首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Wang H  Song P  Du L  Tian W  Yue W  Liu M  Li D  Wang B  Zhu Y  Cao C  Zhou J  Chen Q 《The Journal of biological chemistry》2011,286(13):11649-11658
Mutations in Parkin, an E3 ubiquitin ligase that regulates protein turnover, represent one of the major causes of familial Parkinson disease, a neurodegenerative disorder characterized by the loss of dopaminergic neurons and impaired mitochondrial functions. The underlying mechanism by which pathogenic Parkin mutations induce mitochondrial abnormality is not fully understood. Here, we demonstrate that Parkin interacts with and subsequently ubiquitinates dynamin-related protein 1 (Drp1), for promoting its proteasome-dependent degradation. Pathogenic mutation or knockdown of Parkin inhibits the ubiquitination and degradation of Drp1, leading to an increased level of Drp1 for mitochondrial fragmentation. These results identify Drp1 as a novel substrate of Parkin and suggest a potential mechanism linking abnormal Parkin expression to mitochondrial dysfunction in the pathogenesis of Parkinson disease.  相似文献   

2.
Neurons are known to use large amounts of energy for their normal function and activity. In order to meet this demand, mitochondrial fission, fusion, and movement events (mitochondrial dynamics) control mitochondrial morphology, facilitating biogenesis and proper distribution of mitochondria within neurons. In contrast, dysfunction in mitochondrial dynamics results in reduced cell bioenergetics and thus contributes to neuronal injury and death in many neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease, and Huntington’s disease. We recently reported that amyloid-β peptide, thought to be a key mediator of AD pathogenesis, engenders S-nitrosylation and thus hyperactivation of the mitochondrial fission protein Drp1. This activation leads to excessive mitochondrial fragmentation, bioenergetic compromise, and synaptic damage in models of AD. Here, we provide an extended commentary on our findings of nitric oxide-mediated abnormal mitochondrial dynamics.  相似文献   

3.
线粒体融合分裂平衡是线粒体动力学的需要。本研究观察12周规律有氧运动对APP/PS1双转基因小鼠中枢神经元线粒体融合分裂动态平衡的影响。本研究采用3月龄雄性APP/PS1小鼠(AD模型)随机分为AD安静组(AS)、AD运动组(AE),同月龄雄性C57BL/6J小鼠做正常对照组(CS)。AE组进行12周规律跑台运动,5 d/周,60 min/d。前10 min运动速度12 m/min,后50 min运动速度15 m/min,跑台坡度为0°。八臂迷宫实验检测小鼠工作记忆错误频率和参考记忆错误频率;Western印迹检测小鼠皮层、海马组织中线粒体分裂蛋白Drp1和Fis1的含量,以及Drp1的活性(p-Drp1-Ser616)、线粒体融合蛋白Mfn1、Mfn2、Opa1的表达水平;透射电镜观察皮层、海马线粒体形态结构、健康线粒体比率及线粒体平均直径。本研究证实AS组较CS组工作记忆错误频率显著提高(P<0.05),12周有氧运动显著降低工作记忆错误频率(P<0.05)。AS组小鼠皮层Fis1蛋白和海马脑区Drp1、Fis1蛋白表达水平及皮层、海马脑区Drp1蛋白的活性增加(P<0.05)。而皮层Mfn1和海马Mfn1、Mfn2蛋白表达水平显著降低(P<0.05)。12周有氧运动显著减低Fis1、Drp1蛋白表达及Drp1蛋白的活性,提高Mfn1、Mfn2蛋白表达水平(P<0.05)。AS组小鼠皮层、海马线粒体多呈现球形,部分线粒体膜结构消失,线粒体嵴结构紊乱。且AS组较CS组小鼠健康线粒体比率降低、直径缩短。12周规律有氧运动可明显改善线粒体形态和结构,提高健康线粒体比率及直径。本研究提示,12周规律有氧运动可有效抑制皮层、海马脑区线粒体分裂蛋白Drp1和 Fis1的表达,降低Drp1的活性(p-Drp1-Ser616),上调线粒体融合蛋白Mfn1、Mfn2的蛋白表达水平,改善线粒体形态和结构以促进线粒体质量控制,是有氧运动改善AD模型空间学习记忆能力的分子机制之一。  相似文献   

