首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The resting membrane potential (V(m)) of isolated somatic longitudinal muscles of the earthworm Lumbricus terrestris was studied by glass microelectrodes. The inhibition of chloride permeability by low pH did not affect V(m) of the muscle fibers in isolated somatic longitudinal muscles of the earthworm Lumbricus terrestris which was -48.7 mV (inside negative) at pH 7.3 and -49.1 at pH 5.6. On the other hand, bathing the muscles in Cl(-) and Na(+)-free solutions, or application of the chloride transporter inhibitor furosemide and Na(+)-K(+)-ATPase inhibitor ouabain depolarized the V(m) by 3-5 mV. The effects of a Cl(-) -free solution and ouabain were not additive. This demonstrates relatively small contribution of equilibrium potential for Cl(-) to the resting membrane potential and electrogenic effect of Na(+)K(+)-ATPase which is dependent on the supply of Na(+)(i) ions by furosemide-sensitive and Cl(-)(e)- and Na(+)(e)-dependent electroneutral transport (most probably Na(+)K(+)Cl(-) cotransport).  相似文献   

2.
Strong inward rectifier potassium channels are expressed by some vascular smooth muscle cells and facilitate K+-induced hyperpolarization. Using whole cell patch clamp of isolated descending vasa recta (DVR), we tested whether strong inward rectifier K+ currents are present in smooth muscle and pericytes. Increasing extracellular K+ from 5 to 50 and 140 mmol/l induced inward rectifying currents. Those currents were Ba2+ sensitive and reversed at the K+ equilibrium potential imposed by the electrode and extracellular buffers. Ba2+ binding constants in symmetrical K+ varied between 0.24 and 24 micromol/l at -150 and -20 mV, respectively. Ba2+ blockade was time and voltage dependent. Extracellular Cs+ also blocked the inward currents with binding constants between 268 and 4,938 micromol/l at -150 and -50 mV, respectively. Ba2+ (30 micromol/l) and ouabain (1 mmol/l) depolarized pericytes by an average of 11 and 24 mV, respectively. Elevation of extracellular K+ from 5 to 10 mmol/l hyperpolarized pericytes by 6 mV. That hyperpolarization was reversed by Ba2+ (30 micromol/l). We conclude that strong inward rectifier K+ channels and Na+-K+-ATPase contribute to resting potential and that KIR channels can mediate K+-induced hyperpolarization of DVR pericytes.  相似文献   

3.
The present study reports a discrepancy between the effects of vanadate on the membrane Na+-K+-ATPase and the Na+/K+ pump of the skeletal muscle. Vanadate in concentration 4 X 10(-6) mol/l which is necessary to block the enzyme Na+-K+-ATPase activity of membrane fractions failed to inhibit the electrogenic Na+/K+ pump of intact muscle cells. The effect of vanadate on the electrophysiological parameters of the muscle fibre membrane required much higher vanadate levels, but again, Na+/K+ pump was still active. Vanadate in concentrations 4 X 10(-4) and 4 X 10(-5) mol/l depolarized the membrane potential and decreased the membrane resistance [apparently in consequence of enhanced passive membrane permeability for Na+ ions]. Action potentials and the electrical excitability of the muscle fibre membrane were reduced by these vanadate concentrations.  相似文献   

4.
Hyperinsulinemia increases lactate release by various organs and tissues. Whereas it has been shown that aerobic glycolysis is linked to Na+-K+-ATPase activity, we hypothesized that stimulation by insulin of skeletal muscle Na+-K+-ATPase is responsible for increased muscle lactate production. To test this hypothesis, we assessed muscle lactate release in healthy volunteers from the [13C]lactate concentration in the effluent dialysates of microdialysis probes inserted into the tibialis anterior muscles on both sides and infused with solutions containing 5 mmol/l [U-13C]glucose. On one side, the microdialysis probe was intermittently infused with the same solution additioned with 2.10(-5) M ouabain. In the basal state, [13C]lactate concentration in the dialysate was not affected by ouabain. During a euglycemic-hyperinsulinemic clamp, [13C]lactate concentration increased by 135% in the dialysate without ouabain, and this stimulation was nearly entirely reversed by ouabain (56% inhibition compared with values in the dialysate collected from the contralateral probe). These data indicate that insulin stimulates muscle lactate release by activating Na+-K+-ATPase in healthy humans.  相似文献   

