首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Magnetic circular dichroism (MCD) spectra of Pseudomonas aeruginosa cytochrome oxidase are reported over the spectral range of 350–700 nm for the oxidized, ascorbate-reduced, dithionite-reduced and reduced carbon monoxide forms. The spectra of all forms examined can be interpreted as the simple sum of the individual heme c and heme d1 contributions without invoking “heme-heme interaction.” In particular and contrary to a recent report [Orii, Shimada, Nozawa, and Hatano, this Journal 76, 983 (1977)] no effect of ligand binding to ferrous heme d1 was observed in the MCD spectrum of the heme c component. It seems likely that the previous findings were the result of incomplete reduction of the enzyme in the absence of stabilizing ligands.  相似文献   

2.
Absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of beef liver catalase at pH 5.0 and 6.9, and its complexes with NaF, KCNO, NaCNS, NaN3 and NaCN, have been measured between 250 nm and 700 nm at room temperature. The pH 6.9 native catalase MCD shows the presence of several additional transitions not resolved in the absorption spectrum. While these bands can be seen in the spectra of all the derivatives, with the exception of the cyanide, their relative intensities changes considerably between complexes. Of special interest in the MCD of ferric hemes is the signal intensity at about 400 nm and 620 nm. The data indicate that the MCD intensity at 620 nm increases as the high spin iron porphyrin fraction increases, reaching a maximum with the fluoride complex. The 430 nm band intensity increases as the proportion of low spin iron increases, reaching a maximum with the cyanide complex. The MCD spectra also indicate clearly the existence of spin mixtures in the complexes with CNO-, CNS-, and N3-, where both the 430 nm and 620 nm bands have appreciable intensity. It is significant that despite almost identical absorption spectra the CNS- complex has higher fraction of low spin iron than either the CNO- or the N3- species. The differences between the pH 5 and 6.9 MCD spectra of the native catalase suggest that the environment of the heme centre is sensitive to protonation.  相似文献   

3.
Vacuum ultraviolet circular dichroism spectra are reported for poly(galacturonic acid) solution and film, sodium polygalacturonate solution and film, and calcium polygalacturonate gel. In addition to the positive c.d. band near 208 nm previously observed, we find a pair of higher energy bands at 170 180 nm (negative) and 145 nm (positive). The low energy band, assigned to an n-π1 carboxyl transition, is blue-shifted upon gelation or film formation.  相似文献   

4.
A possibility of a heme-heme interaction between the heme c and heme d moieties in Pseudomonas nitrite reductase was examined by using magnetic and natural circular dichroism. The MCD of the heme c moiety in the ferric enzyme was similar to that of mammalian ferricytochrome c in shape and intensity, whereas in the reduced state the MCD intensity was considerably smaller than that of ferrocytochrome c. When the heme d moiety was perturbed by the complex formation with CO, imidazole or cyanide as well as by pH changes, the depressed MCD was restored to the MCD level of mammalian ferrocytochrome c, accompanying conformational changes around the prosthetic groups. Thus, it was concluded that the heme-heme interaction exists only in the reduced enzyme and that this interaction is released under appropriate conditions.  相似文献   

5.
The conformational properties of four 2′ – 5′ dinucleoside monophosphates modified with N-2-acetylaminofluorene have been studied by circular dichroism spectroscopy. Covalent binding of this chemical carcinogen at the C8 position of guanosine in the 2′ – 5′ dinucleoside monophosphates induces striking changes in their circular dichroic spectra depending on their base sequence and composition. The changes in CD spectra, redshift of the extrema and change of their polarity, not observed in the spectra of corresponding 3′ – 5′ derivatives modified with N-2-acetylaminofluorene are correlated with the difference in the configuration of 2′ – 5′ and 3′ – 5′ dinucleoside monophosphates and discussed in respect to the intramolecular stacking interactions.  相似文献   

