首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.  相似文献   

2.
Opening of connexin hemichannels in the plasma membrane is highly regulated. Generally, depolarization and reduced extracellular Ca2+ promote hemichannel opening. Here we show that hemichannels formed of Cx50, a principal lens connexin, exhibit a novel form of regulation characterized by extraordinary sensitivity to extracellular monovalent cations. Replacement of extracellular Na+ with K+, while maintaining extracellular Ca2+ constant, resulted in >10-fold potentiation of Cx50 hemichannel currents, which reversed upon returning to Na+. External Cs+, Rb+, NH4+, but not Li+, choline, or TEA, exhibited a similar effect. The magnitude of potentiation of Cx50 hemichannel currents depended on the concentration of extracellular Ca2+, progressively decreasing as external Ca2+ was reduced. The primary effect of K+ appears to be a reduction in the ability of Ca2+, as well as other divalent cations, to close Cx50 hemichannels. Cx46 hemichannels exhibited a modest increase upon substituting Na+ with K+. Analyses of reciprocal chimeric hemichannels that swap NH2- and COOH-terminal halves of Cx46 and Cx50 demonstrate that the difference in regulation by monovalent ions in these connexins resides in the NH2-terminal half. Connexin hemichannels have been implicated in physiological roles, e.g., release of ATP and NAD+ and in pathological roles, e.g., cell death through loss or entry of ions and signaling molecules. Our results demonstrate a new, robust means of regulating hemichannels through a combination of extracellular monovalent and divalent cations, principally Na+, K+, and Ca2+.  相似文献   

3.
《FEBS letters》2014,588(8):1446-1457
Connexin 43 (Cx43) hemichannels may form open channels in the plasma membrane when exposed to specific stimuli, e.g. reduced extracellular concentration of divalent cations, and allow passage of fluorescent molecules and presumably a range of smaller physiologically relevant molecules. However, the permeability profile of Cx43 hemichannels remains unresolved. Exposure of Cx43-expressing Xenopus laevis oocytes to divalent cation free solution induced a gadolinium-sensitive uptake of the fluorescent dye ethidium. In spite thereof, a range of biological molecules smaller than ethidium, such as glutamate, lactate, and glucose, did not permeate the pore whereas ATP did. In contrast, permeability of glutamate, glucose and ATP was observed in oocytes expressing Cx30. Exposure to divalent cation free solutions induced a robust membrane conductance in Cx30-expressing oocytes but none in Cx43-expressing oocytes. C-terminally truncated Cx43 (M257) displayed increased dye uptake and, unlike wild type Cx43 channels, conducted current. Neither Cx30 nor Cx43 acted as water channels in their hemichannel configuration. Our results demonstrate that connexin hemichannels have isoform-specific permeability profiles and that dye uptake cannot be equaled to permeability of smaller physiologically relevant molecules in given settings.  相似文献   

4.
Gap-junctional channels are formed by two connexons or gap-junctional hemichannels in series, with each connexon conformed by six connexin molecules. As with other membrane proteins, structural information on connexons can potentially be obtained with techniques that take advantage of the highly specific thiol chemistry by positioning Cys residues at locations of interest, ideally in an otherwise Cys-less protein. It has been shown that conserved Cys residues located in the extracellular loops of connexins are essential for the docking of connexons from adjacent cells, preventing the formation of functional gap-junctional channels. Here we engineered a Cys-less version of connexin 43 (Cx43) and assessed its function using a Xenopus oocyte expression system. The Cys-less protein was expressed at the plasma membrane and did not form gap-junctional channels but formed hemichannels that behave similarly to those formed by Cx43 in terms of permeation to carboxyfluorescein. The carboxyfluorescein permeability of Cys-less hemichannels was increased by protein kinase C inhibition, like the wild-type Cx43 hemichannels. We generated a protein with a single Cys in a position (residue 34) thought to face the channel pore and show that thiol modification of the Cys abolishes the carboxyfluorescein permeability. We conclude that Cysless Cx43 forms regulated functional hemichannels, and therefore Cys-less Cx43 is a useful tool for future structural studies.  相似文献   