5.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

6.
Prolonged exhaustive submaximal exercise in humans induces marked metabolic changes, but little is known about effects on muscle Na+-K+-ATPase activity and sarcoplasmic reticulum Ca2+ regulation. We therefore investigated whether these processes were impaired during cycling exercise at 74.3 +/- 1.2% maximal O2 uptake (mean +/- SE) continued until fatigue in eight healthy subjects (maximal O2 uptake of 3.93 +/- 0.69 l/min). A vastus lateralis muscle biopsy was taken at rest, at 10 and 45 min of exercise, and at fatigue. Muscle was analyzed for in vitro Na+-K+-ATPase activity [maximal K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase) activity], Na+-K+-ATPase content ([3H]ouabain binding sites), sarcoplasmic reticulum Ca2+ release rate induced by 4 chloro-m-cresol, and Ca2+ uptake rate. Cycling time to fatigue was 72.18 +/- 6.46 min. Muscle 3-O-MFPase activity (nmol.min(-1).g protein(-1)) fell from rest by 6.6 +/- 2.1% at 10 min (P <0.05), by 10.7 +/- 2.3% at 45 min (P <0.01), and by 12.6 +/- 1.6% at fatigue (P <0.01), whereas 3[H]ouabain binding site content was unchanged. Ca2+ release (mmol.min(-1).g protein(-1)) declined from rest by 10.0 +/- 3.8% at 45 min (P <0.05) and by 17.9 +/- 4.1% at fatigue (P < 0.01), whereas Ca2+ uptake rate fell from rest by 23.8 +/- 12.2% at fatigue (P=0.05). However, the decline in muscle 3-O-MFPase activity, Ca2+ uptake, and Ca2+ release were variable and not significantly correlated with time to fatigue. Thus prolonged exhaustive exercise impaired each of the maximal in vitro Na+-K+-ATPase activity, Ca2+ release, and Ca2+ uptake rates. This suggests that acutely downregulated muscle Na+, K+, and Ca2+ transport processes may be important factors in fatigue during prolonged exercise in humans.  相似文献   

7.
Localization of Na+-pump sites in frog skin   总被引:12,自引:6,他引:6       下载免费PDF全文
The localization of Na+-pump sites (Na+-K+-ATPase) in the frog skin epithelium was determined by a freeze-dry radioautographic method for identifying [3H]ouabain-binding sites. Ventral pelvic skins of Rana catesbeiana were mounted in Ussing chambers and exposed to 10(-6) M [3H]ouabain for 120 min, washed in ouabain-free Ringer's solution for 60 min, and then processed for radioautography. Ouabain-binding sites were localized on the inward facing (serosal) membranes of all the living cells. Quantitative analysis of grain distribution showed that the overwhelming majority of Na+-pump sites were localized deep to the outer living cell layer, i.e., in the stratum spinosum and stratum germinativum. Binding of ouabain was correlated with inhibition of Na+ transport. Specificity of ouabain binding to Na+-K+-ATPase was verified by demonstrating its sensitivity to the concentration of ligands (K+, ATP) that affect binding of ouabain to the enzyme. Additional studies supported the conclusion that the distribution of bound ouabain reflects the distribution of those pumps involved in the active transepithelial transport of Na+. After a 30-min exposure to [3H]ouabain, Na+ transport declined to a level that was significantly less than that in untreated paired controls, and analysis of grain distribution showed that over 90% of the ouabain-binding sites were localized to the inner cell layers. Furthermore, in skins where Na+ transport had been completely inhibited by exposure to 10(-5) M ouabain, the grain distribution was identical to that in skins exposed to 10(-6) M. The results support a model which depicts all the living cell layers functioning as a syncytium with regard to the active transepithelial transport of Na+.  相似文献   