6.
10% of the chlorophyll associated with a ‘native’ Photosystem (PS) I complex (110 chlorophylls/P-700) is chlorophyll (Chl) b. The Chl b is associated with a specific PS I antenna complex which we designate as LHC-I (i.e., a light-harvesting complex serving PS I). When the native PS I complex is degraded to the core complex by LHC-I extraction, there is a parallel loss of Chl b, fluorescence at 735 nm, together with 647 and 686 nm circular dichroism spectral properties, as well as a group of polypeptides of 24-19 kDa. In this paper we present a method by which the LHC-I complex can be dissociated from the native PS I. The isolated LHC-I contains significant amounts of Chl b (Chl ab ? 3.7). The long-wavelength fluorescence at 730 nm and circular dichroism signal at 686 nm observed in native PS I are maintained in this isolated complex. This isolated fraction also contains the low molecular weight polypeptides lost in the preparation of PS I core complex. We conclude that we have isolated the PS I antenna in an intact state and discuss its in vivo function.  相似文献   

7.
Absorption, circular dichroism (CD), magnetic circular dichroism (MCD) and emission spectra are reported for rat kidney Hg,Cu-metallothionein isoform 3 isolated following induction of the metallothionein with HgCl2. While the absorption spectrum is featureless, both the CD and MCD spectra show resolved bands that arise from the Cu-thiolate and Hg-thiolate groups. The emission spectrum at 77 K is much more complicated than would be expected for a copper (I)-containing metallothionein. It is suggested the emission only arises from the copper-thiolate groups but that the presence of the mercury results in copper ions in several different environments depending on the nature of the nearest neighbour.  相似文献   

8.
Cyclic tripeptides cyclo(L-Phe-L-Pro-Aca) (molecule 3) (Aca, ?-aminocaproic acid) and cyclo(-D-Phe-L-Pro-Aca) (molecule 4) are designed as models of specific types of β-bend. Energy calculation and 1H and 13C NMR studies have indicated that peptides 3 and 4 form β-bend types VI and II', respectively. Circular dichroism spectra of 4 have a double minimum negative band at the region of 200–230 nm like those of gramicidin S. The spectra of 3, forming the cis peptide bond just before Pro, have a negative extremum at the 210–213 nm region. The spectra are used to estimate the contribution of various bend types in peptides.β-BendCD MeasurementConformational energy calculationCyclic peptideGramicidin SNMR measurement  相似文献   

9.
Magnetic circular dichroism of non-heme iron proteins   总被引:1,自引:0,他引:1  
The magnetic circular dichroism (MCD) at 45 kgauss has been determined for a group of non-heme iron proteins. Both transferrin and conalbumin exhibit a single, positive ellipticity band at 330 nm ([θ]M = 560). Oxy- and methemerythrin, spinach and clostridial ferredoxins and rubredoxin all display distinctive multibanded spectra which may reflect such factors as coordination of the metal, its ligands, metal bridging by other atoms, and varying degrees of metalmetal coupling. The MCD spectra of both ferredoxins and rubredoxin undergo dramatic change upon oxidoreduction providing a potential means for relating the electronic structure of the iron to protein function. In contrast to the plant ferredoxins, the magnetic field does not significantly affect the CD spectra of adrenodoxin and putidaredoxin.  相似文献   

10.
Mavicyanin from zucchini peelings has been characterized by electronic absorption, circular dichroism (CD), magnetic circular dichroism (MCD), resonance Raman (RR), and electron paramagnetic resonance (EPR) spectra. The electronic absorption, CD, MCD, and EPR spectra are appreciably similar to those of stellacyanin from lacquer, in which the tetrahedral Cu center has a donor set composed of four amino acid residues [2 histidine (His), cysteine (Cys), and glutamine (Gln)]. Under neutral conditions, mavicyanin and stellacyanin show intense blue bands at 599 and 604?nm, respectively. However, the RR spectrum of mavicyanin between 300 and 450?cm–1, which is believed to originate from the predominant Cu–S stretching vibration, is remarkably different from that of stellacyanin. This might be due to a slight distortion of the tetrahedral Cu(II) center toward tetragonal geometry in mavicyanin. Moreover, the d–d transition bands of Co(II)-substituted mavicyanin are slightly blue-shifted compared with those of Co(II)-substituted stellacyanin. This finding also suggests a difference in distortion between these tetrahedral Co(II) centers in spite of the same donor sets.  相似文献   