5.
Gap junctions are intercellular channels formed by the serial, head to head arrangement of two hemichannels. Each hemichannel is an oligomer of six protein subunits, which in vertebrates are encoded by the connexin gene family. All intercellular channels formed by connexins are sensitive to the relative difference in the membrane potential between coupled cells, the transjunctional voltage (Vj), and gate by the separate action of their component hemichannels (Harris, A.L., D.C. Spray, and M.V. Bennett. 1981. J. Gen. Physiol. 77:95-117). We reported previously that the polarity of Vj dependence is opposite for hemichannels formed by two closely related connexins, Cx32 and Cx26, when they are paired to form intercellular channels (Verselis, V.K., C.S. Ginter, and T.A. Bargiello. 1994. Nature. 368:348-351). The opposite gating polarity is due to a difference in the charge of the second amino acid. Negative charge substitutions of the neutral asparagine residue present in wild-type Cx32 (Cx32N2E or Cx32N2D) reverse the gating polarity of Cx32 hemichannels from closure at negative Vj to closure at positive Vj. In this paper, we further examine the mechanism of polarity reversal by determining the gating polarity of a chimeric connexin, in which the first extracellular loop (E1) of Cx32 is replaced with that of Cx43 (Cx43E1). The resulting chimera, Cx32*Cx43E1, forms conductive hemichannels when expressed in single Xenopus oocytes and intercellular channels in pairs of oocytes (Pfahnl, A., X.W. Zhou, R. Werner, and G. Dahl. 1997. Pflügers Arch. 433:733-779). We demonstrate that the polarity of Vj dependence of Cx32*Cx43E1 hemichannels in intercellular pairings is the same as that of wild-type Cx32 hemichannels and is reversed by the N2E substitution. In records of single intercellular channels, Vj dependence is characterized by gating transitions between fully open and subconductance levels. Comparable transitions are observed in Cx32*Cx43E1 conductive hemichannels at negative membrane potentials and the polarity of these transitions is reversed by the N2E substitution. We conclude that the mechanism of Vj dependence of intercellular channels is conserved in conductive hemichannels and term the process Vj gating. Heteromeric conductive hemichannels comprised of Cx32*Cx43E1 and Cx32N2E*Cx43E1 subunits display bipolar Vj gating, closing to substates at both positive and negative membrane potentials. The number of bipolar hemichannels observed in cells expressing mixtures of the two connexin subunits coincides with the number of hemichannels that are expected to contain a single oppositely charged subunit. We conclude that the movement of the voltage sensor in a single connexin subunit is sufficient to initiate Vj gating. We further suggest that Vj gating results from conformational changes in individual connexin subunits rather than by a concerted change in the conformation of all six subunits.  相似文献   

6.
Gap junction channels, which are made of connexins, are critical for intercellular communication, a function that may be disrupted in a variety of diseases. We studied the consequences of two cataract-associated mutations at adjacent positions at the first extracellular boundary in human connexin50 (Cx50), W45S and G46V. Both of these mutants formed gap junctional plaques when they were expressed in HeLa cells, suggesting that they trafficked to the plasma membrane properly. However, their functional properties differed. Dual two-microelectrode voltage-clamp studies showed that W45S did not form functional intercellular channels in paired Xenopus oocytes or hemichannel currents in single oocytes. When W45S was coexpressed with wild-type Cx50, the mutant acted as a dominant negative inhibitor of wild-type function. In contrast, G46V formed both functional gap junctional channels and hemichannels. G46V exhibited greatly enhanced currents compared with wild-type Cx50 in the presence of physiological calcium concentrations. This increase in hemichannel activity persisted when G46V was coexpressed with wild-type lens connexins, consistent with a dominant gain of hemichannel function for G46V. These data suggest that although these two mutations are in adjacent amino acids, they have very different effects on connexin function and cause disease by different mechanisms: W45S inhibits gap junctional channel function; G46V reduces cell viability by forming open hemichannels.  相似文献   

7.
Vertebrate cells that express connexins likely express connexin hemichannels (Cx HCs) at their surface. In diverse cell types, surface Cx HCs can open to serve as a diffusional exchange pathway for ions and small molecules across the cell membrane. Most cells, if not all, also express pannexins that form hemichannels and increase the cell membrane permeability but are not addressed in this review. To date, most characterizations of Cx HCs have utilized cultured cells under resting conditions have and revealed low open probability and unitary conductance close to double that of the corresponding gap junction channels. In addition, the cell membrane permeability through Cx HCs can be markedly affected within seconds to minutes by various changes in the intra and/or extracellular microenvironment (i.e., pH, pCa, redox state, transmembrane voltage and intracellular regulatory proteins) that affect levels, open probability and/or (single channel) permeability of Cx HC. Net increase or decrease in membrane permeability could result from the simultaneous interaction of different mechanisms that affect hemichannels. The permeability of Cx HCs is controlled by complex signaling cascades showing connexin, cell and cell stage dependency. Changes in membrane permeability via hemichannels can have positive consequences in some cells (mainly in healthy cells), whereas in others (mainly in cells affected by acquired and/or genetic diseases) hemichannel activation can be detrimental.  相似文献   