8.
An increase in aqueous K+ from 0 to 4 mM increased the potential difference (anomalous response of electrogenic (Na+ + K+)-ATPase antiport) by 1.1 mV in Cl(-)-free solutions compared to 6.8 mV in Cl- solutions. With amphotericin B added to the tear solution in Cl(-)-free solutions, the anomalous PD response for the addition of 4 mM K+ to the aqueous solution was about 20 mV, significantly greater than in Cl- solutions. This anomalous response was inhibited by ouabain. These data support the electrogenicity of the (Na+ + K+)-ATPase pump. It is also evident that, for the pump to respond, Na+ should readily enter the cell. This may be accomplished experimentally, either across the basolateral membrane in Cl- solutions or across the apical membrane in Cl(-)-free solutions with amphotericin B present in the tear solution.  相似文献   

9.
E A Shapiro  M G Grinfel'dt 《Tsitologiia》1985,27(10):1164-1171
The Na+ and K+ equilibrium distribution between the medium and glycerinated muscle fibres of the frog has been investigated under equal concentrations of NaCl and KCl in solutions. Concentrations of NaCl and KCl varied from 0.5-1.5 mkM till 50 mM. Ion strength (0.11) was constant owing to the imidazol--HCl buffer. The binding of Na+ and K+ by model fibres occurred in accordance with the Langmur equation. Two kinds of cation-binding sites were found. The one with a low limiting ion sorption (A infinity approximately 1.3 mmol/kg dry weight of fibres) and high affinities (-delta F0 approximately 4.3 kcal/mol) was saturated at 0.5 mM concentrations (Na+ = K+) in the medium, and the other--with A infinity exceeding the previous one by an order and low -delta F0 (2.5 kcal/mol) was discovered at Na+, K+-1-10 mM. At ion concentrations equal to 0.5-1 mM the Langmur-binding is disturbed. At Na+-K+ less than or equal to 1 mM Na+ bound:K+ bound approximately to 1:1. At higher concentrations of cations Na+ bound:K+ bound approximately equal to 3:2. It is concluded that at least part of the sites in model fibres is capable of interacting only with Na+, but not with K+. It is supposed that at equal concentrations of Na+ and K+ in the medium the cations are bound by Na+, K+-ATPase of glycerinated muscle fibres.  相似文献   

10.
Smooth muscle membrane potential and tension in rat isolated small mesenteric arteries (inner diameter 100-200 microm) were measured simultaneously to investigate whether the intensity of smooth muscle stimulation and the endothelium influence responses to exogenous K+. Variable smooth muscle depolarization and contraction were stimulated by titration with 0.1-10 microM phenylephrine. Raising external K+ to 10.8 mM evoked correlated, sustained hyperpolarization and relaxation, both of which were inhibited as the smooth muscle depolarized and contracted to around -38 mV and 10 mN, respectively. At these higher levels of stimulation, raising the K+ concentration to 13.8 mM still hyperpolarized and relaxed the smooth muscle. Relaxation to endothelium-derived hyperpolarizing factor, released by ACh, was not altered by the level of stimulation. In endothelium-denuded arteries, the concentration-relaxation curve to K+ was shifted to the right but was not depressed. In denuded arteries, relaxation to K+ was unaffected by the extent of prior stimulation and was blocked with 0.1 mM ouabain but not with 30 microM Ba2+. The ability of K+ to stimulate simultaneous hyperpolarization and relaxation in the mesenteric artery is consistent with a role as an endothelium-derived hyperpolarizing factor activating inwardly rectifying K+ channels on the endothelium and Na+-K+-ATPase on the smooth muscle cells.  相似文献   

11.
Sodium ions are required for the active transport of amino acids such as alpha-aminoisobutyric acid (AIB) into skeletal muscle. To examine the role of Na+-K+-ATPase in this phenomenon, studies were carried out using the isolated perfused rat hindquarter preparation. Perfusion for 30 min with ouabain at a dose sufficient to inhibit the Na+-K+ pump (10(-4) M) inhibited the basal rate of AIB uptake in all muscles studied by up to 80%. However, it failed to inhibit the stimulation of AIB uptake, either by insulin (200 microU/ml) or electrically-induced muscle contractions. The increase in K+ release by the hindquarter in the presence of ouabain was the same under all conditions suggesting comparable inhibition of the Na+-K+ pump. These studies suggest that the basal, but not insulin or exercise-stimulated AIB transport into muscle is acutely dependent on a functional Na+-K+ pump. They also suggest that stimulated and basal uptake of AIB involve different mechanisms.  相似文献   

