首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a computer model written for whole leaves (Slovik et al. 1992, Planta 187, 14–25) we present in this paper calculations of abscisic acid (ABA) redistribution among different leaf tissues and their compartments in relation to stomatal regulation under drought stress. The model calculations are based on experimental data and biophysical laws. They yield the following results and postulates: (i) Under stress, compartmental pH-shifts come about as a consequence of the inhibition of the pH component of proton-motive forces at the plasmalemma. There is a decrease of net proton fluxes by about 8.6 nmol · s–1 · m–2. (ii) Using stress-induced pH-shifts we demonstrate how stress intensities can be quantified on a molecular basis. (iii) As the weak acid ABA is the only phytohormone which behaves in vivo and in vitro ideally according to the Henderson-Hasselbalch equation, pH-shifts induce a complicated redistribution amongst compartments in the model leaf. (iv) The final accumulation of ABA in guard-cell walls is intensive: up to 16.1-fold compared with only up to 3.4-fold in the guard-cell cytosol. We propose that the binding site of the guard-cell ABA receptor faces the apoplasm. (v) A twoto three-fold ABA accumulation in guard-cell walls is sufficient to induce closure of stomata. (vi) The minimum time lag until stomata start to close is 1–5 min; it depends on the stress intensity and on the guard-cell sensitivity to ABA: the more moderate the stress is, the later stomata start to close or they do not close at all. (vii) In the short term, there is almost no influence of the velocity of pH-shifts on the velocity of the ABA redistribution, (viii) Six hours after the termination of stress there is still an ABA concentration 1.4-fold the initial level in the guard-cell cytosol (delay of ABA relaxation, aftereffect), (ix) The observed induction of net ABA synthesis after onset of stress may be explained by a decrease in cytosolic ABA degradation. About 1 h after onset of stress the model leaf would start to synthesise ABA (and its conjugates) automatically, (x) This ABA net synthesis serves to inform roots via an increased ABA concentration in the phloem sap. The stress-induced ABA redistribution is per se not sufficient to feed the ploem sap with ABA. (xi) The primary target membrane of stress is the plasmalemma, not thylakoids. (xii) The effective stress sensor, which induces the proposed signal chain finally leading to stomatal closure, is located in epidermal cells. Mesophyll cells are not capable of creating a significant ABA signal to guard cells if the epidermal plasmalemma conductance to undissociated molecular species of ABA (HABA) is indeed higher than the plasmalemma conductance of the mesophyll (plasmodesmata open), (xiii) All model conclusions which can be compared with independent experimental data quantitatively fit to them. We conclude that the basic experimental data of the model are consistent. A stress-induced ABA redistribution in the leaf lamina elicits stomatal closure.Abbreviations ABA abscisic acid - CON vacuolar ABA conjugates We are grateful to Prof. U. Heber (Lehrstuhl Botanik I, University of Würzburg, FRG) for stimulating discussions. This work has been performed within the research program of the Sonderforschungsbereich 251 (TP 3 and 4) of the University of Würzburg. It has been also supported by the Fonds der Chemischen Industrie.  相似文献   

2.
Microtubules are essential for guard-cell function in Vicia and Arabidopsis   总被引:1,自引:0,他引:1  
Radially arranged cortical microtubules are a prominent feature of guard cells. Guard cells expressing GFP-tubulin showed consistent changes in the appearance of microtubules when stomata opened or closed. Guard cells showed fewer microtubule structures as stomata closed, whether induced by transfer to darkness, ABA, hydrogen peroxide, or sodium hydrogen carbonate. Guard cells kept in the dark (closed stomata) showed increases in microtubule structures and stomatal aperture on light treatment. GFP-EB1, marking microtubule growing plus ends, showed no change in number of plus ends or velocity of assembly on stomatal closure. Since the number of growing plus ends and the rate of plus-end growth did not change when microtubule structure numbers declined, microtubule instability and/or rearrangement must be responsible for the apparent loss of microtubules. Guard cells with closed stomata showed more cytosolic GFP-fluorescence than those with open stomata as cortical microtubules became disassembled, although with a large net loss in total fluorescence. Microtubule-targeted drugs blocked guard-cell function in Vicia and Arabidopsis. Oryzalin disrupted guard-cell microtubules and prevented stomatal opening and taxol stabilized guard-cell microtubules and delayed stomatal closure. Gas exchange measurements indicated that the transgenes for fluorescent-labeled proteins did not disrupt normal stomatal function. These dynamic changes in guard-cell microtubules combined with our inhibitor studies provide evidence for an active role of microtubules in guard-cell function.  相似文献   

