首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
To transform grain sorghum (Sorghum bicolor (L.) Moench) with a visual reporter gene (gfp) and a target gene (tlp), three genotypes (two inbreds, Tx 430 and C401, and a commercial hybrid, Pioneer 8505) were used. We obtained a total of 1011 fertile transgenic plants from 61 independent callus lines, which were produced from 2463 zygotic immature embryos via Agrobacterium-mediated transformation. The reporter gene, gfp, encoding green fluorescent protein (GFP), was used as a visual screening marker, and the target gene, tlp, encoding thaumatin-like protein (TLP), was chosen for enhancing resistance to fungal diseases and drought. Both genes were under the control of the maize ubi 1 promoter in the binary vector pPZP201. A total of 320 plants showing GFP expression, derived from 45 calli, were selected and analyzed by Southern blot analysis. There was a 100% correlation between the GFP expression and the presence of the target gene, tlp, in these plants. Transgenic plants showing strong TLP expression were confirmed by Western blotting with antiserum specific for TLP. The transgene segregated in various ratios among progeny, which was confirmed by examining seedlings showing GFP fluorescence. The progeny also showed different copy numbers of transgenics. This report describes the successful use of GFP screening for efficient production of stably transformed sorghum plants without using antibiotics or herbicides as selection agents.  相似文献   

2.
The neomycin phosphotransferase (nptII) selection system has proved successful in citrus transformation; however, it may be recommendable to replace it given the pressure exerted against antibiotic-resistance selectable marker genes in transgenic plants. The present work investigates three different selection alternatives, comparing them to nptII selection in two citrus genotypes, Carrizo citrange and Pineapple sweet orange. The first method used the beta-glucuronidase (uidA) reporter marker gene for selection; the second attempted to generate marker-free plants by transforming explants with a multi-auto-transformation (MAT) vector, combining an inducible R/RS-specific recombination system with transgenic-shoot selection through expression of isopentenyl transferase (ipt) and indoleacetamide hydrolase/tryptophan monooxygenase (iaaM/H) marker genes; while the third exploited the phosphomannose isomerase (PMI)/mannose conditional positive selection system. Firstly, GUS screening of all regenerated shoots in kanamycin-free medium gave 4.3% transformation efficiency for both genotypes. Secondly, workable transformation efficiencies were also achieved with the MAT system, 7.2% for citrange and 6.7% for sweet orange. This system affords an additional advantage as it enables selectable marker genes to be used during the in vitro culture phase and later removed from the transgenic plants by inducible recombination and site-specific excision. Thirdly, the highest transformation rates were obtained with the PMI/mannose system, 30% for citrange and 13% for sweet orange, which indicates that this marker is also an excellent candidate for citrus transformation.  相似文献   

3.
The expression of green fluorescent protein (GFP) and its inheritance were studied in transgenic oat ( Avena sativa L.) plants transformed with a synthetic green fluorescent protein gene [sgfp(S65T)] driven by a rice actin promoter. In vitro shoot meristematic cultures (SMCs) induced from shoot apices of germinating mature seeds of a commercial oat cultivar, Garry, were used as a transformation target. Proliferating SMCs were bombarded with a mixture of plasmids containing the sgfp(S65T) gene and one of three selectable marker genes, phosphinothricin acetyltransferase (bar), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase (nptII). Cultures were selected with bialaphos, hygromycin B and geneticin (G418), respectively, to identify transgenic tissues. From 289 individual explants bombarded with the sgfp(S65T) gene and one of the three selectable marker genes, 23 independent transgenic events were obtained, giving a 8.0% transformation frequency. All 23 transgenic events were regenerable, and 64% produced fertile plants. Strong GFP expression driven by the rice actin promoter was observed in a variety of tissues of the T(0) plants and their progeny in 13 out of 23 independent transgenic lines. Stable GFP expression was observed in T(2) progeny from five independent GFP-expressing lines tested, and homozygous plants from two lines were obtained. Transgene silencing was observed in T(0) plants and their progeny of some transgenic lines.  相似文献   