4.
The dipeptidyl peptidase 4 inhibitor vildagliptin (VLD), a widely used anti‐diabetic drug, exerts favourable effects on vascular endothelium in diabetes. We determined for the first time the improving effects of VLD on mitochondrial dysfunction in diabetic mice and human umbilical vein endothelial cells (HUVECs) cultured under hyperglycaemic conditions, and further explored the mechanism behind the anti‐diabetic activity. Mitochondrial ROS (mtROS) production was detected by fluorescent microscope and flow cytometry. Mitochondrial DNA damage and ATP synthesis were analysed by real time PCR and ATPlite assay, respectively. Mitochondrial network stained with MitoTracker Red to identify mitochondrial fragmentation was visualized under confocal microscopy. The expression levels of dynamin‐related proteins (Drp1 and Fis1) were determined by immunoblotting. We found that VLD significantly reduced mtROS production and mitochondrial DNA damage, but enhanced ATP synthesis in endothelium under diabetic conditions. Moreover, VLD reduced the expression of Drp1 and Fis1, blocked Drp1 translocation into mitochondria, and blunted mitochondrial fragmentation induced by hyperglycaemia. As a result, mitochondrial dysfunction was alleviated and mitochondrial morphology was restored by VLD. Additionally, VLD promoted the phosphorylation of AMPK and its target acetyl‐CoA carboxylase in the setting of high glucose, and AMPK activation led to a decreased expression and activation of Drp1. In conclusion, VLD improves endothelial mitochondrial dysfunction in diabetes, possibly through inhibiting Drp1‐mediated mitochondrial fission in an AMPK‐dependent manner.  相似文献   

5.
The cytoplasmic dynamin-related guanosine triphosphatase Drp1 is recruited to mitochondria and mediates mitochondrial fission. Although the mitochondrial outer membrane (MOM) protein Fis1 is thought to be a Drp1 receptor, this has not been confirmed. To analyze the mechanism of Drp1 recruitment, we manipulated the expression of mitochondrial fission and fusion proteins and demonstrated that (a) mitochondrial fission factor (Mff) knockdown released the Drp1 foci from the MOM accompanied by network extension, whereas Mff overexpression stimulated mitochondrial recruitment of Drp1 accompanied by mitochondrial fission; (b) Mff-dependent mitochondrial fission proceeded independent of Fis1; (c) a Mff mutant with the plasma membrane-targeted CAAX motif directed Drp1 to the target membrane; (d) Mff and Drp1 physically interacted in vitro and in vivo; (e) exogenous stimuli-induced mitochondrial fission and apoptosis were compromised by knockdown of Drp1 and Mff but not Fis1; and (f) conditional knockout of Fis1 in colon carcinoma cells revealed that it is dispensable for mitochondrial fission. Thus, Mff functions as an essential factor in mitochondrial recruitment of Drp1.  相似文献   

6.
探究siRNA敲减沉默信息调节因子2(SIRT2)对1-甲基-4-苯基吡啶离子(MPP+)诱导的帕金森病细胞模型细胞损伤的影响和机制。CCK-8法检测不同浓度MPP+处理对体外培养小鼠海马神经元HT-22细胞生存率的影响。将细胞分为对照组、MPP+最佳浓度处理组(1 mmol/L MPP+处理组)、阴性转染组(对照组基础上转染SIRT2阴性序列)、SIRT2 siRNA处理组(损伤组基础上转染SIRT2 siRNA)。观察各组细胞凋亡情况,检测凋亡相关蛋白(Bcl-2、Bax、Caspase-9)、线粒体分裂及融合相关蛋白(Drp1、Fis1、OPA1、Mfn1、Mfn2)。与对照组相比,MPP+处理组细胞抑制率均升高,细胞抑制率随MPP+浓度增加而逐渐增加(P<0.05)。与SIRT2 siRNA转染组相比,损伤组Bax、Caspase-9、Drp1、Fis1蛋白表达和细胞凋亡率升高,Bcl-2、Mfn1、Mfn2蛋白表达降低(P<0.05)。SIRT2在MPP+诱导帕金森病细胞模型中表达升高,抑制SIRT2可减轻MPP+诱导帕金森病细胞模型中细胞凋亡并促进线粒体融合,从而对神经元具有一定的保护作用。  相似文献   