3.
In mammalian cells sphingosine-1-phosphate (S1P) is a well-established messenger molecule that participates in a wide range of signalling pathways. The objective of the work reported here was to investigate the extent to which phosphorylated long-chain sphingoid bases, such as sphingosine-1-phosphate and phytosphingosine-1-phosphate (phytoS1P) are used in plant cell signalling. To do this, we manipulated Arabidopsis genes capable of metabolizing these messenger molecules. We show that Sphingosine kinase1 (SPHK1) encodes an enzyme that phosphorylates sphingosine, phytosphingosine and other sphingoid long-chain bases. The stomata of SPHK1-KD Arabidopsis plants were less sensitive, whereas the stomata of SPHK1-OE plants were more sensitive, than wild type to ABA. The rate of germination of SPHK1-KD was enhanced, whereas the converse was true for SPHK1-OE seed. Reducing expression of either the putative Arabidopsis S1P phosphatase (SPPASE) or the DPL1 gene, which encodes an enzyme with S1P lyase activity, individually, had no effect on guard-cell ABA signalling; however, stomatal responses to ABA in SPPASEDPL1 RNAi plants were compromised. Reducing the expression of DPL1 had no effect on germination; however, germination of SPPASE RNAi seeds was more sensitive to applied ABA. We also found evidence that expression of SPHK1 and SPPASE were coordinately regulated, and discuss how this might contribute to robustness in guard-cell signalling. In summary, our data establish SPHK1 as a component in two separate plant signalling systems, opening the possibility that phosphorylated long-chain sphingoid bases such as S1P and phytoS1P are ubiquitous messengers in plants.  相似文献   

4.
We recently established an immunohistochemical method for the detection of blue light (BL)-induced and phototropin-mediated phosphorylation of plasma-membrane H+-ATPase in stomatal guard cells of Arabidopsis thaliana. This technique makes it possible to detect the phosphorylation/activation status of guard-cell H+-ATPase in the epidermis of a single rosette leaf, without the need to prepare guard-cell protoplasts (GCPs) from a large number of plants. Moreover, it can detect guard-cell responses under more natural and stress-free conditions compared to using GCPs. Taking advantage of these properties, we examined the effect of abscisic acid (ABA) on BL-induced phosphorylation of guard-cell H+-ATPase by using ABA-insensitive mutants. This revealed inhibition of BL-induced phosphorylation of guard-cell H+-ATPase via the early ABA-signaling components PYR/PYL/RCAR-PP2Cs-SnRK2s, which are known to be early ABA-signaling components for a wide range of ABA responses in plants.   相似文献   

5.
Abscisic acid (ABA) integrates the water status of a plant and causes stomatal closure. Physiological mechanisms remain poorly understood, however, because guard cells flanking stomata are small and contain only attomol quantities of ABA. Here, pooled extracts of dissected guard cells of Vicia faba L. were immunoassayed for ABA at sub‐fmol sensitivity. A pulse of water stress was imposed by submerging the roots in a solution of PEG. The water potentials of root and leaf declined during 20 min of water stress but recovered after stress relief. During stress, the ABA concentration in the root apoplast increased, but that in the leaf apoplast remained low. The ABA concentration in the guard‐cell apoplast increased during stress, providing evidence for intra‐leaf ABA redistribution and leaf apoplastic heterogeneity. Subsequently, the ABA concentration of the leaf apoplast increased, consistent with ABA import via the xylem. Throughout, the ABA contents of the guard‐cell apoplast, but not the guard‐cell symplast, were convincingly correlated with stomatal aperture size, identifying an external locus for ABA perception under these conditions. Apparently, ABA accumulates in the guard‐cell apoplast by evaporation from the guard‐cell wall, so the ABA signal in the xylem is amplified maximally at high transpiration rates. Thus, stomata will display apparently higher sensitivity to leaf apoplastic ABA if stomata are widely open in a relatively dry atmosphere.  相似文献   

6.
7.
We investigated, under laboratory and field conditions, the possibility that increasing abscisic acid (ABA) concentrations and decreasing water potentials can interact in their effects on stomata. One experiment was carried out with epidermal pieces of Commelina communis incubated in media with a variety of ABA and polyethylene glycol concentrations. In the media without ABA, incubation in solutions with water potentials between −0.3 and −1.5 megapascals had no significant effect on stomatal aperture. Conversely, the sensitivity of stomatal aperture to ABA was trebled in solutions at −1.5 megapascals compared with sensitivity at −0.3 megapascals. The effect of the change in sensitivity was more important than the absolute effect of ABA at the highest water potential. In a field experiment, sensitivity of maize stomatal conductance to the concentration of ABA in the xylem sap varied strongly with the time of the day. We consider that the most likely explanation for this is the influence of a change in leaf or epidermal water potential that accompanies an increase in irradiance and saturation deficit as the day progresses. These observations suggest that epidermal water relations may act as a modulator of the responses of stomata to ABA. We argue that such changes must be taken into account in studies or modeling of plant responses to drought stress.  相似文献   