4.
The selectable marker gene phospho-mannose isomerase (pmi), which encodes the enzyme phospho-mannose isomerase (PMI) to enable selection of transformed cell lines on media containing mannose (Man), was evaluated for genetic transformation of papaya (Carica papaya L.). We found that papaya embryogenic calli have little or no PMI activity and cannot utilize Man as a carbon source; however, when calli were transformed with a pmi gene, the PMI activity was greatly increased and they could utilize Man as efficiently as sucrose. Plants regenerated from selected callus lines also exhibited PMI activity but at a lower specific activity level. Our transformation efficiency with Man selection was higher than that reported using antibiotic selection or with a visual marker. For papaya, the PMI/Man selection system for producing transgenic plants is a highly efficient addition to previously published methods for selection and may facilitate the stacking of multiple transgenes of interest. Additionally, since the PMI/Man selection system does not involve antibiotic or herbicide resistance genes, its use might reduce environmental concerns about the potential flow of those genes into related plant populations.  相似文献   

5.
A genetic transformation procedure for Cryptomeria japonica was developed after co-cultivation of embryogenic tissues with the disarmed Agrobacterium tumefaciens strain C58/pMP90, which harbours the visual reporter gene sgfp and two selectable marker genes, hpt and nptII. We were able to generate eight and three independent transgenic lines per gram of embryogenic tissue after selection on hygromycin and kanamycin medium, respectively. Transgenic plants were regenerated through somatic embryogenesis in 4 lines out of these 11 lines. Green fluorescent protein fluorescence was observed under fluorescent microscopy. Integration of the genes into the genome was confirmed by polymerase chain reaction analysis of embryogenic tissues and Southern blot analysis of regenerated plantlets.  相似文献   

6.
A dual-marker combination, manA-gfp, comprising 2 independent expression cassettes of genes encoding an Escherichia coli phosphomannose isomerase (PMI) and a synthetic green fluorescent protein (GFP), was incorporated into the binary vector pPZP201. Agrobacterium tumefaciens-mediated transfer was used to introduce the manA-gfp into the mature-seed derived calli of Agrostis stoloifera L. 'Crenshaw'. The putative transgenic bentgrass calli were screened in Murashige and Skoog medium containing 15 g mannose/L, in conjunction with a visual examination of the GFP expression with a fluorescence stereomicroscope. Calli with GFP fluorescence grew well on the mannose selection media. A total of 24 transgenic plants derived from a single piece of callus lobe were studied for the genomic integration, expression, and function of the transgene. Genomic integration of the dual markers manA and gfp was confirmed by Southern blotting analysis, and the expression of manA also was validated by using PMI-specific antiserum. The inheritance and expression of the dual marker, manA-gfp, was demonstrated in the T1 generation. This study on the environmentally friendly markers further documented the feasibility of using alternative selection methods without using herbicide- or antibiotic-resistance markers.  相似文献   

7.
Analysis of mannose selection used for transformation of sugar beet   总被引:39,自引:0,他引:39  
Various factors affecting mannose selection for the production of transgenic plants were studied using Agrobacterium tumefaciens-mediated transformation of sugar beet (Beta vulgaris L.) cotyledonary explants. The selection system is based on the Escherichia coli phosphomannose isomerase (PMI) gene as selectable gene and mannose as selective agent. Transformation frequencies were about 10-fold higher than for kanamycin selection but were only obtained at low selection pressures (1.0–1.5 g/l mannose) where 20–30% of the explants produced shoots. The non-transgenic shoots were eliminated during the selection procedure by a stepwise increase in the mannose concentration up to 10 g/l. Analysis of the transformed shoots showed that the PMI activity varied from 2.4 mU/mg to 350 mU/mg but the expression level was independent of the selection pressure. Complete resistance to mannose of transformed shoots was observed already at low PMI activities (7.5 mU/mg). Genomic DNA blot analysis confirmed the presence of the PMI gene in all transformants analysed. The possible mode of action of mannose selection compared to other selection methods is discussed.  相似文献   