11.
Oxidation of the 8Fe ferredoxin from Clostridium pasteurianum with potassium ferricyanide, followed by purification on Sephadex G-25 and DE-23 cellulose columns, gives a protein with an intense EPR signal at g 2.01. The low-temperature magnetic circular dichroism (MCD) spectra of this species are different from those of the oxidized high-potential iron protein from Chromatium but identical with the spectra of ferredoxin II from Desulphovibrio gigas. On reduction of the ferricyanide-treated ferredoxin with sodium dithionite only a weak EPR signal with g factors of 2.05, 1.94 and 1.89 is obtained. The low-temperature MCD spectra are strongly temperature dependent with a form similar to those of dithionite-reduced D. gigas ferredoxin II. The MCD magnetization curves are dominated by a species with ground-state effective g factors of g? 8.0 and g 0.0, which are also similar to those determined recently by low-temperature MCD spectroscopy for D. gigas ferredoxin II. The MCD characteristics are quite different from those of dithionite-reduced ferredoxin from Cl. pasteurianum, untreated with ferricyanide. This establishes the close similarity of the iron-sulphur clusters in ferricyanide-treated Cl. pasteurianum ferredoxin and in D. gigas ferredoxin II. The latter is known to contain a single 3Fe centre, similar to that observed in ferredoxin I from Azotobacter vinelandii by X-ray crystallography. Therefore, it is concluded that the [4Fe-4S] clusters of Cl. pasteurianum ferredoxin are converted to 3Fe clusters on oxidation with ferricyanide.  相似文献   

12.
W. Junge  H. Schaffernicht  N. Nelson 《BBA》1977,462(1):73-85
The mutual orientation of pigments in Photosystem I reaction centers from spinach is evaluated by polarized photochemistry. The photoinduced linear dichroism of the absorption changes of chlorophyll a1 at 701 nm is studied as function of the excitation wavelength. The Photosystem I reaction center particles contain about 100 and if depleted about 40 chlorophylls, respectively. To prevent their rapid Brownian rotation they were immobilized on DEAE-Sephadex.The excitation spectrum of the linear dichroism reveals a high degree of order between the long axis of β-carotene and the Qy transition moments of those chlorophyll a molecules absorbing at the red end of the spectrum. The latter are the most endangered ones for destructive oxidation via their triplet state. Hence, the location of β-carotene in close proximity to and in parallel with these chlorophylls seems to be most favourable for the protective role of β-carotene within the antennae system I. It is observed that the dichroic ratio of the absorption changes of chlorophyll a1 does not exceed a figure of 43, which characterizes a circularly degenerate system, even at far red excitation (724 nm). This will hit selectively those few chlorophyll a molecules with their peak absorption at about 700 nm (including the photooxidizable dimer). We conclude, if the dimer is the only species peaking at 700 nm then the two chlorophyll a within the dimer have their y-axes oriented perpendicular to each other. If there are some antennae in addition to the dimer, the y-axes of all chlorophyll-a peaking at 700 nm form a star which accounts for the circular degeneracy of absorption.  相似文献   

