首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The G-electrode-loading method (GELM) is a technique enabling a large number of proteins from rat liver to enter an immobilized pH gradient (IPG) gel strip for isoelectric focusing (IEF). In this method, three slips containing the sample solution are placed on the cathodic edge of an IPG gel strip and a slip containing Chaps solution, a filtration membrane, and an electrode slip are placed on top. Finally, a G-electrode is placed on these slips. The Chaps solution (an amphoteric compound) is supplied gently to the sample solution during IEF and helps the proteins in the sample solution to enter the IPG gel strips with a high solubilization capacity. This method was compared with traditional slip-loading and in-gel rehydration, and it showed the best results for protein separation, including high-molecular-mass proteins.  相似文献   

2.
Two-dimensional gel electrophoresis (2-DE) is used to compare the protein profiles of different crude biological samples. Narrow pH range Immobilized pH Gradient (IPG) strips were designed to increase the resolution of these separations. To take full advantage of IPG strips, the ideal sample should be composed primarily of proteins that have isoelectric point (pI) values within the pH range of the IPG strip. Prefractionation of cell lysates from a human prostate cancer cell line cultured in the presence or absence of epigallocatechin-3-gallate was achieved in fewer than 30 min using an anion-exchange resin and two expressly designed buffers. The procedure was carried out in a centrifuge tube and standard instrumentation was used. The cell lysates were prefractionated into two fractions: proteins with pI values above 7 and between 4 and 7, respectively. The fractions were then analyzed by 2-DE, selecting appropriate pH ranges for the IPG strips, and the gels were compared with those of unprefractionated cell lysates. Protein loading capacity was optimized and resolution and visualization of the less abundant and differentially expressed proteins were greatly improved.  相似文献   

3.
A method is described for keeping a constant salt background during protein purification in a segmented immobilized pH gradient. It is based on an external hydraulic flow replenishing the salt loss due to combined electric and diffusional mass transport (similar to the concept of Ribes' steady-state rheoelectrolysis). Such a minimum of ionic strength might be needed for proteins which tend to precipitate and aggregate at or in vicinity of the isoelectric point. However, it is found that any salt level in the sample feed (already at 1 mM concentration) deteriorates transport of non-isoelectric proteins, because of the much larger current fraction carried by the ions themselves as opposed to proteins. In addition, high salt levels in the sample reservoir might form cathodic and anodic ion boundaries, alkaline and acidic, respectively, which might hamper protein migration and even induce denaturation. Thus, when high salt backgrounds are needed in the sample feed, external pH control should be exerted, e.g. with a pH-stat. Three parameters influence protein transport in the segmented IPG chamber: (a) cross-sectional area of the Immobiline membranes; (b) delta pI between the isoelectric protein and the contaminants and (c) salt molarity in the sample reservoir. The first 2 show a positive, the last a negative correlation.  相似文献   

4.
A new method is described for preparative protein purification, based on isoelectric focusing on immobilized pH gradients. The principle is entirely new, as it is based on keeping the protein of interest isoelectric, in a flow-chamber, and focusing the impurities in the Immobiline gel. For this, a hydraulic flow is coupled orthogonally to an electric flow, sweeping away the non-isoelectric impurities from the recycling chamber. The sample flow-chamber is built in the centre of the apparatus, and is coupled to an upper and lower segment of an immobilized pH gradient. The protein to be purified is kept isoelectric in the flow-chamber and prevented from leaving it by arranging for the extremities of the immobilized pH gradient, forming the ceiling and the floor of this chamber, to have isoelectric points just higher (e.g. +0.05 pH units, on the cathodic side) and just lower (e.g. -0.05 pH units, on the anodic side) than the known pI of the species of interest. Macromolecules and small ions leave the flow chamber at a rate corresponding to a first order reaction kinetics (the plot of log C vs. time being linear). In general, for macromolecules, 12 h of recycling under current allow removal of 95% impurities. After 24 h of recycling, the protein of interest is more than 99.5% pure. The recoveries are very high (approaching 100%) as the sample under purification never enters the Immobiline gel and thus does not have to be extracted from a hydrophilic matrix, as typical of preparative gel electrophoresis.  相似文献   