8.
The relationship between the expression level of the selectable marker gene and transformation frequency was investigated in transgenic sugar beets with five different promoters, a modified cauliflower mosaic virus 35S RNA promoter (E35S), an enhanced nopaline synthase promoter (ENOS), a modified mannopine synthase promoter (SMAS), a heat shock protein promoter (HSP80) and a chlorophyll a/b-binding protein promoter (CAB3), to drive the expression of the selectable marker gene. The selection system employed was based on the Escherichia coli phosphomannose isomerase (PMI) gene as selectable marker gene and mannose as selective agent. The selected transgenic shoots were analysed for PMI activity and the average activity for each promoter was found to be 5.9 (HSP80), 31 (SMAS), 38 (E35S), 49 (ENOS) and 61 (CAB3) mU/mg. The weakest promoter, HSP80, resulted in the lowest transformation frequency (0.30%), suggesting that this promoter was too weak to confer sufficient resistance to mannose. On the other hand, the strongest promoters, ENOS and CAB3, only gave intermediate transformation frequencies, 0.44% and 0.47% respectively, while the somewhat weaker SMAS promoter produced the highest transformation frequency, 0.89%. Thus, these data suggest that the activity of the selectable PMI gene should be above a certain threshold level; however, above this level, no simple correlation between the PMI activities, calculated as averages, and transformation frequencies could be deduced. However, extended data analysis by dividing the transgenic shoots into 4 groups according to their PMI activities (low(<10 mU/mg), medium (10–50 mU/mg), high (50–100 mU/mg) and very high (>100 mU/mg) expressers) revealed a significant positive correlation between the relative number of shoots having medium levels of expression and transformation frequency. This indicated that promoters that predominanthly give rise to intermediate expression levels of the selectable PMI gene result in high transformation frequencies.  相似文献   

9.
Fertile transgenic pearl millet plants expressing a phosphomannose isomerase (PMI) transgene under control of the maize ubiquitin constitutive promoter were obtained using the transformation system described here. Proliferating immature zygotic embryos were used as target tissue for bombardment using a particle inflow gun. Different culture and selection strategies were assessed in order to obtain an optimised mannose selection protocol. Stable integration of the manA gene into the genome of pearl millet was confirmed by PCR and Southern blot analysis. Stable integration of the manA transgene into the genome of pearl millet was demonstrated in T1 and T2 progeny of two independent transformation events with no more than four to ten copies of the transgene. Similar to results obtained from previous studies with maize and wheat, the manA gene was shown to be a superior selectable marker gene for improving transformation efficiencies when compared to antibiotic or herbicide selectable marker genes.Abbreviations 2,4-D: 2,4-Diclorophenoxyacetic acid - IAA: Indole acetic acid - ICRISAT: International Crops Research Institute for the Semi-Arid Tropics - IZEs Immature zygotic embryos Communicated by H. Lörz  相似文献   

10.
11.
A new method for the selection of transgenic rice plants without the use of antibiotics or herbicides has been developed. The phosphomannose isomerase (PMI) gene from Escherichia coli has been cloned and consitutively expressed in japonica rice variety TP 309. The PMI gene was transferred to immature rice embryos by Agrobacterium-mediated transformation, which allowed the selection of transgenic plants with mannose as selective agent. The integration and expression of the transgene was confirmed by Southern and northern blot analysis and the activity of PMI indirectly proved with the chlorophenol red assay. The results of genetic analysis showed that the transgenes were segregated in a Mendelian fashion in the T1 generation. The establishment of this selection system in rice provides an efficient way for producing transgenic plants without using antibiotics or herbicides with a transformation frequency of up to 41%.  相似文献   