8.
W. Lahr  K. Raschke 《Planta》1988,173(4):528-531
The abscisic-acid (ABA) contents of isolated guard-cell protoplasts and mesophyll-cell protoplasts fromVicia faba were determined by high-pressure liquid chromatography followed by gas chromatography. The amounts of ABA found immediately after preparation of the protoplasts varied from 90 to 570 amol per guard-cell protoplast, and from 75 to 100 amol per mesophyll-cell protoplast. These contents correspond to concentrations between 36 and 230 mol per liter in guard-cell protoplasts and between 2.7 and 3.3 mol per liter in mesophyll-cell protoplasts. During exposure of protoplasts to betaine concentrations of 0.3, 0.5, and 0.8 mol·l-1 at 0° and 20°C for 30 min, ABA contents as well as the fractions of ABA that leaked into the medium remained constant for both protoplast types. There was no evidence for net production of ABA in isolated protoplasts subjected to osmotic stress.Abbreviation ABA abscisic acid  相似文献   

9.
We investigated the hypothesis that stomatal aperture is regulated by epidermal water status. Detached epidermal peels of Commelina communis L. or leaf disks with epidermis attached were incubated in graded solutions of mannitol (0–1.2 M) containing KCl. In isolated epidermis, guard-cell solute content of open stomata did not decrease in response to desiccation. Guard cells of closed stomata accumulated solutes to the same extent in all levels of mannitol tested. There was no evidence of stress-induced hydroactive closure nor of inhibition of hydroactive opening, even when guard cells of closed stomata were initially plasmolyzed. Hydropassive, osmometer-like, changes in stomatal aperture in the isolated epidermis were induced by addition or removal of mannitol, but these did not involve changes in guard-cell solute content. In leaf disks, stomata exhibited clear hydroactive stomatal responses. Steady-state guard-cell solute content of initially open and initially closed stomata decreased substantially with increasing mannitol. Stomata were completely closed above approx. 0.4 M mannitol, near the turgor-loss point for the bulk leaf tissue. Stomata of Commelina did not exhibit direct hydroactive responses to environmental or epidermal water status. Stomatal responses to water deficit and low humidity may be indirect, mediated by abscisic acid or other signal metabolite(s) from the mesophyll.Abbreviations ABA abscisic acid - EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Mes 2-(N-morpholino)ethanesulfonic acid  相似文献   

10.
Abscisic acid (ABA)-induced increase in stomatal diffusive resistance (SDR) in excised leaves of bean (Phaseolus vulgaris L. cv Pencil Pod) and maize (Zea mays L. cv Golden Bantam) is inhibited by low concentrations of trans-cinnamic acid (TCA) (1 micromolar) and p-coumaric acid (PCA) (10 micromolar) when given together with ABA (10 micromolar) in the transpiration stream through the cut end of the petiole or leaf blade. A concentration effect is observed both in the ABA action and its reversal by phenolic acids. Leaves having attained a high diffusive resistance in ABA solution recover rapidly when transferred to water. ABA (10 micromolar) induced closure of the stomata in onion, Allium cepa L. and Vicia faba epidermal peels. This is associated with loss of K+ from guard cells. In the presence of TCA (10 micromolar) and PCA (10 micromolar) K+ is retained in the guard cells with open stomata. The dark closure of stomata is also inhibited by TCA and PCA. It is suggested that these phenolic acids may inhibit the ABA effect by competing with or acting on some ABA-specific site, probably located on the plasma membrane, regulating flux of K+ ions. A weak association of ABA with the plasma membrane is envisaged because of the rapid recovery obtained upon transferral of the leaves to water.  相似文献   