12.
Na(+)-K+ ATPase activity of the canine tracheal smooth muscle membrane is responsible for the electrogenic pumping of Na+ and K+ ions. It has been shown that this activity results in muscle relaxation. Based on the results of the current study, we suggest that prolonged electrical stimulation induces increased Na(+)-K+ ATPase activity in isolated tracheal smooth muscle. Tracheal smooth muscle pretreated with prolonged electrical stimulation developed graded mechanical activity when subsequently treated with histamine, serotonin, acetylcholine, or 80 mM K+. This increased isometric tension was interrupted by rhythmic activity, which was elicited by histamine or serotonin but not by acetylcholine or 80 mM K+ stimulation. The spontaneous phasic activity was not inhibited by atropine or propranolol but was totally inhibited by 10(-6) M ouabain. These results suggested that the relaxation phase of rhythmic contraction in response to histamine and serotonin stimulation could be the result of stimulated Na(+)-K+ ATPase activity.  相似文献   

13.
Sodium pump hyperpolarization-relaxation in rat caudal artery   总被引:2,自引:0,他引:2  
Electrogenic ion transport contributes vitally to the Em in vascular muscle and thus is an important influence on contraction and relaxation. Agents that act on membrane ion transport will cause depolarization or hyperpolarization of sufficient magnitude to cause contraction or relaxation, respectively. In the caudal artery of the rat, the principal ion involved appears to be Na+. The transport process appears to be the Na+, K+-ATPase, which is ouabain sensitive, rather than other possible candidates such as the Na+-Ca2+ countertransport mechanism. The hyperpolarization and parallel relaxation found in caudal artery on return to K+ provide unequivocal evidence for an electrogenic Na+ pump. In contrast, the lack of a contraction on transition to O Na+ suggests that the caudal artery does not show an Na+-K+ countertransport system. Although other ion transport systems might be established later for caudal artery and other kinds of vascular muscle, it now appears that the electrogenic Na+ pump is the main ion transport system controlling contraction through a continuous contribution to Em.  相似文献   

14.
Ouabain enhanced the inhibitory effects of Li+, Na+, and K+ on the rate of Cs+ permeation into frog ovarian eggs while it reduced the inhibiting effect of Rb+. The data agree with earlier demonstrated effects of ouabain on the rank order of selective accumulation of the five alkali-metals in frog muscles and on the relative effectiveness of glycine, Li+, Na+, K+, Rb+, and Cs+ in inhibiting the rate of entry of Cs+ into frog sartorius muscle. In all three cases, the ouabain behaved as an electron-donating cardinal adsorbent (EDC) causing a rise of the electron density (c-value) of the beta- and gamma-carboxyl groups in the cell cytoplasm (for selective accumulation) and on the cell surface (for selective ion permeation). Explanations based on the association-induction hypothesis were offered why an EDC like ouabain does not initiate cell activation (like veratridine does) and why Ca++ and tetradotoxin delays or inhibits physiological and artificial cell activation.  相似文献   

15.
This paper presents electrophysiological evidence that small changes in [K+]o modulate the activity of the Na+-K+ pump on the apical membrane of the frog retinal pigment epithelium (RPE). This membrane also has a large relative K+ conductance so that lowering [K+]o hyperpolarizes it and therefore increases the transepithelial potential (TEP). Ba2+, a K+ channel blocker, eliminated these normal K+-evoked responses; in their place, lowering [K+]o evoked an apical depolarization and TEP decrease that were blocked by apical ouabain or strophanthidin. These data indicate that Ba2+ blocked the major K+ conductance(s) of the RPE apical membrane and unmasked a slowing of the normally hyperpolarizing electrogenic Na+-K+ pump caused by lowering [K+]o. Evidence is also presented that [K+]o modulates the pump in the isolated RPE under physiological conditions (i.e., without Ba2+). In the intact retina, light decreases subretinal [K+]o and produces the vitreal-positive c-wave of the electroretinogram (ERG) that originates primarily in the RPE from a hyperpolarization of the apical membrane and TEP increase. When Ba2+ was present in the retinal perfusate, the apical membrane depolarized in response to light and the TEP decreased so that the ERG c-wave inverted. The retinal component of the c-wave, slow PIII, was abolished by Ba2+. The effects of Ba2+ were completely reversible. We conclude that Ba2+ unmasks a slowing of the RPE Na+-K+ pump by the light-evoked decrease in [K+]o. Such a response would reduce the amplitude of the normal ERG c-wave.  相似文献   