13.
By use of a newly constructed CD instrument, infrared magnetic circular dichroism (MCD) spectra were observed for various myoglobin derivatives. The ferric high spin myoglobin derivatives such as fluoride, water and hydroxide complexes, commonly exhibited the MCD spectra consisting of positive A terms. Therefore, the results reinforced the assignment that the infrared band is the charge transfer transition to the degenerate excited state (eg (dpi)). Since the fraction of A term estimated was approximately 80% for myoglobin fluoride and approximately 35% for myoglobin water, the effective symmetry for myoglobin fluoride is determined to be as close as D4h, while that for myoglobin water seems to have lower symmetry components. The ferric low spin derivatives such as myoglobin cyanide, myoglobin imidazole and myoglobin azide showed positive MCD spectra which are very similar to the electronic absorption spectra. These MCD spectra were assigned to the charge transfer transitions from porphyrin pi to iron d orbitals on the ground that they were observed only for the ferric low spin groups and insensitive to the axial ligands. The lack of temperature dependence in the MCD magnitude indicated that the MCD spectra are attributable to the Faraday B terms. Deoxymyoglobin, the ferrous high spin derivative, had fairly strong positive MCD around 760 nm with an anisotropy factor (delta epsilon/epsilon) of 1.4-10(-4). It shows some small MCD bands from 800 to 1800 nm. Among the ferrous low spin derivatives, carbonmonoxymyoglobin did not give any observable MCD in the infrared region while oxymyoglobin seemed to have significant MCD in the range from 700 to 1000 nm.  相似文献   

14.
The detailed spectral changes observed in the absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra upon addition of Cd2+ to rat liver Cd, Zn-metallothionein (MT) are reported. Results from dialysis experiments clearly demonstrate that up to 8.6 mole equivalents of Cd2+ can be bound to this protein. The excess Cd2+ ions bound appear to have lower binding constants than those of the first seven Cd2+ ions bound. Red blood cell hemolysate (RBC) can compete with the metallothionein for all Cd2+ bound in excess of seven mole equivalents. Thus the RBC hemolysate method of estimating protein concentrations is shown to be correct when based upon complete loading of all binding sites in MT with Cd2+.  相似文献   

15.
The vacuum ultraviolet circular dichroism spectrum of an isolated 4 → 1 hydrogen bonded β-turn is reported. The observed spectrum of N-acetyl-Pro-Gly-Leu-OH at ? 40°C in trifluoroethanol is in good agreement with the theoretically calculated CD spectrum of the β-turn conformation. This spectrum, particularly the presence of a strong negative band around 180 nm and a large ratio [θ]201[θ]225, can be taken as a characteristic feature of the isolated β-turn conformation. These CD spectral features can thus be used to distinguish the β-turn conformation from the β-structure in solution.  相似文献   

16.
The circular dichroism spectra of natural glycerophospholipids and synthetic 1-sn-phosphatidic acid were recorded. 3-sn-phosphatidic acid derivatives were found to show a positive Cotton effect, while 1-sn-phosphatidic acid revealed a negative Cotton effect. The results are interpreted in terms of the carboxyl sector rule. By this method phospholipase D was shown to produce stereospecifically 3-sn-phosphatidyl-1-sn-glycerol when incubated with egg yolk lecithin and exess of glycerol.  相似文献   

17.
The absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of valency hybrid hemoglobins and their constituents (alpha + and beta chains for alpha 2+beta 2, alpha and beta + chains for alpha 2 beta 2+: + denotes ferric heme) were measured in the Soret region for F-, H2O, N3- and CN- derivatives. Absorption and MCD spectra of valency hybrid hemoglobins were very similar to the arithmetic mean of respective spectra of their corresponding component chains in all derivatives. The Soret MCD intensity around 408 nm for various complexes of valency hybrid hemoglobins seems to reflect the spin state of ferric chains. Upon ferric and deoxy ferrous subunit association to make the deoxy valency hybrid hemoglobins, only the high-spin forms bound with F- and H2O of alpha 2+beta 2 displayed a blue shift in the peak position around 430 nm and those of alpha 2 beta 2+ an increase in intensity around 430 nm. The blue shift and the increase in intensity were considered to be caused by the structural changes in deoxy beta chains of alpha 2+beta 2 and deoxy alpha chains of alpha beta 2+, respectively. These spectral changes were interpreted on the basis of their oxygen-equilibrium properties. In contrast to absorption and MCD spectra, the CD spectra of valency hybrid hemoglobins were markedly different from the simple addition of those of their component chains in all derivatives examined. The large part of CD spectral changes upon subunit association were interpreted as changes in the heme vicinity accompanied by formation of the alpha 1 beta 1 subunit contact.  相似文献   