7.
Several mitochondrial outer membrane proteins—mitochondrial fission protein 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51, respectively)—have been proposed to promote mitochondrial fission by recruiting the GTPase dynamin-related protein 1 (Drp1), but fundamental issues remain concerning their function. A recent study supported such a role for Mff but not for Fis1. In addition, it is unclear whether MiD49 and MiD51 activate or inhibit fission, because their overexpression causes extensive mitochondrial elongation. It is also unknown whether these proteins can act in the absence of one another to mediate fission. Using Fis1-null, Mff-null, and Fis1/Mff-null cells, we show that both Fis1 and Mff have roles in mitochondrial fission. Moreover, immunofluorescence analysis of Drp1 suggests that Fis1 and Mff are important for the number and size of Drp1 puncta on mitochondria. Finally, we find that either MiD49 or MiD51 can mediate Drp1 recruitment and mitochondrial fission in the absence of Fis1 and Mff. These results demonstrate that multiple receptors can recruit Drp1 to mediate mitochondrial fission.  相似文献   

8.
Wu S  Zhou F  Zhang Z  Xing D 《The FEBS journal》2011,278(6):941-954
Mitochondria are dynamic organelles that undergo continual fusion and fission to maintain their morphology and functions, but the mechanism involved is still not clear. Here, we investigated the effect of mitochondrial oxidative stress triggered by high-fluence low-power laser irradiation (HF-LPLI) on mitochondrial dynamics in human lung adenocarcinoma cells (ASTC-a-1) and African green monkey SV40-transformed kidney fibroblast cells (COS-7). Upon HF-LPLI-triggered oxidative stress, mitochondria displayed a fragmented structure, which was abolished by exposure to dehydroascorbic acid, a reactive oxygen species scavenger, indicating that oxidative stress can induce mitochondrial fragmentation. Further study revealed that HF-LPLI caused mitochondrial fragmentation by inhibiting fusion and enhancing fission. Mitochondrial translocation of the profission protein dynamin-related protein 1 (Drp1) was observed following HF-LPLI, demonstrating apoptosis-related activation of Drp1. Notably, overexpression of Drp1 increased mitochondrial fragmentation and promoted HF-LPLI-induced apoptosis through promoting cytochrome c release and caspase-9 activation, whereas overexpression of mitofusin 2 (Mfn2), a profusion protein, caused the opposite effects. Also, neither Drp1 overexpression nor Mfn2 overexpression affected mitochondrial reactive oxygen species generation, mitochondrial depolarization, or Bax activation. We conclude that mitochondrial oxidative stress mediated through Drp1 and Mfn2 causes an imbalance in mitochondrial fission-fusion, resulting in mitochondrial fragmentation, which contributes to mitochondrial and cell dysfunction.  相似文献   

