C liter–1 day–1) compared with rates reported for other aquatic ecosystems. Somewhat paradoxically, bacterial productivity on plant detritus (mean: 13 g C g–1 day–1) and sediments (mean: 15 g C g–1 day–1) was low relative to other locations. On an a real basis, total bacterial productivity in this marsh ecosystem averaged 22 mg C m–2 day–1, based on sample dates in May 1990 and February 1991. Marsh sediments supported the bulk of the production, accounting for 46% (May) and 88% (February) of the total. The remainder was contributed approximately equally by bacteria in the water column and on accumulated stores of plant detritus. Send offprint requests to: M. A. Moran.  相似文献   

19.
Benthic bacterial biomass and production in the Hudson River estuary   总被引:2,自引:0,他引:2  
Bacterial biomass, production, and turnover were determined for two freshwater marsh sites and a site in the main river channel along the tidally influenced Hudson River. The incorporation of [methyl-3H]thymidine into DNA was used to estimate the growth rate of surface and anaerobic bacteria. Bacterial production at marsh sites was similar to, and in some cases considerably higher than, production estimates reported for other aquatic wetland and marine sediment habitats. Production averaged 1.8–2.8 mg C·m–2·hour–1 in marsh sediments. Anaerobic bacteria in marsh sediment incorporated significant amounts of [methyl-3H]thymidine into DNA. Despite differences in dominant vegetation and tidal regime, bacterial biomass was similar (1×103±0.08 mg C·m–2) inTrapa, Typha, andNuphar aquatic macrophyte communities. Bacterial abundance and productivity were lower in sandy sediments associated withScirpus communities along the Hudson River (0.2×103±0.05 mg C·m–2 and 0.3±0.23 mg C·m–2·hour–1, respectively).  相似文献   

20.
An integrated programme of pheromone-mediated mating disruption using Isomate-C®, post-harvest removal of fruit, and trapping overwintering larvae with cardboard tree bands, was used to control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in four commercial organic apple orchards in Cawston, British Columbia during 1989–1992. One application of 1000 dispensers – 1 on May 1 delivered estimated seasonal totals of 16.6, 16.5 and 19.9 g of E,E-8,10-dodecadien-1-ol [=codlemone] – 1in 1990, 1991 and 1992, respectively, at median rates of 8.4, 8.3, and 13.3 mg · < ha–1 · ha–1 during dusk flight periods of first brood and 5.3, 4.7 and 4.6 mg · – 1· ha–1 in second brood, respectively. Over this 3-year period damage from codling moth at harvest ranged from 0.08 to 2.4%, and averaged 60.7% in these four organic orchards, while damage in five conventional orchards receiving sprays of azinphosmethyl ranged from 0.02 to 1.85%, and averaged 0.5%. Damage in an experimental orchard that was banded only, ranged from 43.5 to 56.7%, and averaged 48.9%. Between 1990 and 1992 cumulative male catches in Pherocon 1-CP wing traps baited with 10 mg of codlemone declined by 52% and densities of overwintering codling moth larvae declined an average of 49.5% in all organic orchards. Overwintering populations in the banded experimental orchard showed an increase of 57.7% during this study period. We conclude that an integrated programme of pheromone-mediated mating disruption, post-harvest fruit removal and tree banding, controls codling moth effectively enough to make organic apple production viable in British Columbia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号