8.
Connexins form a diverse and ubiquitous family of integral membrane proteins. Characteristically, connexins are assembled into intercellular channels that aggregate into discrete cell-cell contact areas termed gap junctions (GJ), allowing intercellular chemical communication, and are essential for propagation of electrical impulses in excitable tissues, including, prominently, myocardium, where connexin 43 (Cx43) is the most important isoform. Previous studies have shown that GJ-mediated communication has an important role in the cellular response to stress or ischemia. However, recent evidence suggests that connexins, and in particular Cx43, may have additional effects that may be important in cell death and survival by mechanisms independent of cell to cell communication. Connexin hemichannels, located at the plasma membrane, may be important in paracrine signaling that could influence intracellular calcium and cell survival by releasing intracellular mediators as ATP, NAD(+), or glutamate. In addition, recent studies have shown the presence of connexins in cell structures other than the plasma membrane, including the cell nucleus, where it has been suggested that Cx43 influences cell growth and differentiation. In addition, translocation of Cx43 to mitochondria appears to be important for certain forms of cardioprotection. These findings open a new field of research of previously unsuspected roles of Cx43 intracellular signaling.  相似文献   

9.
It has been suggested that the opening of non-junctional connexin 43 (Cx43) hemichannels may play a role in cell physiology, but some workers doubt the reality of hemichannel openings. Here we show data on unitary conductance and voltage gating properties demonstrating that Cx43 hemichannels can open. Membrane depolarization > +60 mV induced single hemichannel currents in HeLa cells expressing Cx43 or Cx43 with enhanced green fluorescent protein attached to the carboxy terminal (Cx43-EGFP). The conductance of single hemichannels was approximately 220 pS, about twice that of the cell-cell channels. Cx43 and Cx43-EGFP hemichannels exhibited slow transitions (>5 ms) between closed and fully open states. Cx43 hemichannels also exhibited fast transitions (<1 ms) between the fully open state and a substate of approximately 75 pS. Similar gating was described for their respective cell-cell channels. No comparable single channel activity was detected in the parental (nontransfected cells) or HeLa cells expressing Cx43 fused at the amino terminal with EGFP (EGFP-Cx43). The latter chimera was inserted into the surface and formed plaques, but did not express functional hemichannels or cell-cell channels. These data convincingly demonstrate the opening of Cx43 hemichannels.  相似文献   

10.
It has been suggested that plasma membrane-bound hemichannels perform physiological and pathophysiological functions per se. Such functions require the presence of hemichannels on the cell surface and their accessibility to the extracellular environment for at least some limited period of time. We have previously shown that hemichannels can be labeled by means of antibodies directed to an external loop domain of connexin (Cx) 43. We now provide evidence that trafficking of hemichannel vesicles can be visualized upon binding of a labeled homophilic peptide corresponding to a region of the first extracellular loop (EL1) of Cx43. In vivo imaging was performed after labeling hemichannels from the extracellular site with a mimetic peptide tagged with a fluorochrome (Alexa-546). Using a Cx43-CFP transfected HeLa cell line for incubation with the mimetic peptide, a significant number of double-labeled vesicles were found inside the cells. This double labeling indicates that a portion of Cx43 within the cell had accessed the cell surface as hemichannels where it bound to the peptide and was subsequently endocytosed. Pulse labeling with the peptide showed a decrease in the number of dual-labeled vesicles over time, indicating degradation and/or concurrent recycling of hemichannel vesicles.  相似文献   

11.
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.  相似文献   

12.
In mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels. Here, we established an expression system in Pichia pastoris to recombinantly produce and purify Cx43 as well as Cx43 fused to green fluorescent protein (GFP). Proteins were isolated from crude cell membrane fractions via affinity chromatography. Cx43 and Cx43-GFP hemichannels were reconstituted in giant unilamellar vesicles as proven by fluorescence microscopy, and their electrophysiological behavior was analyzed on the single channel level by planar patch clamping. Cx43 and Cx43-GFP both showed an ohmic behavior and a voltage-dependent open probability. Cx43 hemichannels exhibited one major mean conductance of 224 ± 26 picosiemens (pS). In addition, a subconductance state at 124 ± 5 pS was identified. In contrast, the analysis of Cx43-GFP single channels revealed 10 distinct conductance states in the range of 15 to 250 pS, with a larger open probability at 0 mV as compared with Cx43, which suggests that intermolecular interactions between the GFP molecules alter the electrophysiology of the protein.  相似文献   