9.
焦阳  郑月  宋成洁 《生理学报》2020,72(2):249-254
本文旨在探讨依达拉奉(edaravone, Eda)对帕金森病细胞模型线粒体融合、分裂动态平衡的作用及机制。用500μmol/L1-甲基-4-苯基吡啶离子(1-methyl-4-phenylpyridinium, MPP^+)处理PC12细胞建立帕金森病细胞模型,采用噻唑蓝(MTT)比色法检测不同浓度Eda对MPP^+处理的PC12细胞存活率的影响,用激光共聚焦显微镜检测线粒体形态,用Western blot检测线粒体融合与分裂相关蛋白OPA1、MFN2、DRP1和Fis1的表达变化。结果显示,预先加入不同浓度的Eda能减轻MPP^+处理的PC12细胞损伤,作用呈一定的量效关系;经MPP^+处理48 h,PC12细胞线粒体出现碎片化,OPA1和MFN2蛋白表达下调,DRP1和Fis1蛋白表达上调,而Eda预处理能逆转PC12细胞的上述变化,但对Fis1的蛋白表达没有影响。以上结果提示,Eda可上调OPA1和MFN2的蛋白表达,下调DRP1的表达,从而抑制线粒体碎片化,发挥神经细胞线粒体保护作用。  相似文献   

10.
In yeast, mitochondrial-fission is regulated by the cytosolic dynamin-like GTPase (Dnm1p) in conjunction with a peripheral protein, Mdv1p, and a C-tail-anchored outer membrane protein, Fis1p. In mammals, a dynamin-related protein (Drp1) and Fis1 are involved in the mitochondrial-fission reaction as Dnm1 and Fis1 orthologues, respectively. The involvement of other component(s), such as the Mdv1 homologue, and the mechanisms regulating mitochondrial-fission remain unclear. Here, we identified rat Fis1 (rFis1) and analyzed its structure-function relationship. Blue-native-polyacrylamide gel electrophoresis revealed that rFis1 formed a approximately 200-kDa complex in the outer mitochondrial membrane. Its expression in HeLa cells promoted extensive mitochondrial fragmentation, and gene knock-down by RNAi induced extension of the mitochondrial networks. Taking advantage of these properties, we analyzed functional domains of rFis1. These experiments revealed that the N-terminal and C-terminal segments are both essential for oligomeric rFis1 interaction, and the middle TPR-like domains regulate proper oligomer assembly. Any mutations that disturb the proper oligomeric assembly compromise mitochondrial division-stimulating activity of rFis1.  相似文献   

11.
Mitochondrial alterations have been associated with the cytotoxic effect of 6-hydroxydopamine (6-OHDA), a widely used neurotoxin to study Parkinson's disease. Herein we studied the potential effects of 6-OHDA on mitochondrial morphology in SH-SY5Y neuroblastoma cells. By immunofluorescence and time-lapse fluorescence microscopy we demonstrated that 6-OHDA induced profound mitochondrial fragmentation in SH-SY5Y cells, an event that was similar to mitochondrial fission induced by overexpression of Fis1p, a membrane adaptor for the dynamin-related protein 1 (DLP1/Drp1). 6-OHDA failed to induce any changes in peroxisome morphology. Biochemical experiments revealed that 6-OHDA-induced mitochondrial fragmentation is an early event preceding the collapse of the mitochondrial membrane potential and cytochrome c release in SH-SY5Y cells. Silencing of DLP1/Drp1, which is involved in mitochondrial and peroxisomal fission, prevented 6-OHDA-induced fragmentation of mitochondria. Furthermore, in cells silenced for Drp1, 6-OHDA-induced cell death was reduced, indicating that a block in mitochondrial fission protects SH-SY5Y cells against 6-OHDA toxicity. Experiments in mouse embryonic fibroblasts deficient in Bax or p53 revealed that both proteins are not essential for 6-OHDA-induced mitochondrial fragmentation. Our data demonstrate for the first time an involvement of mitochondrial fragmentation and Drp1 function in 6-OHDA-induced apoptosis.  相似文献   