5.
天麻蛋白质的双向电泳和肽质量指纹谱分析与鉴定   总被引:7,自引:0,他引:7  
采用双向聚丙烯酰胺凝胶电泳和质谱技术对天麻染菌球茎皮层和不染菌的新生球茎皮层进行了比较蛋白质组分析与鉴定。双向电泳后在分子量 1 2~97kD、等电点 3~ 1 0范围内 ,每块胶分离到约 90 0个蛋白质点。对新生球茎中表达量明显增加的 5个蛋白质点用基质辅助激光解吸 电离飞行时间质谱 (MALDI TOFMS)进行肽质量指纹谱的分析 ,并通过检索不同的数据库进行蛋白质鉴定与功能预测 ,初步认为第 4号蛋白点是一个与转录有关的RNA结合蛋白。同时本文在天麻蛋白质组样品制备、数据库检索策略以及蛋白质鉴定成功率等方面进行了探讨。  相似文献   

6.
水稻幼苗经缺铁胁迫诱导分别处理1、3、5天后,用酚法和TCA/丙酮法提取叶片中的可溶性蛋白进行双向电泳分析,从而研究在缺铁条件下叶片中蛋白表达的动态变化规律.结果显示1.不同pH IPG胶条分离蛋白的效果不同.用pH3-10的IPG胶条进行双向电泳,经考马斯亮蓝染色后,可在胶面上检测到大约450个蛋白点,其中约有89%的蛋白是酸性蛋白.如果用pH4-7的IPG胶条进行双向电泳,则可检测到大约600个蛋白点,其中有29个蛋白是上调表达,1个蛋白是下调表达,5个蛋白是诱导特异表达.2.不同方法提取的可溶性蛋白质量不同.TCA法简单易操作,似乎对于碱性蛋白的抽提效果更好,在2-DE图像上,减性端显示的蛋白点多;但此方法所得蛋白的再溶性差.酚法提取的蛋白再溶性好,所抽提的蛋白量较大,纯度较高.  相似文献   

7.
为开展茶树Camellia sinensis 低温和干旱胁迫下差异蛋白的分离和鉴定,以抗逆性较强的茶树品种‘迎霜’为试材,通过对提取方法、IPG 胶条pH 范围、上样量、分离胶浓度、染色方法的比较,筛选适用于茶树叶片的蛋白质双向电泳体系。结果表明,采用TCA-丙酮法或Tris-HCl 法提取叶片总蛋白,选用17 cm pH 4~7IPG 胶条用于等电聚焦,选择1.6~2.2 mg 上样量、13.5%聚丙烯酰胺凝胶进行分离,随后通过高敏考马斯亮蓝R-250 法染色;最终,叶片各分子量的蛋白充分分离,获得的双向电泳图谱分辨率高、背景清晰、重复性好,适用于‘迎霜’低温和干旱胁迫下叶片差异蛋白分析。  相似文献   

8.
Fast isoelectric focusing (IEF) is becoming a key method in modern protein analysis. We report here the theory and experimental results of new parallel isoelectric devices (PID) for fast IEF. The main separation tool of any PID is a dielectric membrane with conducting channels filled by immobiline gels of varying pH. The pH value of the surrounding aqueous solution is not equal to the pH of any of the channels. The membrane is held perpendicular to the applied electric field. Proteins are collected (trapped) in the channels whose pH values are equal to the pI of the proteins. The fast particle transport between different channels takes place due to convection in the aqueous solution. We developed a mathematical model for PID. Experiment duration is shown to be proportional to the number of different bands N (the peak capacity in standard IEF) in contrast with N(2) for usual IEF devices. This model was validated with experimental results. Parallel IEF accelerates the fractionation of proteins by their pI values (down to several minutes) allowing a more desirable collection efficiency to be achieved. The main theoretical limitation of PID resolution is the sensitivity of proteins to pH change due to the Coulomb blockade effect. The existence of a minimal pH change deltapH(min) for each type of protein is shown: deltapH(min) approximately r(-1) for globular molecules with radius r.  相似文献   

9.
Recombinant human growth hormone (r-hGH) expressed in Escherichia coli, was 70-80% purified by a combination of ion-exchange chromatography and metal ion affinity chromatography. For the last purification step, a multicompartment electrolyzer was used, containing three compartments delimited by isoelectric membranes and two additional anodic and cathodic chambers. The central compartment was situated between two membranes having isoelectric points (pI) of 5.08 (anodic) and of 5.16 (cathodic), i.e. equidistant from the pI value of hGH (pI 5.12). r-hGH was isoelectric between these two membranes and could not leave the central chamber, while more acidic and more cathodic impurities collected in the two lateral chambers under the influence of the electric field. The r-hGH, thus purified, exhibited a single band by isoelectric focusing (IEF) in immobilized pH gradients (IPG) and gave recoveries greater than 90%. The problem of isoelectric precipitation in a practically ion-free environment was alleviated by focusing in 30% glycerol added with 1% neutral detergent (Nonidet-P40). The latter was eliminated by passage through a Q-Sepharose column after collecting the pI 5.12 band from the electrolyzer. Also the pre-hormone (pre-hGH) can be purified in a similar manner (30% glycerol, 1% Nonidet P-40) between two membranes having pIs 4.77 (anodic) and 4.87 (cathodic) (pre-hGH pI 4.82). This paper demonstrates the possibility of purifying by a focusing process also poorly soluble proteins at the pI.  相似文献   