13.
It has been suggested that the opening of non-junctional connexin 43 (Cx43) hemichannels may play a role in cell physiology, but some workers doubt the reality of hemichannel openings. Here we show data on unitary conductance and voltage gating properties demonstrating that Cx43 hemichannels can open. Membrane depolarization > +60 mV induced single hemichannel currents in HeLa cells expressing Cx43 or Cx43 with enhanced green fluorescent protein attached to the carboxy terminal (Cx43-EGFP). The conductance of single hemichannels was ~220 pS, about twice that of the cell-cell channels. Cx43 and Cx43-EGFP hemichannels exhibited slow transitions (>5 ms) between closed and fully open states. Cx43 hemichannels also exhibited fast transitions (<1 ms) between the fully open state and a substate of ~75 pS. Similar gating was described for their respective cell-cell channels. No comparable single channel activity was detected in the parental (nontransfected cells) or HeLa cells expressing Cx43 fused at the amino terminal with EGFP (EGFP-Cx43). The latter chimera was inserted into the surface and formed plaques, but did not express functional hemichannels or cell-cell channels. These data convincingly demonstrate the opening of Cx43 hemichannels.  相似文献   

14.
Connexin-based gap junction hemichannels: gating mechanisms   总被引:13,自引:0,他引:13  
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.  相似文献   

15.
It has been suggested that plasma membrane-bound hemichannels perform physiological and pathophysiological functions per se. Such functions require the presence of hemichannels on the cell surface and their accessibility to the extracellular environment for at least some limited period of time. We have previously shown that hemichannels can be labeled by means of antibodies directed to an external loop domain of connexin (Cx) 43 (1). We now provide evidence that trafficking of hemichannel vesicles can be visualized upon binding of a labeled homophilic peptide corresponding to a region of the first extracellular loop (EL1) of Cx43. In vivoimaging was performed after labeling hemichannels from the extracellular site with a mimetic peptide tagged with a fluorochrome (Alexa-546). Using a Cx43-CFP transfected HeLa cell line for incubation with the mimetic peptide, a significant number of double-labeled vesicles were found inside the cells. This double labeling indicates that a portion of Cx43 within the cell had accessed the cell surface as hemichannels where it bound to the peptide and was subsequently endocytosed. Pulse labeling with the peptide showed a decrease in the number of dual-labeled vesicles over time, indicating degradation and/or concurrent recycling of hemichannel vesicles.  相似文献   

16.
ATP-dependent paracrine signaling, mediated via the release of ATP through plasma membrane-embedded hemichannels of the connexin family, coordinates a synchronized response between neighboring cells. Connexin 43 (Cx43) hemichannels that are present in the plasma membrane need to be tightly regulated to ensure cell viability. In monolayers of bovine corneal endothelial cells (BCEC),Cx43-mediated ATP release is strongly inhibited when the cells are treated with inflammatory mediators, in particular thrombin and histamine. In this study we investigated the involvement of RhoA activation in the inhibition of hemichannel-mediated ATP release in BCEC. We found that RhoA activation occurs rapidly and transiently upon thrombin treatment of BCEC. The RhoA activity correlated with the onset of actomyosin contractility that is involved in the inhibition of Cx43 hemichannels. RhoA activation and inhibition of Cx43-hemichannel activity were both prevented by pre-treatment of the cells with C3-toxin as well as knock down of RhoA by siRNA. These findings provide evidence that RhoA activation is a key player in thrombin-induced inhibition of Cx43-hemichannel activity. This study demonstrates that RhoA GTPase activity is involved in the acute inhibition of ATP-dependent paracrine signaling, mediated by Cx43 hemichannels, in response to the inflammatory mediator thrombin. Therefore, RhoA appears to be an important molecular switch that controls Cx43 hemichannel openings and hemichannel-mediated ATP-dependent paracrine intercellular communication under (patho)physiological conditions of stress.  相似文献   

