首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several proteins belonging to the ATP-binding cassettesuperfamily can affect ion channel function. These include the cystic fibrosis transmembrane conductance regulator, the sulfonylurea receptor, and the multidrug resistance protein P-glycoprotein (MDR1).We measured whole cell swelling-activatedCl currents(ICl,swell) inparental cells and cells expressing wild-type MDR1 or aphosphorylation-defective mutant (Ser-661, Ser-667, and Ser-671replaced by Ala). Stimulation of protein kinase C (PKC) with a phorbolester reduced the rate of increase inICl,swell only incells that express MDR1. PKC stimulation had no effect on steady-stateICl,swell.Stimulation of protein kinase A (PKA) with 8-bromoadenosine3',5'-cyclic monophosphate reduced steady-state ICl,swell only inMDR1-expressing cells. PKA stimulation had no effect on the rate ofICl,swellactivation. The effects of stimulation of PKA and PKC onICl,swell wereadditive (i.e., decrease in the rate of activation and reduction insteady-stateICl,swell). The effects of PKA and PKC stimulation were absent in cells expressing thephosphorylation-defective mutant. In summary, it is likely thatphosphorylation of MDR1 by PKA and by PKC alters swelling-activated Cl channels by independentmechanisms and that Ser-661, Ser-667, and Ser-671 are involved in theresponses ofICl,swell tostimulation of PKA and PKC. These results support the notion that MDR1phosphorylation affectsICl,swell.  相似文献   

2.
Cell swelling triggers in most cell typesan outwardly rectifying anion current,ICl,swell, via volume-regulated anion channels (VRACs). We have previously demonstrated in calf pulmonary artery endothelial (CPAE) cells that inhibition of the Rho/Rho kinase/myosin light chain phosphorylation pathway reduces the swelling-dependent activation of ICl,swell. However, theseexperiments did not allow us to discriminate between a direct activatorrole or a permissive effect. We now show that the Rho pathway did notaffect VRAC activity if this pathway was activated by transfecting CPAEcells with constitutively active isoforms of G (a Rho activatingheterotrimeric G protein subunit), Rho, or Rho kinase. Furthermore,biochemical and morphological analysis failed to demonstrate activationof the Rho pathway during hypotonic cell swelling. Finally,manipulating the Rho pathway with either guanosine5'-O-(3-thiotriphosphate) or C3 exoenzyme had no effect onVRACs in caveolin-1-expressing Caco-2 cells. We conclude that the Rhopathway exerts a permissive effect on VRACs in CPAE cells, i.e.,swelling-induced opening of VRACs requires a functional Rho pathway,but not an activation of the Rho pathway.

  相似文献   

3.
A Cl current activated by extracellular acidification, ICl(pHac), has been characterized in various mammalian cell types. Many of the properties of ICl(pHac) are similar to those of the cell swelling-activated Cl current ICl(swell): ion selectivity (I > Br > Cl > F), pharmacology [ICl(pHac) is inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 1,9-dideoxyforskolin (DDFSK), diphenylamine-2-carboxylic acid (DPC), and niflumic acid], lack of dependence on intra- or extracellular Ca2+, and presence in all cell types tested. ICl(pHac) differs from ICl(swell) in three aspects: 1) its rate of activation and inactivation is very much more rapid, currents reaching a maximum in seconds rather than minutes; 2) it exhibits a slow voltage-dependent activation in contrast to the fast voltage-dependent activation and time- and voltage-dependent inactivation observed for ICl(swell); and 3) it shows a more pronounced outward rectification. Despite these differences, study of the transition between the two currents strongly suggests that ICl(swell) and ICl(pHac) are related and that extracellular acidification reflects a novel stimulus for activating ICl(swell) that, additionally, alters the biophysical properties of the channel. cell swelling-activated chloride current; patch clamp; pH  相似文献   

4.
An inwardly rectifying swelling- and meiotic cell cycle-regulated anion current carried by the ClC channel splice variant CLH-3b dominates the whole cell conductance of the Caenorhabditis elegans oocyte. Oocytes also express a novel outwardly rectifying anion current termed ICl,OR. We recently identified a worm strain carrying a null allele of the clh-3 gene and utilized oocytes from these animals to characterize ICl,OR biophysical properties. The ICl,OR channel is strongly voltage dependent. Outward rectification is due to voltage-dependent current activation at depolarized voltages and rapid inactivation at voltages more hyperpolarized than approximately +20 mV. Apparent channel open probability is zero at voltages less than +20 mV. The channel has a 4:1 selectivity for Cl over Na+ and an anion selectivity sequence of SCN > I > Br > Cl > F. ICl,OR is relatively insensitive to most conventional anion channel inhibitors including DIDS, 4,4'-dinitrostilbene-2,2'-disulfonic acid, 9-anthracenecarboxylic acid, and 5-nitro-2-(3-phenylpropylamino)benzoic acid. However, the current is rapidly inhibited by niflumic acid, metal cations including Gd3+, Cd2+, and Zn2+, and bath acidification. The combined biophysical properties of ICl,OR are distinct from those of other anion currents that have been described. During oocyte meiotic maturation, ICl,OR activity is rapidly downregulated, suggesting that the channel may play a role in oocyte Cl homeostasis, development, cell cycle control, and/or ovulation. chloride channel; ovulation; cell cycle; meiotic maturation  相似文献   