10.
With the synthesis of a new, strongly basic Immobiline (pK 10.3 at 10 degrees C) it has been possible to formulate a new pH 10-11 recipe for focusing very alkaline proteins, not amenable to fractionation with conventional isoelectric focusing in carrier ampholyte buffers. In this formulation, water is added as an acidic Immobiline having pK = 14 and a unit molar concentration (or with a pK = 15.74 and standard 55.56 molarity) since around pH 11 its buffering power becomes significant. The gel contains a 'conductivity quencher', i.e. a density gradient incorporated in the matrix, with the dense region located on the cathodic side (pH 11) for (a) smoothing the voltage gradient on the separation cell and (b) reducing the anodic electrosmotic flow due to the net positive charge acquired by the matrix at pH 11 (1 mM excess protonated amino groups to act as counterions to the 1 mm OH- groups in the bulk water solution generated by the local value of pH 11). Excellent focusing is obtained for such alkaline proteins as lysozyme (pI 10.55), So-6 (a leaf protein, pI 10.49), cytochrome c (pI 10.45) and ribonuclease (pI 10.12).  相似文献   

11.
Two-dimensional gel electrophoresis with immobilized pH gradients in the first dimension, initially applied for the separation of soluble and total cellular proteins, has been extended to the analysis of membrane proteins. We show that the usual procedures lead to artifacts and irreproducible results due to aggregation and precipitation of proteins and protein-phospholipid complexes during isoelectric focusing (first dimension) and sodium dodecyl sulfate (SDS) gel electrophoresis (second dimension). Optimized solubilization procedures for hydrophobic membrane proteins are presented and the use of dilute samples is shown to be essential to overcome the major problems in isoelectric focusing. Increased volumes of samples dissolved in rehydration buffer are applied by direct rehydration of dry immobilized pH gradient (IPG) gels. Isoelectric focusing in 2% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) without urea gives good results as does 2% Nonidet-P40 with 8 M urea. Heat denaturation should be avoided. An optimized equilibration procedure for IPG gel strips in SDS sample buffer prior to separation in the second dimension was developed that minimizes loss of proteins and results in high-resolution two-dimensional electropherographic maps with a minimum of streaking. The gel strips are partially dehydrated at 40 degrees C and shortly reswollen in situ on the SDS slab gel in SDS-sample buffer containing agarose.  相似文献   

12.
The preparative aspects of isoelectric focusing (IEF) in immobilized pH gradients (IPG) have been investigated as a function of the following parameters: environmental ionic strength (I), gel geometry and shape of pH gradient. As model proteins, hemoglobin (Hb) A and a minor, glycosylated component (HbA1c), with a delta pI = 0.04 pH units, have been selected. The load capacity increases almost linearly, as a function of progressively higher I values, from 0.5 X up to 2 X molarity of buffering Immobiline (pK 7.0) to abruptly reach a plateau at 3 X concentration of buffering ion. The load capacity also increases almost linearly as a function of gel thickness from 1 to 5 mm, without apparently levelling off. When decreasing the pH interval from 1 pH unit (pH 6.8-7.8) to 1/2 pH unit (pH 7.05-7.55) the amount of protein loaded in the HbA zone could be increased by 40%. In 5 mm thick gels, at 2 X pK 7.0 Immobiline concentration, over a 1/2 pH unit span, up to 350 mg HbA (in a 12.5 X 11 cm gel) could be loaded in a single zone, the load limit of the system being around 45 mg protein/ml gel volume.  相似文献   