11.
Abscisic acid (ABA) is a phytohormone that plays an important role in responses to environmental stresses as well as seed maturation and germination. Intracellular signaling by ABA has been rigorously investigated in relation to stomatal guard-cell regulation, seed germination and abiotic stress responses. However, intercellular regulation of ABA, including the molecular basis of ABA transport systems, has hardly been examined in any plant species. Based on genetic and biochemical analyses, we present evidence that one of the ATP-binding cassette (ABC) transporter genes, AtABCG25, encodes a protein that functions as an ABA exporter through the plasma membrane and is involved in the intercellular ABA signaling pathway. The ABC-type transporter is conserved in model species from E. coli to humans and is reported to transport various metabolites or signaling molecules in an ATP-dependent manner. At same time, another ABC transporter in Arabidopsis, AtABCG40, was independently reported to function as an ABA importer in plant cells. These findings strongly suggest the active control of ABA transport between plant cells, and they provide a novel impetus for examining ABA intercellular regulation.Key words: Arabidopsis, ABA, transport, ABC transporter, ABCG, transposontagged lines  相似文献   

12.
13.
In this study, the role of abscisic acid (ABA) in altered stomatal responses of Tradescantia virginiana leaves grown at high relative air humidity (RH) was investigated. A lower ABA concentration was found in leaves grown at high RH compared with leaves grown at moderate RH. As a result of a daily application of 20 microM ABA to leaves for 3 weeks during growth at high RH, the stomata of ABA-treated leaves grown at high RH showed the same behaviour as did the stomata of leaves grown at moderate RH. For example, they closed rapidly when exposed to desiccation. Providing a high RH around a single leaf of a plant during growth at moderate RH changed the stomatal responses of this leaf. The stomata in this leaf grown at high RH did not close completely in response to desiccation in contrast to the stomata of the other leaves from the same plant. The ABA concentration on a fresh weight basis, though not on a dry weight basis, of this leaf was significantly lower than that of the others. Moreover, less closure of stomata was found in the older leaves of plants grown at high RH in response to desiccation compared with younger leaves. This was correlated with a lower ABA concentration in these leaves on a fresh weight basis, though not on a dry weight basis. Stomata of leaves grown at moderate RH closed in response to short-term application of ABA or sodium nitroprusside (SNP), while for leaves grown at high RH there was a clear difference in stomatal responses between the leaf margins and main-vein areas. The stomatal aperture in response to short-term application of ABA or SNP at the leaf margins of leaves grown at high RH remained significantly wider than in the main-vein areas. It was concluded that: (i) a long-term low ABA concentration in well-watered plants during growth at high RH could be a reason for less or no stomatal closure under conditions of drought stress; and (ii) the long-term ABA concentration on a fresh weight basis rather than on a dry weight basis is likely to be responsible for structural or physiological changes in stomata during leaf growth.  相似文献   

14.
Two novel approaches for the study of Ca2+-mediated signal transduction in stomatal guard cells are described. Stimulus-induced changes in guard-cell cytosolic Ca2+ ([Ca2+]cyt) were monitored using viable stomata in epidermal strips of a transgenic line of Nicotiana plumbaginifolia expressing aequorin (the proteinous luminescent reporter of Ca2+) and in a new transgenic line in which aequorin expression was targeted specifically to the guard cells. The results indicated that abscisic acid (ABA)-induced stomatal closure was accompanied by increases in [Ca2+]cyt in epidermal strips. In addition to ABA, mechanical and low-temperature signals directly affected stomatal behaviour, promoting rapid closure. Elevations of guard-cell [Ca2+]cyt play a key role in the transduction of all three stimuli. However, there were striking differences in the magnitude and kinetics of the three responses. Studies using Ca2+ channel blockers and the Ca2+ chelator EGTA further suggested that mechanical and ABA signals primarily mobilize Ca2+ from intracellular store(s), whereas the influx of extracellular Ca2+ is a key component in the transduction of low-temperature signals. These results illustrate an aspect of Ca2+ signalling whereby the specificity of the response is encoded by different spatial or kinetic Ca2+ elevations.  相似文献   

15.
Radin JW 《Plant physiology》1984,76(2):392-394
Cotton (Gossypium hirsutum L.) plants were grown in sand culture on nutrient solution containing adequate or growth-limiting levels of P. When water was withheld from the pots, stomata of the most recently expanded leaf closed at leaf water potentials of approximately −16 and −12 bars in the normal and P-deficient plants, respectively. Pressure-volume curves showed that the stomata of P-deficient plants closed when there was still significant turgor in the leaf mesophyll. Leaves of P-deficient plants accumulated more abscisic acid (ABA) in response to water stress, but the difference was evident only at low water potentials, after initiation of stomatal closure. In leaves excised from unstressed plants, P deficiency greatly increased stomatal response to ABA applied through the transpiration stream. Kinetin blocked most of this increase in apparent sensitivity to ABA. The effect of P nutrition on stomatal behavior may be related to alterations of the balance between ABA and cytokinins.  相似文献   

