首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Germanium vs Silicon: All‐dielectric nanoparticles provides the heat resistance for proteins under light‐induced heating. Further details can be found in the article by Andrei A. Krasilin et al. ( e201700322 )

  相似文献   


2.
Near‐infrared spectroscopy (NIRS; continuous wave type) is a noninvasive tool for detecting the relative change of oxyhemoglobin and deoxyhemoglobin. To make this change, intervention methods must be applied. This study determined the hemodynamics of 44 healthy participants and 35 patients with sepsis during exposure to FIR as a novel physical intervention approach. Local microcirculation of their brachioradialis was monitored during exposure and recovery through NIRS. The variations in blood flow and microvascular reaction were determined by conducting paired and unpaired t tests. The oxyhemoglobin levels of the healthy participants increased continuously, even during recovery. In contrast to expextations, the oxyhemoglobin levels of the patients plateaued after only 5 min of FIR illumination. The proposed method has potential applications for ensuring efficient treatment and facilitating doctors in diagnosing the functions of vessels in intensive care units.

Mapping diagrams of HbO2 in healthy males and males with sepsis illustrated unique scenarios during the process.  相似文献   


3.
This study provides a simple method to detect human distal radius bone density based on near infrared (NIR) imaging. The information of bone mineral density can be measured by transluminational optical bone densitometric system. Compared to dual‐energy x‐ray absorptiometry (DXA) results in clinical trial, NIR images show a strong correlation to DXA. Further details can be found in the article by Chun Chung, Yu‐Pin Chen, Tsai‐Hsueh Leu, and Chia‐Wei Sun ( e201700342 ).

  相似文献   


4.
Raman images were used to study the effect of the contaminant chlorpyriphos‐oxon on zebrafish eye samples. Multivariate Curve Resolution‐Alternating Least Squares (MCR‐ALS) was used to obtain the distribution maps and spectral signatures of biological components present in the images analyzed. The use of MCRALS spectral signatures as starting information for Partial Least Squares‐Discriminant Analysis allowed statistical assessment of the effect of the contaminant at a specific tissue level. Further details can be found in the article by Víctor Olmos et al. ( e201700089 ).

  相似文献   


5.
A plasmon waveguide resonance (PWR) sensor is proposed for studying the interaction between gold nanoparticles and proteins. The ability of the PWR sensor to operate in both TM and TE Polarizations, i.e. its polarization diversity, facilitates the simultaneous spectroscopy of the nanoparticles surface reactions using both polarizations. The response of each polarization to streptavidin‐biotin binding at the surface of gold nanoparticles is investigated in real time. Finally, using the principles of multimode spectroscopy, the nanoparticle's surface reactions are decoupled from the bulk solution refractive index variations.

Schematic diagram of the NP‐modified PWR sensor  相似文献   


6.
Optical coherence tomography through an implanted dorsal imaging window allows for prolonged in vivo structural and functional assessment of the mouse oviduct (Fallopian tube), including threedimensional structural imaging, quantitative measurements of the smooth muscle contraction, and mapping of cilia beat frequency. This method brings new opportunities for live studies and longitudinal analyses of mouse reproductive events in the native context. Further details can be found in the article by Shang Wang et al. ( e201700316 ).

  相似文献   


7.
A hyperspectral image data cube acquired from HEK‐293 cells labeled with cytoplasmic and nuclear stains: Calcein Green and NucBlu. The top view (XY plane) displays three spectrally unmixed channels for cellular autofluorescence (red), Calcein Green (green), and NucBlue (blue). The Z axis shows spectral information, from low to high wavelength. The article by Leavesley and colleagues describes an approach for calculating the sensitivity of spectral imaging assays for detecting a fluorescence signature within a mix of other signatures or autofluorescence. Further details can be found in the article by Silas J. Leavesley et al. ( e201600227 ).

  相似文献   


8.
The concentration difference of major elements in melanocytic skin with respect to pigmentation level is analysed by laser‐induced breakdown spectroscopy (LIBS) to investigate the applicability of LIBS as an in situ feedback tool for selective and complete laser removal of melanocytic skin tissue like nevus. The skin of black silkie chicken which had a characteristic darkly pigmented perifollicular skin surrounded by lightly pigmented extrafollicular skin was used as the sample. The results showed higher LIBS signal intensities of Ca2+ and Mg2+ but lower intensities of Na+, Cl and K+ in the perifollicular skin than in the extrafollicular skin, which demonstrated the feasibility to use LIBS as a reliable method to distinguish skin tissues with difference in pigmentation level.

Plasma emission of biochemical elements generated with a laser irradiation on melanocytic skin lesion.  相似文献   


9.
Eu3+integrated photoluminescence intensity ratio (PLIR) approach for optical detection of lactates in blood serum, plasma and confocal imaging of brain tissues has very high potential for exploitation of this technique in both in vitro monitoring and in vivo bioimaging applications for the detection of biomarkers in various diseases states. This image is diagrammatic representation of fact that the overall PLIR is higher with more lactates conjugated with Eu3+ ions. Further details can be found in the article by Tarun Kakkar et al. ( e201700199 ).

  相似文献   


10.
A label‐free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10–8 RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm–2, is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL–1 range.

  相似文献   


11.
This paper presents a novel compact fiberoptic based singlet oxygen near‐infrared luminescence probe coupled to an InGaAs/InP single photon avalanche diode (SPAD) detector. Patterned time gating of the single‐photon detector is used to limit unwanted dark counts and eliminate the strong photosensitizer luminescence background. Singlet oxygen luminescence detection at 1270 nm is confirmed through spectral filtering and lifetime fitting for Rose Bengal in water, and Photofrin in methanol as model photosensitizers. The overall performance, measured by the signal‐to‐noise ratio, improves by a factor of 50 over a previous system that used a fiberoptic‐coupled superconducting nanowire single‐photon detector. The effect of adding light scattering to the photosensitizer is also examined as a first step towards applications in tissue in vivo.