12.
Dynamic equilibrium between mitochondrial fission and mitochondrial fusion serves as an important quality control system within cells ensuring cellular vitality and homeostasis. Viruses often target mitochondrial dynamics as a part of their obligatory cellular reprogramming. The present study was undertaken to assess the status and regulation of mitochondrial dynamics during rotavirus infection. Distinct fragmentation of mitochondrial syncytia was observed during late hours of RV (SA11, Wa, A5‐13) infection. RV nonstructural protein 4 (NSP4) was identified as the viral trigger for disrupted mitochondrial morphology. Severance of mitochondrial interconnections was found to be a dynamin‐related protein 1 (Drp1)‐dependent process resulting synergistically from augmented mitochondrial fission and attenuated mitochondrial fusion. Cyclin‐dependent kinase 1 was subsequently identified as the cellular kinase responsible for fission‐active Ser616 phosphorylation of Drp1. In addition to its positive role in mitochondrial fission, Drp1 also resulted in mitochondrial translocation of E3‐ubiquitin ligase Parkin leading to degradation of mitochondrial fusion protein Mitofusin 1. Interestingly, RV‐NSP4 was found to interact with and be involved in recruiting fission‐active pool of Serine 616 phosphoDrp1 (Ser616 pDrp1) to mitochondria independent of accessory adaptors Mitochondrial fission factor and Fission protein 1 (Fis1). Inhibition of either Drp1 or Ser616 pDrp1 resulted in significant decrease in RV‐NSP4‐induced intrinsic apoptotic pathway. Overall, this study underscores an efficient strategy utilised by RV to couple apoptosis to mitochondrial fission facilitating dissemination of viral progeny.  相似文献   

13.
Coenzyme Q10 (CoQ10) is an antioxidant, a membrane stabilizer, and a vital cofactor in the mitochondrial electron transport chain, enabling the generation of adenosine triphosphate. It additionally regulates gene expression and apoptosis; is an essential cofactor of uncoupling proteins; and has anti-inflammatory, redox modulatory, and neuroprotective effects. This paper reviews the known physiological role of CoQ10 in cellular metabolism, cell death, differentiation and gene regulation, and examines the potential repercussions of CoQ10 depletion including its role in illnesses such as Parkinson’s disease, depression, myalgic encephalomyelitis/chronic fatigue syndrome, and fibromyalgia. CoQ10 depletion may play a role in the pathophysiology of these disorders by modulating cellular processes including hydrogen peroxide formation, gene regulation, cytoprotection, bioenegetic performance, and regulation of cellular metabolism. CoQ10 treatment improves quality of life in patients with Parkinson’s disease and may play a role in delaying the progression of that disorder. Administration of CoQ10 has antidepressive effects. CoQ10 treatment significantly reduces fatigue and improves ergonomic performance during exercise and thus may have potential in alleviating the exercise intolerance and exhaustion displayed by people with myalgic encepholamyletis/chronic fatigue syndrome. Administration of CoQ10 improves hyperalgesia and quality of life in patients with fibromyalgia. The evidence base for the effectiveness of treatment with CoQ10 may be explained via its ability to ameliorate oxidative stress and protect mitochondria.  相似文献   

14.
S Xu  H Pi  Y Chen  N Zhang  P Guo  Y Lu  M He  J Xie  M Zhong  Y Zhang  Z Yu  Z Zhou 《Cell death & disease》2013,4(3):e540
Mitochondria are critical targets in the hepatotoxicity of cadmium (Cd). Abnormal mitochondrial dynamics have been increasingly implicated in mitochondrial dysfunction in pathophysiological conditions. Therefore, our study aimed to investigate the effects and underlying mechanism of Cd on mitochondrial dynamics during hepatotoxicity. In the L02 liver cell lines, 12 μM cadmium chloride (CdCl2) exposure induced excessive mitochondrial fragmentation as early as 3 h post-treatment with Cd, which preceded the mitochondrial dysfunction such as reactive oxygen species (ROS) overproduction, mitochondrial membrane potential (ΔΨm) loss and ATP reduction. Concurrent to mitochondrial fragmentation, CdCl2 treatment increased the protein levels of dynamin-related protein (Drp1) and promoted the recruitment of Drp1 into mitochondria. Strikingly, mitochondrial fragmentation also occurred in the liver tissue of rats exposed to CdCl2, accompanied by enhanced recruitment of Drp1 into mitochondria. Moreover, in L02 cells, Drp1 silencing could effectively reverse Cd-induced mitochondrial fragmentation and mitochondrial dysfunction. Furthermore, the increased expression and mitochondrial recruitment of Drp1 were tightly related to the disturbance of calcium homeostasis, which could be prevented by both chelating [Ca2+]i and inhibiting [Ca2+]m uptake. Overall, our study indicated that Cd induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis to promote hepatotoxicity. Manipulation of Drp1 may be the potential avenue for developing novel strategies to protect against cadmium-induced hepatotoxicity.  相似文献   