5.
Patch-clamping and cell imageanalysis techniques were used to study the expression of thevolume-activated Cl current,ICl(vol), and regulatory volume decrease (RVD)capacity in the cell cycle in nasopharyngeal carcinoma cells (CNE-2Z). Hypotonic challenge caused CNE-2Z cells to swell and activated aCl current with a linear conductance, negligibletime-dependent inactivation, and a reversal potential close to theCl equilibrium potential. The sequence of anionpermeability was I > Br > Cl > gluconate. The Cl channelblockers tamoxifen, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB),and ATP inhibited ICl(vol). Synchronous cultures of cells were obtained by the mitotic shake-off technique and by adouble chemical-block (thymidine and hydroxyurea) technique. Theexpression of ICl(vol) was cell cycle dependent,being high in G1 phase, downregulated in S phase, butincreasing again in M phase. Hypotonic solution activated RVD, whichwas cell cycle dependent and inhibited by the Cl channelblockers NPPB, tamoxifen, and ATP. The expression of ICl(vol) was closely correlated with the RVDcapacity in the cell cycle, suggesting a functional relationship.Inhibition of ICl(vol) by NPPB (100 µM)arrested cells in G0/G1. The data also suggest that expression of ICl(vol) and RVD capacity areactively modulated during the cell cycle. The volume-activatedCl current associated with RVD may therefore play animportant role during the cell cycle progress.

  相似文献   

6.
Cell swelling, regulatory volume decrease (RVD), volume-sensitive Cl (Cl swell) current and taurine efflux after exposure to high concentrations of urea were characterized in fibroblasts Swiss 3T3, and results compared to those elicited by hyposmotic (30%) swelling. Urea 70, 100, and 150 mM linearly increased cell volume (8.25%, 10.6%, and 15.7%), by a phloretin-inhibitable process. This was followed by RVD by which cells exposed to 70, 100, or 150 mM urea recovered 27.6%, 38.95, and 74.1% of their original volume, respectively. Hyposmolarity (30%) led to a volume increase of 25.9% and recovered volume in 32.5%. 3H-taurine efflux was increased by urea with a sigmoid pattern, as 9.5%, 18.9%, 71.5%, and 89% of the labeled taurine pool was released by 70, 100, 150, or 200 mM urea, respectively. Only about 11% of taurine was released by 30% hyposmolarity reduction in spite of the high increase in cell volume. Urea-induced taurine efflux was suppressed by NPPB (100 μM) and markedly reduced by the tyrosine kinase-general blocker AG18. The Cl swell current was more rapidly activated and higher in amplitude in the hyposmotic than in the isosmotic/urea condition (urea 150 mM), but this was not sufficient to accomplish an efficient RVD. These results showed that at similar volume increase, cells swollen by urea showed higher taurine efflux, lower Cl swell current and more efficient RVD, than in those swollen by hyposmolarity. The correlation found between RVD efficiency and taurine efflux suggest a prominent role for organic over ionic osmolytes for RVD evoked by urea in isosmotic conditions.  相似文献   

7.
The electrical conductance of the plasmalemma of cells of Charainflata, due to the diffusion of ions, consists predominantlyof K+, Cl and leak components. When the membrane electricalpotential difference is stepped in a negative direction witha voltage-clamp, the resulting inward current has componentsIK, ICl and IL (leak). During such voltage-clamp steps IK isinactivated, and Ic activated with voltage-dependent half-times.Increases in the external NaCl concentration reduce the magnitudeof IK and increase the magnitude of Ic, but reduce the half-timeof inactivation or activation. The NaCl-induced changes in Ikand ICl and their kinetics were more pronounced at pH0 =6.5than at pH0 =9.5. When the concentration of external CaCl2 wasincreased, Ik, ICl and the half-time of inactivation, (T1/2),of Ik were all reduced. The half-time of activation of ICl wasincreased. The NaCI-induced changes could result from increases in bothexternal ion concentration and osmotic pressure. Previous experimentshave shown that an increase in external osmotic pressure alonealters the properties of the conductances. In this paper weattempt to separate the purely ionic effects from the osmoticones. Key words: Chara inflata, ionic effects, K+ and Cl currents  相似文献   