12.
Transgenic torenia plants were obtained using the selectable marker gene phosphomannose isomerase (manA), which encodes the enzyme phosphomannose isomerase (PMI) to enable selection of transformed cells on media containing mannose. We found that shoot organogenesis in torenia leaf explants was effectively suppressed on medium supplemented with mannose, which indicated that torenia cells had little or no PMI activity and could not utilize mannose as a carbon source. Leaf pieces from in vitro-germinated plants were inoculated with Agrobacterium tumefaciens EHA105 containing the binary vector pKPJ with both hpt and ManA genes, and subsequently selected on shoot induction (SI) medium (half strength MS basal + 4.4 μM BA + 0.5 μM NAA) supplemented with 20 g l−1 mannose and 5 g l−1 sucrose as carbon sources. Transformed plants were confirmed by PCR and Southern blot. The transgene expression was evaluated using Northern blot and the chlorophenol red assay. The transformation efficiency ranged from 7% to 10%, which is 1–3% higher than that obtained by selection with hygromycin. This system provides an efficient manner for selecting transgenic flower plants without using antibiotics or herbicides.  相似文献   

13.
In order to meet the future requirement of using non-antibiotic resistance genes for the production of transgenic plants, we have adapted the selectable marker system PMI/mannose to be used in Agrobacterium-mediated transformation of flax (Linum usitatissimum L.) cv. Barbara. The Escherichia coli pmi gene encodes a phosphomannose isomerase (E.C. 5.1.3.8) that converts mannose-6-phosphate, an inhibitor of glycolysis, into fructose-6-phosphate (glycolysis intermediate). Its expression in transformed cells allows them to grow on mannose-selective medium. The Agrobacterium tumefaciens strain GV3101 (pGV2260) harbouring the binary vector pNOV2819 that carries the pmi gene under the control of the Cestrum yellow leaf curling virus constitutive promoter was used for transformation experiments. Transgenic flax plants able to root on mannose-containing medium were obtained from hypocotyl-derived calli that had been selected on a combination of 20 g L−1 sucrose and 10 g L−1 mannose. Their transgenic state was confirmed by PCR and Southern blotting. Transgene expression was detected by RT-PCR in leaves, stems and roots of in vitro grown primary transformants. The mean transformation efficiency of 3.6%, that reached 6.4% in one experiment was comparable to that obtained when using the nptII selectable marker on the same cultivar. The ability of T1 seeds to germinate on mannose-containing medium confirmed the Mendelian inheritance of the pmi gene in the progeny of primary transformants. These results indicate that the PMI/mannose selection system can be successfully used for the recovery of flax transgenic plants under safe conditions for human health and the environment.  相似文献   

14.
We developed an efficient system for agrobacterial transformation of plum (Prunus domestica L.) leaf explants using the PMI/mannose and GFP selection system. The cultivar ‘Startovaya’ was transformed using Agrobacterium tumefaciens strain CBE21 carrying the vector pNOV35SGFP. Leaf explants were placed onto a nutrient medium containing various concentrations and combinations of mannose and sucrose to develop an efficient selection system. Nine independent transgenic lines of plum plants were obtained on a regeneration medium containing 20 g/L sucrose and 15 g/L mannose. The highest transformation frequency (1.40?%) was produced using a delayed selection strategy. Starting from the 1st days after transformation and ending by regeneration of shoots from the transgenic callus, selection of transgenic cells was monitored by GFP fluorescence that allowed avoiding formation of escapes. Integration of the manA and gfp transgenes was confirmed by PCR and Southern blotting. The described transformation protocol using a positive PMI/mannose system is an alternative selection system for production of transgenic plum plants without genes of antibiotic and herbicide resistance, and the use of leaf explants enables retention of cultivar traits of plum plants.  相似文献   

15.
The green fluorescent protein (GFP) from the jellyfish Aequorea victoria is a widely used reporter that can be directly visualized in the living cells in both animals and plants. We inserted a synthetic gene (sgfp) encoding a modified form of the GFP into expression vector, Act1-sgfp for the direct expression of GFP which is easily detectable in rice plants. Green fluorescence emitted from GFP could be visualized in calli, dry seeds, roots and seedlings with green shoots of transgenic rice plants. In our visualization system with a charge-coupled device camera, band-pass filters and a light source, the presence of red chlorophyll autofluorescence from chloroplasts did not alter the green fluorescence of GFP. These results demonstrate that GFP could be used as a non-destructive visual selection marker for examining gene expression in transformed calli, dry seeds and young plants.  相似文献   