13.
Recently, we have developed a high-resolution two-dimensional separation strategy for the analysis of complex peptide mixtures. This methodology employs isoelectric focusing of peptides on immobilized pH gradient (IPG) gels in the first dimension, followed by reversed-phase chromatography in the second dimension, and subsequent tandem mass spectrometry analysis. The traditional approach to this mixture problem employs strong-cation-exchange (SCX) chromatography in the first dimension. Here, we present a direct comparison of these two first-dimensional techniques using complex protein samples derived from the testis of Rattus norvegicus. It was found that the use of immobilized pH gradients (narrow range pH 3.5-4.5) for peptide separation in the first dimension yielded 13% more protein identifications than the optimized off-line SCX approach (employing the entire pI range of the sample). In addition, the IPG technique allows for a much more efficient use on mass spectrometer analysis time. Separation of a tryptic digest derived from a rat testis sample on a narrow range pH gradient (over the 3.5-4.5 pH range) yielded 7626 and 2750 peptides and proteins, respectively. Peptide and protein identification was performed with high confidence using SEQUEST in combination with a data filtering program employing pI and statistical based functions to remove false-positives from the data.  相似文献   

14.
1. An analytical technique of isoelectric focusing in thin layers of polyacrylamide gel has been used to determine the isoelectric point, pI, of several proteins in the presence and in the absence of concentrated urea. 2. The presence of urea did not greatly affect pI except for bovine plasma albumin, where an increase of approx. 1pH unit was found. 3. Evidence is presented that this change in the pI of bovine plasma albumin is due to the normalization of certain ionizable groups on unfolding of the protein in urea. 4. Evidence is also presented that prolonged exposure of bovine plasma albumin to urea results in intramolecular disulphide interchange and that, on removal of urea, the new patterns of disulphide bonding stabilize abnormal conformations with pI values intermediate between those of the native and denatured states. 5. The studies demonstrate heterogeneity in bovine plasma albumin based on primary-sequence differences. 6. Isoelectric focusing of proteins in urea appears to be useful in the study of various aspects of protein structure.  相似文献   

15.
A reproducible high-resolution protein separation method is the basis for a successful differential proteome analysis. Of the techniques currently available, two-dimensional gel electrophoresis is most widely used, because of its robustness under various experimental conditions. With the introduction of narrow range immobilized pH gradient (IPG) strips (also referred to as ultra-zoom gels) in the first dimension, the depth of analysis, i.e. the number of proteins that can be resolved, has increased substantially. However, for poorly understood reasons isoelectric focusing on ultra-zoom gels in the alkaline region above pH 7 has suffered from problems with resolution and reproducibility. To tackle these difficulties we have optimized the separation of semipreparative amounts of proteins on alkaline IPG strips by focusing on two important phenomena: counteracting water transport during isoelectric focusing and migration of dithiothreitol (DTT) in alkaline pH gradients. The first problem was alleviated by the addition of glycerol and isopropanol to the focusing medium, leading to a significant improvement in the resolution above pH 7. Even better results were obtained by the introduction of excess of the reducing agent DTT at the cathode. With these adaptations together with an optimized composition of the IPG strip, separation efficiency in the pH 6.2-8.2 range is now comparable to the widely used acidic ultra-zoom gels. We further demonstrated the usefulness of these modifications up to pH 9.5, although further improvements are still needed in that range. Thus, by extending the range covered by conventional ultra-zoom gels, the depth of analysis of two-dimensional gel electrophoresis can be significantly increased, underlining the importance of this method in differential proteomics.  相似文献   

16.
Two-dimensional gel electrophoresis (2-DE) is currently the method of choice for separating complex mixtures of proteins for visual comparison in proteome analysis. This technology, however, is biased against certain classes of proteins including low abundance and hydrophobic proteins. Proteins with extremely alkaline isoelectric points (pI) are often very poorly represented using 2-DE technology, even when complex mixtures are separated using commercially available pH 6-11 or pH 7-10 immobilized pH gradients. The genome of the human gut pathogen, Helicobacter pylori, is dominated by genes encoding basic proteins, and is therefore a useful model for examining methodology suitable for separating such proteins. H. pylori proteins were separated on pH 6-11 and novel pH 9-12 immobilized pH gradients and 65 protein spots were subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry, leading to the identification of 49 unique proteins. No proteins were characterized with a theoretical pI of greater than 10.23. A second approach to examine extremely alkaline proteins (pI > 9.0) utilized a prefractionation isoelectric focusing. Proteins were separated into two fractions using Gradiflow technology, and the extremely basic fraction subjected to both sodium dodecyl sulphate-polyacrylamide gel electrophoresis and liquid chromatography (LC) - tandem mass spectrometry post-tryptic digest, allowing the identification of 17 and 13 proteins, respectively. Gradiflow separations were highly specific for proteins with pI > 9.0, however, a single LC separation only allowed the identification of peptides from highly abundant proteins. These methods and those encompassing multiple LC 'dimensions' may be a useful complement to 2-DE for 'near-to-total' proteome coverage in the alkaline pH range.  相似文献   