15.
Defining the mechanisms underlying the control of mitochondrial fusion and fission is critical to understanding cellular adaptation to diverse physiological conditions. Here we demonstrate that hypoxia induces fission of mitochondrial membranes, dependent on availability of the mitochondrial scaffolding protein AKAP121. AKAP121 controls mitochondria dynamics through PKA-dependent inhibitory phosphorylation of Drp1 and PKA-independent inhibition of Drp1-Fis1 interaction. Reduced availability of AKAP121 by the ubiquitin ligase Siah2 relieves Drp1 inhibition by PKA and increases its interaction with Fis1, resulting in mitochondrial fission. High AKAP121 levels, seen in cells lacking Siah2, attenuate fission and reduce apoptosis of cardiomyocytes under simulated ischemia. Infarct size and degree of cell death were reduced in Siah2(-/-) mice subjected to myocardial infarction. Inhibition of Siah2 or Drp1 in hatching C.?elegans reduces their life span. Through modulating Fis1/Drp1 complex availability, our studies identify Siah2 as a key regulator of hypoxia-induced mitochondrial fission and its physiological significance in ischemic injury and nematode life span.  相似文献   

16.
Mitochondrial dynamics—fission and fusion—are associated with ischaemic heart disease (IHD). This study explored the protective effect of vagal nerve stimulation (VNS) against isoproterenol (ISO)‐induced myocardial ischaemia in a rat model and tested whether VNS plays a role in preventing disorders of mitochondrial dynamics and function. Isoproterenol not only caused cardiac injury but also increased the expression of mitochondrial fission proteins [dynamin‐related peptide1 (Drp1) and mitochondrial fission protein1 (Fis‐1)) and decreased the expression of fusion proteins (optic atrophy‐1 (OPA1) and mitofusins1/2 (Mfn1/2)], thereby disrupting mitochondrial dynamics and leading to increase in mitochondrial fragments. Interestingly, VNS restored mitochondrial dynamics through regulation of Drp1, Fis‐1, OPA1 and Mfn1/2; enhanced ATP content and mitochondrial membrane potential; reduced mitochondrial permeability transition pore (MPTP) opening; and improved mitochondrial ultrastructure and size. Furthermore, VNS reduced the size of the myocardial infarction and ameliorated cardiomyocyte apoptosis and cardiac dysfunction induced by ISO. Moreover, VNS activated AMP‐activated protein kinase (AMPK), which was accompanied by phosphorylation of Ca2+/calmodulin‐dependent protein kinase kinase β (CaMKKβ) during myocardial ischaemia. Treatment with subtype‐3 of muscarinic acetylcholine receptor (M3R) antagonist 4‐diphenylacetoxy‐N‐methylpiperidine methiodide or AMPK inhibitor Compound C abolished the protective effects of VNS on mitochondrial dynamics and function, suggesting that M3R/CaMKKβ/AMPK signalling are involved in mediating beneficial effects of VNS. This study demonstrates that VNS modulates mitochondrial dynamics and improves mitochondrial function, possibly through the M3R/CaMKKβ/AMPK pathway, to attenuate ISO‐induced cardiac damage in rats. Targeting mitochondrial dynamics may provide a novel therapeutic strategy in IHD.  相似文献   