16.
17.
Two tropical tree species, Acacia confusa and Leucaena leucocephala, were used to study the relationships among stomatal conductance, xylem ABA concentration and leaf water potential during a soil drying and rewatering cycle. Stomatal conductance of both A. confusa and L. leucocephala steadily decreased with the decreases in soil water content and pre-dawn leaf water potential. Upon rewatering, soil water content and pre-dawn leaf water potential rapidly returned to the control levels, whereas the reopening of stomata showed an obvious lag time. The length of this lag time was highly dependent not only upon the degree of water stress but also on plant species. The more severe the water stress, the longer the lag time. When A. confusa and L. leucocephala plants were exposed to the same degree of water stress (around –2.0 MPa in pre-dawn leaf water potential), the stomata of A. confusa reopened to the control level 6 days after rewatering. However, it took L. leucocephala about 14 days to reopen fully. A very similar response of leaf photosynthesis to soil water deficit was also observed for both species. Soil drying resulted in a significant increase in leaf and xylem ABA concentrations in both species. The more severe the water stress, the higher the leaf and xylem ABA concentrations. Both leaf ABA and xylem ABA returned to the control level following relief from water deficit and preceded the full recovery of stomata, suggesting that the lag phase of stomatal reopening was not controlled by leaf and/or xylem ABA. In contrast to drying the whole root system, drying half of the root system did not change the leaf water relations, but caused a significant increase in xylem ABA concentration, which could fully explain the decrease of stomatal conductance. After rewatering, the stomatal conductance of plants in which half of the roots were dried recovered more rapidly than those of whole-root dried plants, indicating that the leaf water deficit that occurred during the drying period was related to the post-stress stomatal inhibition. These results indicated that the decrease in stomatal conductance caused by water deficit was closely related to the increase in xylem ABA, but xylem ABA could not fully explain the reopening of stomata after relief of water stress, neither did the leaf ABA. Some unknown physiological and/or morphological processes in the guard cells may be related to the recovery process.  相似文献   

18.
19.
The response of w-1, a wilty sunflower (Helianthus annuus L.)mutant, to water stress is described in comparison with thecontrol line (W-1). Detached leaves of w-1 strongly dehydratedduring the first 30 min without significant changes in leafconductance, whereas W-1 responded rapidly to water loss byreducing stomatal aperture. After 2 h stress ABA increased slightlyin w-1, while W-1 leaves showed a 20-fold increase. When waterstress was imposed to potted plants by water withholding, w-1quickly dehydrated, and lost turgor, while W-1 maintained positiveturgor values for a longer period. Wild-type plants respondedto small changes in leaf water potential by accumulating ABAand by closing stomata, whereas in the mutant significant changesin ABA content and in stomatal conductance were found only atvery low water potentials. In another experiment in which waterwas withheld under high relative humidity, when soil water contentstarted to decrease W-1 rapidly closed stomata in the absenceof any change in leaf water status and the reduction in conductancewas paralleled by a rise in xylem sap ABA concentration. Bycontrast the mutant started to accumulate ABA in the xylem sapand to close stomata when soil water content and leaf waterpotential were dramatically reduced. The low endogenous ABAlevels and the inability to synthesize the hormone rapidly eitherin the leaves or in the roots seem to be responsible for thehigh sensitivity of w-1 to water stress. Key words: ABA, Helianthus annuus L, water relations, stomatal conductance, drought, wilty mutant  相似文献   

20.
Among various epiphytic ferns found in the Brazilian Atlantic Forest, we studied Vittaria lineata (L.) Smith (Polypodiopsida, Pteridaceae). Anatomical characterization of the leaf was carried out by light microscopy, fluorescence microscopy, and scanning electron microscopy. V. lineata possesses succulent leaves with two longitudinal furrows on the abaxial surface. We observed abundant stomata inside the furrows, glandular trichomes, paraphises, and sporangia. We examined malate concentrations in leaves, relative water content (RWC), photosynthetic pigments, and chlorophyll (Chl) a fluorescence in control, water-deficient, and abscisic acid (ABA)-treated plants. Plants subjected to drought stress (DS) and treated by exogenous ABA showed significant increase in the malate concentration, demonstrating nocturnal acidification. These findings suggest that V. lineata could change its mode of carbon fixation from C3 to the CAM pathway in response to drought. No significant changes in RWC were observed among treatments. Moreover, although plants subjected to stress treatments showed a significant decline in the contents of Chl a and b, the concentrations of carotenoids were stable. Photosynthetic parameters obtained from rapid light curves showed a significant decrease after DS and ABA treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号