18.
The visible and near infrared magnetic circular dichroism (MCD) spectra of equilibrium high-spin ferrous derivatives of myoglobin, hemoglobin, horseradish peroxidase and mitochondrial cytochrome c oxidase at 15 K are compared with those of the corresponding proteins in nonequilibrium conformations produced by low-temperature photodissociation of CO-complexes of these proteins as well as of O2-complexes of myoglobin and hemoglobin. Over all the spectral region (450-800 nm) the intensities of MCD bands of hemoproteins studied in equilibrium conformation are shown to be strongly temperature-dependent, including a negative band at ca. 630 nm and positive bands at ca. 690 nm and at ca. 760 nm. In contrast to the absorption spectra, the low-temperature MCD spectra of high-spin ferrous hemoproteins differ significantly, reflecting the peculiarities in the heme iron coordination sphere which are created by a protein conformation. The MCD spectra reveal clearly the structural changes in the heme environment which occur on ligand binding. On the basis of assignment of d leads to d and charge-transfer transitions in the near infrared region the correlation is suggested between the wavelength position of the MCD band at approx. 690 nm and the value of iron out-of-plane displacement as well as between the location of the band at approx. 760 nm and the Fe-N epsilon (proximal histidine) bond strength (length) in equilibrium and nonequilibrium conformations of the hemoproteins studied. The high sensitivity of low-temperature MCD spectra to geometry at heme iron is discussed.  相似文献   

19.
Core histones, (H2A,H2B,H3,H4)2, were reconstituted with the synthethic polynucleotides poly(dA-dT)·poly(dA-dT) and poly(dG-dC)·poly(dG-dC) to yield synthetic chromatins containing 200 basepairs per octamer. These synthetic chromatins displayed a 36% decrease in the circular dichroism (CD) peak ellipticity from the value of the polynucleotide free in solution; the poly(dA-dT)·poly(dA-dT)/chromatin showed an increase in the complexity of the thermal denaturation profile compared to that of the polynucleotide. Both the temperature of maximum dhdT for each transition (Tm) and the relative amount of poly(dA-dT)·poly(dA-dT) in the synthetic chromatin melting in each of the four thermal transitions is a function of the ionic strength over the 0–5 mM sodium phosphate range (0.25 mM EDTA, pH 7.0); a shift of material toward higher melting transitions was observed with increasing ionic strength. The CD peak ellipticity value for both synthetic chromatins was ionic strength-independent over the 0–5 mM sodium phosphate range. These results are in contrast to those observed with H1H5 stripped chicken erythrocyte chromatin (Fulmer, A. and Fasman, G.D. (1979) Biopolymers 18, 2875–2891), where an ionic strength dependence was found. Differences in the CD spectra between poly(dA-dT)·poly(dA-dT)/chromatin, poly(dG-dC)·poly(dG-dC)/chromatin and H1H5 stripped chicken erythrocyte chromatin suggest subtle differences in assembly. Finally, the temperature dependence of the CD spectra of poly(dA-dT)·poly(dA-dT)-containing synthetic chromatin, which is similar to that for the polynucleotide, suggests the core histone bound polynucleotide has a large degree of conformational flexibility allowing it to undergo the premelt transition.  相似文献   

20.
Circular dichroism (CD) spectra have been determined for chromatin fractions obtained by ECTHAM-cellulose chromatography. The molecular ellipticity at the positive long wavelength maximum is about 3000 deg cm2/dmol for early-eluted chromatin fractions, thought to be relatively repressed in vivo, and 5000–6000 deg cm2/dmol for late-eluted chromatin fractions, those thought to be preferentially transcribable in vivo. CD bands in the peptide bond spectral region also differ for the two chromatin fractions, early-eluted chromatin having a more helical conformation for proteins. In addition to previously known differences in protein content, the biological activity of a native chromatin fraction can now be correlated with the conformation of its DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号