16.
For the first time, the phosphomannose isomerase (PMI, EC 5.3.1.8)/mannose-based “positive” selection system has been used to obtain genetically engineered sugarcane (Saccharum spp. hybrid var. CP72-2086) plants. Transgenic lines of sugarcane were obtained following biolistic transformation of embryogenic callus with an untranslatable sugarcane mosaic virus (SCMV) strain E coat protein (CP) gene and the Escherichia coli PMI gene manA, as the selectable marker gene. Postbombardment, transgenic callus was selectively proliferated on modified MS medium containing 13.6 μM 2,4-D, 20 g l−1 sucrose and 3 g l−1 mannose. Plant regeneration was obtained on MS basal medium with 2.5 μM TDZ under similar selection conditions, and the regenerants rooted on MS basal medium with 19.7 μM IBA, 20 g l−1 sucrose, and 1.5 g l−1 mannose. An increase in mannose concentration from permissive (1.5 g l−1) to selective (3 g l−1) conditions after 3 weeks improved the overall transformation efficiency by reducing the number of selection escapes. Thirty-four vigorously growing putative transgenic plants were successfully transplanted into the greenhouse. PCR and Southern blot analyses showed that 19 plants were manA-positive and 15 plants were CP-positive, while 13 independent transgenics contained both transgenes. Expression of manA in the transgenic plants was evaluated using a chlorophenol red assay and enzymatic analysis.  相似文献   

17.
The expression of green fluorescent protein (GFP) and its inheritance were studied in transgenic barley (Hordeum vulgare L.) plants transformed with a synthetic green fluorescent protein gene [sgfp(S65T)] driven by either a rice actin promoter or a barley endosperm-specific d-hordein promoter. The gene encoding phosphinothricin acetyltransferase (bar), driven by the maize ubiquitin promoter and intron, was used as a selectable marker to identify transgenic tissues. Strong GFP expression driven by the rice actin promoter was observed in callus cells and in a variety of tissues of T0 plants transformed with the sgfp(S65T)-containing construct. GFP expression, driven by the rice actin promoter, was observed in 14 out of 17 independent regenerable transgenic callus lines; however, expression was gradually lost in T0 and later generation progeny of diploid lines. Stable GFP expression was observed in T2 progeny from only 6 out of the 14 (43%) independent GFP-expressing callus lines. Four of the 8 lines not expressing GFP in T2 progeny, lost GFP expression during T0 plant regeneration from calli; one lost GFP expression in the transition from the T0 to T1 generations and three lines were sterile. Similarly, expression of bar driven by the maize ubiquitin promoter was lost in T1 progeny; only 21 out of 26 (81%) independent lines were Basta-resistant. In contrast to actin-driven expression, GFP expression driven by the d-hordein promoter exhibited endosperm-specificity. All seven lines transformed with d-hordein-driven GFP (100%) expressed GFP in the T1 and T2 generations, regardless of ploidy levels, and expression segregated in a Mendelian fashion. We conclude that the sgfp(S65T) gene was successfully transformed into barley and that GFP expression driven by the d-hordein promoter was more stable in its inheritance pattern in T1 and T2 progeny than that driven by the rice actin promoter or the bar gene driven by the maize ubiquitin promoter.  相似文献   

18.
19.
20.
A high‐throughput transformation system previously developed in our laboratory was used for the regeneration of transgenic plum plants without the use of antibiotic selection. The system was first tested with two experimental constructs, pGA482GGi and pCAMBIAgfp94(35S) that contain selective marker and reporter genes. Transformation was monitored by GUS detection, and estimated transformation efficiencies were 5.7% and 17.7% for pGA482GGi and pCAMBIAgfp94(35S), respectively. Subsequently, an intron‐hairpin‐RNA (ihpRNA) construct, carrying the Plum Pox Virus coat protein (ppv‐cp) gene, without selectable or reporter marker genes was designed. Five transgenic lines were regenerated as confirmed by DNA blot analysis. We believe that this is the first report on the production of marker‐free plants transformed with a potential agronomically important trait in a Prunus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号