  相似文献   


12.
Two‐photon microscopy is the tool of choice for fluorescence imaging of deep tissues with high resolution, but can be limited in three‐dimensional acquisition speed and penetration depth. In this work, these issues are addressed by using an acoustic optofluidic lens capable of ultrafast beam shaping on a pixel basis. Driving the lens with different phase profiles enables high‐speed volumetric imaging, or enhanced signal‐to‐background for deeper penetration. Further details can be found in the article by Simonluca Piazza et al. ( e201700050 )

  相似文献   


13.
The internalization kinetics and intracellular spatial distribution of functionalized diatomite nanoparticles in human lung epidermoid carcinoma cell line have been investigated by confocal fluorescence and Raman microscopy. In this context, Raman imaging due to its non‐destructive, chemically selective and label‐free working principle provides evidence that the nanovectors are internalized and co‐localize with lipid environments, suggesting an endocytic internalisation route. Nanoparticle uptakes and intracellular persistence are observed up to 72 hours, without damage to cell viability or morphology. Further details can be found in the article by Stefano Managò et al. ( e201700207 )

  相似文献   


14.
The potential use of Gold Nanoparticles (GNPs) as contrast agents for clinical intracoronary frequency domain Optical Coherence Tomography (OCT) is here explored. The OCT contrast enhancement caused by GNPs of different sizes and morphologies has been systematically investigated and correlated with their optical properties. Among the different GNPs commercially available with plasmon resonances close to the operating wavelength of intracoronary OCT (1.3 µm), Gold Nanoshells (GNSs) have provided the best OCT contrast due to their largest scattering cross section at this wavelength. Clinical intracoronary OCT catheters are here demonstrated to be capable of three dimensional visualization and real‐time tracking of individual GNSs. Results here included open an avenue to novel application of intravascular clinical OCT in combination with GNPs, such as real time evaluation of intravascular obstructions or pressure gradients.

  相似文献   


15.
We present a hybrid dual‐wavelength optoacoustic and ultrasound bio‐microscope capable of rapid transcranial visualization of morphology and oxygenation status of large‐scale cerebral vascular networks. Imaging of entire cortical vasculature in mice is achieved with single capillary resolution and complemented by simultaneously acquired pulse‐echo ultrasound microscopy scans of the mouse skull. The new approach holds potential to facilitate studies into neurological and vascular abnormalities of the brain. Further details can be found in the article by Johannes Rebling, Héctor Estrada, Sven Gottschalk, et al. ( e201800057 ).

  相似文献   


16.
Third Harmonic Generation (THG) microscopy as a non‐invasive, label free imaging methodology, allows linkage of lipid profiles with various breast cancer cells. The collected THG signal arise mostly from the lipid droplets and the membrane lipid bilayer. Quantification of THG signal can accurately distinguish HER2‐positive cells. Further analysis using Fourier transform infrared (FTIR) spectra reveals cancer‐specific profiles, correlating lipid raft‐corresponding spectra to THG signal, associating thus THG to chemical information.

THG imaging of a cancer cell.  相似文献   


17.
Based on multicolor quantum dots (QDs) labeling, the joint tagging assisted super‐resolution radial fluctuation (JT‐SRRF) nanoscopy achieves high‐fidelity super‐resolution imaging of subcellular microtubules and fast live‐cell parallel tracking of cholera toxin subunit B (CTB) induced lipid clusters spatially distributed below the optical diffraction limit. This method paves the way for fast high‐density parallel tracking, which is especially beneficial for the investigation of the intensive dynamics in live‐cell applications. Further details can be found in the article by Zhiping Zeng, Jing Ma, Peng Xi, and Canhua Xu ( e201800020 ).

  相似文献   


18.
Semiconductor nanocomposites provide advantages beyond the capability of typical fluorescent materials for cancer detection. In this work, nanowire‐based probes with dual color channels are employed to demonstrate the capacity of cancer cell detection. Purple emitting ZnO/antibody probes are applied to detect cancer cells and meanwhile TiO2/antibody probes with green light emission are applied to identify normal fibroblast cells. A series of quantitative analyses are conducted to verify the correlation between the concentrations of ZnO and TiO2 probes, cell numbers, and peak intensities of the PL spectra. The results provide a quantitative reference for developing nanowire‐based cancel cell probes.

  相似文献   


19.
Trans‐scleral iontophoresis device was shown to be effective for in‐situ delivery of lutein to the retina of human donor eyes. After treatment, Resonance Raman Spectroscopy measurements demonstrated that lutein greatly enriched the inner sclera, choroid and retina. Clinical studies are going to prove if the methodology would be a valuable approach to enrich the human macular pigment and prevent local oxidative damage in patients at risk of AMD progression. Further details can be found in the article by Marco Lombardo et al. ( e201700095 ).

  相似文献   


20.
A new type of high‐throughput imaging flow cytometer (>20 000 cells s‐1) based upon an all‐optical ultrafast laser‐scanning imaging technique, called free‐space angular‐chirp‐enhanced delay (FACED) is reported. FACED imaging flow cytometers enables high‐throughput visualization of functional morphology of individual cells with subcellular resolution. It critically empowers largescale and deep characterization of single cells and their heterogeneity with high statistical power— an ability to become increasingly critical in single‐cell analysis adopted in a wide range of biomedical and life‐science applications. Further details can be found in the article by Wenwei Yan et al. ( e201700178 )

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号