17.
Elimination of albumin, constituting more than 50% of total serum proteins, allows increased protein loads on immobilized pH gradient (IPG) gels and better visualization of low-abundance proteins; however, it may result in the loss of albumin-bound low-abundance proteins. In this study, we report the prefractionation of serum proteins by batch anion exchange chromatography into three fractions: one containing proteins with isoelectric points (pI values) higher than the pI of albumin, a second fraction containing proteins with pI values in the same range as the pI of albumin, and a third fraction containing proteins with pI values lower than the pI of albumin. This procedure uses common instrumentation, is carried out under denaturing conditions, and takes less than 30min. We also report the loss of a clinically established prostate cancer serum biomarker, prostate-specific antigen (PSA), after albumin is eliminated using two commercially available albumin elimination kits: one that uses Cibacron Blue F3GA, which achieves albumin depletion through dye-ligand binding, and one that uses specific albumin antibody. The loss of PSA secondary to albumin elimination exceeded that after batch anion exchange serum sample prefractionation.  相似文献   

18.
The evolution of isoelectric focusing is traced back over the years, from a somewhat shaky origin to present-day immobilized pH gradients. Four generations of methodology are classified and discussed: (A) Kolin's approach, consisting of a two-step technique, generation of a pH gradient by diffusion followed by a rapid electrokinetic protein separation; (B) Svensson-Rilbe's approach, consisting of creating a pH gradient in an electric field by utilizing as buffers a multitude of carrier ampholytes, i.e. of amphoteric species possessing good buffering capacity and conductivity at their pI; (C) immobilized pH gradients, by which non-amphoteric buffers and titrants (acrylamido weak acids and bases), titrated around their pK values, are grafted (insolubilized) onto a polyacrylamide gel matrix and (D) mixed-bed carrier ampholyte-Immobiline gel, by which a soluble, carrier ampholyte generated pH gradient coexists in the same matrix with an insoluble, Immobiline generated, pH gradient.  相似文献   

19.
应用差速离心和Percoll不连续密度梯度法分离纯化小麦三核期小花线粒体. 在裂解液选择、IPG胶条pH值范围、SDS-PAGE胶浓度及蛋白质上样量等方面对线粒体蛋白质双向电泳体系进行探索和优化,确立了一套适用于小麦小花高纯度完整线粒体的分离方法及其蛋白质双向电泳的技术体系. 结果表明,采用20%、24%和40% Percoll密度梯度和28% Percoll自形成密度高速离心体系,获得了有活性、高纯度且较完整的线粒体;经TCA-丙酮法提取蛋白,以7 mol/L尿素,2 mol/L硫脲,4% CHAPS(W/V),65 mmol/L DTT,0.5% IPG缓冲液(V/V),0.001% 溴酚蓝(W/V)裂解液溶解蛋白,采用17 cm,pH 4~7 IPG胶条和11% SDS-PAGE分离胶,上样量为160 μg,硝酸银染色法,更适合小麦小花线粒体蛋白质组双向电泳分离. 经PDQuest 2DE 8.0.1软件包统计分析,在2-DE图谱上分辨出约150个蛋白点,蛋白点清晰呈圆形,无横条纹干扰,这为利用双向电泳技术在亚细胞水平对线粒体进行蛋白质组学研究与分析奠定了基础,更为进一步分析研究线粒体与雄性不育的关系提供了理论与技术支撑.  相似文献   

20.
The low molecular weight proteins of rat apo HDL and apo VLDL have been isolated and analyzed by the technique of isoelectric focusing. Sephadex fractions from apo HDL (HS-3) and apo VLDL (VS-3) that contain these proteins reveal three major bands with apparent isoelectric points of pH 4.50, 4.67, and 4.74, as well as three minor bands at pH 4.43, 4.57, and 4.61. In addition, apo HDL has a major band at pI of 4.83. DEAE-Cellulose chromatography was used to prepare purified fractions of these components that were characterized by N-terminal analyses and molecular weight determinantions by SDS gel electrophoresis. The major low molecular weight components of apo HDL were focused on a slab gel and the bands were identified as A-II (pI 4.83), C-II (pI 4.74), C-III-0 (pI 4.67), and C-III-3 (pI 4.50). Neuraminidase treatment of apo HDL, followed by isoelectric focusing, suggested that the other bands, which have not previously been reported, may be additional forms of the C-III protein, differing only in their content of sialic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号