17.
The protein α-synuclein has a central role in Parkinson disease, but the mechanism by which it contributes to neural degeneration remains unknown. We now show that the expression of α-synuclein in mammalian cells, including neurons in vitro and in vivo, causes the fragmentation of mitochondria. The effect is specific for synuclein, with more fragmentation by α- than β- or γ-isoforms, and it is not accompanied by changes in the morphology of other organelles or in mitochondrial membrane potential. However, mitochondrial fragmentation is eventually followed by a decline in respiration and neuronal death. The fragmentation does not require the mitochondrial fission protein Drp1 and involves a direct interaction of synuclein with mitochondrial membranes. In vitro, synuclein fragments artificial membranes containing the mitochondrial lipid cardiolipin, and this effect is specific for the small oligomeric forms of synuclein. α-Synuclein thus exerts a primary and direct effect on the morphology of an organelle long implicated in the pathogenesis of Parkinson disease.  相似文献   

18.
Mitochondria are dynamic organelles that frequently move, divide, and fuse with one another to maintain their architecture and functions. However, the signaling mechanisms involved in these processes are still not well characterized. In this study, we analyze mitochondrial dynamics and morphology in neurons. Using time-lapse imaging, we find that Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs) causes a rapid halt in mitochondrial movement and induces mitochondrial fission. VDCC-associated Ca2+ signaling stimulates phosphorylation of dynamin-related protein 1 (Drp1) at serine 600 via activation of Ca2+/calmodulin-dependent protein kinase Ialpha (CaMKIalpha). In neurons and HeLa cells, phosphorylation of Drp1 at serine 600 is associated with an increase in Drp1 translocation to mitochondria, whereas in vitro, phosphorylation of Drp1 results in an increase in its affinity for Fis1. CaMKIalpha is a widely expressed protein kinase, suggesting that Ca2+ is likely to be functionally important in the control of mitochondrial dynamics through regulation of Drp1 phosphorylation in neurons and other cell types.  相似文献   

19.
We identify a mitochondrial E3 ubiquitin ligase, MARCH5, as a critical regulator of mitochondrial fission. MARCH5 RING mutants and MARCH5 RNA interference induce an abnormal elongation and interconnection of mitochondria indicative of an inhibition of mitochondrial division. The aberrant mitochondrial phenotypes in MARCH5 RING mutant-expressing cells are reversed by ectopic expression of Drp1, but not another mitochondrial fission protein Fis1. Moreover, as indicated by abnormal clustering and mitochondrial accumulation of Drp1, as well as decreased cellular mobility of YFP-Drp1 in cells expressing MARCH5 RING mutants, MARCH5 activity regulates the subcellular trafficking of Drp1, likely by impacting the correct assembly at scission sites or the disassembly step of fission complexes. Loss of this activity may account for the observed mitochondrial division defects. Finally, MARCH5 RING mutants and endogenous Drp1, but not wild-type MARCH5 or Fis1, co-assemble into abnormally enlarged clusters in a Drp1 GTPase-dependent manner, suggesting molecular interactions among these proteins. Collectively, our data suggest a model in which mitochondrial division is regulated by a MARCH5 ubiquitin-dependent switch.  相似文献   

20.
Bcl-2/adenovirus E1B 19-kDa interacting protein 1 (BNIP1), which is predominantly localized to the endoplasmic reticulum (ER), is a pro-apoptotic Bcl-2 homology domain 3 (BH3)-only protein. Here, we show that the expression of BNIP1 induced not only a highly interconnected ER network but also mitochondrial fragmentation in a BH3 domain-dependent manner. Functional analysis demonstrated that BNIP1 expression increased dynamin-related protein 1 (Drp1) expression followed by the mitochondrial translocation of Drp1 and subsequent mitochondrial fission. Both BNIP1-induced mitochondrial fission and the translocation of Drp1 were abrogated by Bcl-2 overexpression. These results collectively indicate that ER-specific BNIP1 plays an important role in mitochondrial dynamics by modulating the mitochondrial fission protein Drp1 in a BH3 domain-dependent fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号