17.
Many cell signalling pathways are driven by changes in cytosolic calcium. We studied the effects of a range of inhibitors of connexin channels on calcium signalling in cardiac cells and HeLa cells expressing connexins. Gap 26 and 27, peptides that mimic short sequences in each of the extracellular loops of connexin 43, and anti-peptide antibodies generated to extracellular loop sequences of connexins, inhibited calcium oscillations in neonatal cardiac myocytes, as well as calcium transients induced by ATP in HL-1 cells originating from cardiac atrium and HeLa cells expressing connexin 43 or 26. Comparison of single with confluent cells showed that intracellular calcium responses were suppressed by interaction of connexin mimetic peptides and antibodies with hemichannels present on unapposed regions of the plasma membrane. To investigate how inhibition of hemichannels in the plasma membrane by the applied reagents was communicated to calcium store operation in the endoplasmic reticulum, we studied the effect of Gap 26 on calcium entry into cells and on intracellular IP3 release; both were inhibited by Gap 26. Calcium transients in both connexin 43- and connexin 26-expressing HeLa cells were inhibited by the peptides suggesting that the extended cytoplasmic carboxyl tail domain of larger connexins and their interactions with intracellular scaffolding/auxiliary proteins were unlikely to feature in transmitting peptide-induced perturbations at hemichannels in the plasma membrane to IP3 receptor channel central to calcium signalling. The results suggest that calcium levels in a microenvironment functionally connecting plasma membrane connexin hemichannels to downstream IP3-dependent calcium release channels in the endoplasmic reticulum were disrupted by the connexin mimetic peptide, although implication of other candidate hemichannels cannot be entirely discounted. Since calcium signalling is fundamental to the maintenance of cellular homeostasis, connexin hemichannels emerge as therapeutic targets open to manipulation by reagents interacting with external regions of these channels.  相似文献   

18.
1. Hemichannels formed by connexin26 (Cx26) on the horizontal cell dendrites that invaginate cone terminals in the vertebrate retina have been implicated in the feedback mechanism by which horizontal cells regulate transmitter release from cone photoreceptors. However, their membrane properties had not been studied previously, and it was unclear whether they could subserve their purported function at the membrane potentials over which horizontal cells operate. 2. We used the two-electrode voltage clamp technique to record the membrane currents and pharmacological properties of Cx26 hemichannels formed in the Xenopus oocyte expression system. 3. Oocytes expressing Cx26 exhibited large membrane conductances over a broad range of hyperpolarizing and depolarizing membrane potentials, and displayed little evidence of voltage-dependent gating, indicating that the hemichannels are constitutively open. The Cx26-mediated nonjunctional currents were relatively insensitive to quinine, a cinchona alkaloid that opens hemichannels formed by several other connexins. However, the hemichannel currents were blocked by carbenoxolone, a rise in extracellular calcium, or lowering intracellular pH. The currents could also be suppressed by reducing extracellular pH, and by the chloride channel blocker NPPB through its direct interaction with Cx26 hemichannels. 4. These findings provide a basis with which to evaluate the in situ pharmacological studies that attempt to assess the putative role of Cx26 hemichannels in the feedback pathway in the distal retina.  相似文献   

19.
Connexin (Cx) proteins form intercellular gap junction channels by first assembling into single membrane hemichannels that then dock to connect the cytoplasm of two adjacent cells. Gap junctions are highly specialized structures that allow the direct passage of small molecules between cells to maintain tissue homeostasis. Functional activity of nonjunctional hemichannels has now been shown in several experimental systems. Hemichannels may constitute an important diffusional exchange pathway with the extracellular space, but the extent of their normal physiological role is currently unknown. Aberrant hemichannel activity has been linked to mutations of connexin proteins involved in genetic diseases. Here, we review a proposed role for hemichannels in the pathogenesis of Keratitis-Ichthyosis-Deafness (KID) syndrome associated with connexin26 (Cx26) mutations. Continued functional evaluation of mutated hemichannels linked to human hereditary disorders may provide additional insights into the mechanisms governing their regulation in normal physiology and dysregulation in disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

20.
《FEBS letters》2014,588(8):1297-1303
The avascular lens of the eye is covered anteriorly by an epithelium containing nucleated, metabolically active cells. This epithelium contains the first lens cells to encounter noxious external stimuli and cells that can develop compensatory or protective responses. Lens epithelial cells express the gap junction proteins, connexin43 (Cx43) and connexin50 (Cx50). Cx43 and Cx50 form gap junction channels and hemichannels with different properties. Although they may form heteromeric hemichannels, Cx43 and Cx50 probably do not form heterotypic channels in the lens. Cx50 channels make their greatest contribution to intercellular communication during the early postnatal period; subsequently, Cx43 becomes the predominant connexin supporting intercellular communication. Although epithelial Cx43 appears dispensable for lens development, Cx50 is critical for epithelial cell proliferation and differentiation. Cx43 and Cx50 hemichannels and gap junction channels are regulated by multiple different agents. Lens epithelial cell connexins contribute to both normal lens physiology and pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号