16.
Isolated hepatocytes from the elasmobranch Raja erinacea were examined for their regulatory responses to a solute load following electrogenic uptake of L-alanine. The transmembrane potential (Vm) was measured with glass microelectrodes filled with 0.5 M KCl (75 to 208 M omega in elasmobranch Ringer's solution) and averaged -61 +/- 16 mV (S.D.; n = 68). L-Alanine decreased (depolarized) Vm by 7 +/- 3 and 18 +/- 2 mV at concentrations of 1 and 10 mM, respectively. Vm did not repolarize to control values during the 5-10 min impalements, unless the amino acid was washed away from the hepatocytes. The depolarizing effect of L-alanine was dependent on external Na+, and was specific for the L-isomer of alanine, as D- and beta-alanine had no effect. Hepatocyte Vm also depolarized on addition of KCN or ouabain, or when external K+ was increased. Rates of 86Rb+ uptake and efflux were measured to assess the effects of L-alanine on Na+/K+-ATPase activity and K+ permeability, respectively. Greater than 80% of the 86Rb+ uptake was inhibited by 2 mM ouabain, or by substitution of choline+ for Na+ in the incubation media. L-Alanine (10 mM) increased 86Rb+ uptake by 18-49%, consistent with an increase in Na+/K+ pump activity, but had no effect on rubidium efflux. L-Alanine, at concentrations up to 20 mM, also had no measurable effect on cell volume as determined by 3H2O and [14C]inulin distribution. These results indicate that Na+-coupled uptake of L-alanine by skate hepatocytes is rheogenic, as previously observed in other cell systems. However, in contrast to mammalian hepatocytes, Vm does not repolarize for at least 10 min after the administration of L-alanine, and changes in cell volume and potassium permeability are also not observed.  相似文献   

17.
The inotropic and toxic effects of cardiac steroids are thought to result from Na(+)-K(+)-ATPase inhibition, with elevated intracellular Na(+)(Na)causing increased intracellular Ca(2+)(Ca) via Na-Ca exchange. We studied the effects of ouabain on cat ventricular myocytes in Na(+)-free conditions where the exchanger is inhibited. Cell shortening and Ca transients (with fluo 4-AM fluorescence) were measured under voltage clamp during exposure to Na(+)-free solutions [LiCl or N-methyl-D-glucamine (NMDG) replacement]. Ouabain enhanced contractility by 121 +/- 55% at 1 micromol/l (n = 11) and 476 +/- 159% at 3 micromol/l (n = 8) (means +/- SE). Ca transient amplitude was also increased. The inotropic effects of ouabain were retained even after pretreatment with saxitoxin (5 micromol/l) or changing the holding potential to -40 mV (to inactivate Na(+) current). Similar results were obtained with both Li(+) and NMDG replacement and in the absence of external K(+), indicating that ouabain produced positive inotropy in the absence of functional Na-Ca exchange and Na(+)-K(+)-ATPase activity. In contrast, ouabain had no inotropic response in rat ventricular myocytes (10-100 micromol/l). Finally, ouabain reversibly increased Ca(2+) overload toxicity by accelerating the rate of spontaneous aftercontractions (n = 13). These results suggest that the cellular effects of ouabain on the heart may include actions independent of Na(+)-K(+)-ATPase inhibition, Na-Ca exchange, and changes in Na.  相似文献   

18.
Rubratoxin B, a lactone-containing bisanhydride metabolite of certain toxigenic molds, inhibited (Na+-K+)-stimulated ATPase activity of mouse brain microsomes in a dose-dependent manner with an estimated IC50 of 6 x 10(-6) M. Hydrolysis of ATP was linear with time and enzyme concentration, with or without rubratoxin in reaction mixtures. Altered pH and activity curves for (Na+-K+)-ATPase demonstrated comparable inhibition by rubratoxin in buffered acidic, neutral, and alkaline pH ranges. Kinetic studies of cationic-substrate activation of (Na+-K+)-ATPase indicated classical competitive inhibition for Na+ and K+. Results also showed competitive inhibition for K+ activated p-nitrophenyl phosphatase as demonstrated by altered binding site parameters without change in the catalytic velocity of dephosphorylation of the enzyme . phosphoryl complex. Noncompetitive inhibition with regards to activation by ATP and p-nitrophenyl phosphate was indicated by altered Vmax values with no change in Km values. Inhibition was partially restored by repeated washings. Preincubation with sulfhydryl agents protected the enzyme from inhibition. Cumulative inhibition studies with rubratoxin and ouabain indicated possible interaction between the two inhibitors of (Na+-K+)-ATPase. Rubratoxin appeared to exert its effects on (Na+-K+)-ATPase by interacting at Na+ and K+ sites.  相似文献   

19.
We assessed the hypothesis that the epinephrine surge present during sepsis accelerates aerobic glycolysis and lactate production by increasing activity of skeletal muscle Na(+)-K(+)-ATPase. Healthy volunteers received an intravenous bolus of endotoxin or placebo in a randomized order on two different days. Endotoxemia induced a response resembling sepsis. Endotoxemia increased plasma epinephrine to a maximum at t = 2 h of 0.7 +/- 0.1 vs. 0.3 +/- 0.1 nmol/l (P < 0.05, n = 6-7). Endotoxemia reduced plasma K(+) reaching a nadir at t = 5 h of 3.3 +/- 0.1 vs. 3.8 +/- 0.1 mmol/l (P < 0.01, n = 6-7), followed by an increase to placebo level at t = 7-8 h. During the declining plasma K(+), a relative accumulation of K(+) was seen reaching a maximum at t = 6 h of 8.7 +/- 3.8 mmol/leg (P < 0.05). Plasma lactate increased to a maximum at t = 1 h of 2.5 +/- 0.5 vs. 0.9 +/- 0.1 mmol/l (P < 0.05, n = 8) in association with increased release of lactate from the legs. These changes were not associated with hypoperfusion or hypoxia. During the first 24 h after endotoxin infusion, renal K(+) excretion was 27 +/- 7 mmol, i.e., 58% higher than after placebo. Combination of the well-known stimulatory effect of catecholamines on skeletal muscle Na(+)-K(+)-ATPase activity, with the present confirmation of an expected Na(+)-K(+)- ATPase-induced decline in plasma K(+), suggests that the increased lactate release was due to increased Na(+)-K(+)-ATPase activity, supporting our hypothesis. Thus increased lactate levels in acutely and severely ill patients should not be managed only from the point of view that it reflects hypoxia.  相似文献   

20.
Rats were chronically treated with nicotine via subcutaneous injections up to a dose 6 mg/kg/day during 2-3 weeks. After this period, resting membrane potential and action potentials of muscle fibres as well as isometric twitch and tetanic (20 s(-1) and 50(-1)) contractions of isolated rat diaphragm were studied. To estimate electrogenic contribution of the alpha2 isoform of the Na+, K(+)-ATPase ouabain in concentration 1 microM was used. Chronic nicotine exposure induced depolarization of resting membrane potential of 2.2 +/- 0.6 mV (p < 0.01). In rats chronically exposed to nicotine, electrogenic contribution of the Na+, K(+)-ATPase alpha2 isoform was twofold lesser than in control animals (3.7 +/- 0.6 mV and 6.4 +/- 0.6 mV, respectively, p < 0.01). Chronic nicotine exposure did not affect force of twitch and tetanic contractions in response to direct or indirect stimulation. A decrease in the twitch contraction time as well as in the rise time of tetanic contractions was observed. Fatigue dynamics was unchanged. The results suggest that chronic nicotine exposure leads to decrease of the Na+, K(+)-ATPase alpha2 isoform electrogenic activity, and as a consequence to damage of the rat diaphragm muscle electogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号