8.
Experiments were conducted to determine whether the Cl secretagogue, 1-ethyl-2-benzimidazolinone (EBIO), stimulates Cl transport in the rabbit conjunctival epithelium. For this study, epithelia were isolated in an Ussing-type chamber under short-circuit conditions. The effects of EBIO on the short-circuit current (Isc) and transepithelial resistance (Rt) were measured under physiological conditions, as well as in experiments with altered electrolyte concentrations. Addition of 0.5 mM EBIO to the apical bath stimulated the control Isc by 64% and reduced Rt by 21% (P < 0.05; paired data). Under Cl-free conditions, Isc stimulation using EBIO was markedly attenuated. In the presence of an apical-to-basolateral K+ gradient and permeabilization of the apical membrane, the majority of the Isc reflected the transcellular movement of K+ via basolateral K+ channels. Under these conditions, EBIO in combination with A23187 elicited nearly instantaneous 60–90% increases in Isc that were sensitive to the calmodulin antagonist calmidazolium and the K+ channel blocker tetraethyl ammonium. In the presence of an apical-to-basolateral Cl gradient and nystatin permeabilization of the basolateral aspect, EBIO increased the Cl-dependent Isc, an effect prevented by the channel blocker glibenclamide (0.3 mM). The latter compound also was used to determine the proportion of EBIO-evoked unidirectional 36Cl fluxes in the presence of the Cl gradient that traversed the epithelium transcellularly. Overall, EBIO activated apical Cl channels and basolateral K+ channels (presumably those that are Ca2+ dependent), thereby suggesting that this compound, or related derivatives, may be suitable as topical agents to stimulate fluid transport across the tissue in individuals with lacrimal gland deficiencies. Ussing chamber; short-circuit current; electrolyte transport; chloride secretagogue; potassium conductance; 1-ethyl-2-benzimidazolinone; 1,10-phenanthroline  相似文献   

9.
Heme induces Cl secretion in intestinal epithelial cells, most likely via carbon monoxide (CO) generation. The major source of endogenous CO comes from the degradation of heme via heme oxygenase (HO). We hypothesized that an inhibitor of HO activity, tin protoporphyrin (SnPP), may inhibit the stimulatory effect of heme on Cl secretion. To test this hypothesis, we treated an intestinal epithelial cell line (Caco-2 cells) with SnPP. In contrast to our expectations, Caco-2 cells treated with SnPP had an increase in their short-circuit currents (Isc) in Ussing chambers. This effect was observed only when the system was exposed to ambient light. SnPP-induced Isc was caused by Cl secretion because it was inhibited in Cl-free medium, with ouabain or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). The Cl secretion was not via activation of the CFTR, because a specific inhibitor had no effect. Likewise, inhibitors of adenylate cyclase and guanylate cyclase had no effect on the enhanced Isc. SnPP-induced Isc was inhibited by the antioxidant vitamins, -tocopherol and ascorbic acid. Electron paramagnetic resonance experiments confirmed that oxidative reactions were initiated with light in cells loaded with SnPP. These data suggest that SnPP-induced effects may not be entirely due to the inhibition of HO activity but rather to light-induced oxidative processes. These novel effects of SnPP-photosensitized oxidation may also lead to a new understanding of how intestinal Cl secretion can be regulated by the redox environment of the cell. heme oxygenase; electrolyte transport; carbon monoxide; cGMP; reactive oxygen species  相似文献   

10.
The cellular mechanism for Cl and K+ secretion in the colonic epithelium requires K+ channels in the basolateral and apical membranes. Colonic mucosa from guinea pig and rat were fixed, sectioned, and then probed with antibodies to the K+ channel proteins KVLQT1 (Kcnq1) and minK-related peptide 2 (MiRP2, Kcne3). Immunofluorescence labeling for Kcnq1 was most prominent in the lateral membrane of crypt cells in rat colon. The guinea pig distal colon had distinct lateral membrane immunoreactivity for Kcnq1 in crypt and surface cells. In addition, Kcne3, an auxiliary subunit for Kcnq1, was detected in the lateral membrane of crypt and surface cells in guinea pig distal colon. Transepithelial short-circuit current (Isc) and transepithelial conductance (Gt) were measured for colonic mucosa during secretory activation by epinephrine (EPI), prostaglandin E2 (PGE2), and carbachol (CCh). HMR1556 (10 µM), an inhibitor of Kcnq1 channels (Gerlach U, Brendel J, Lang HJ, Paulus EF, Weidmann K, Brüggemann A, Busch A, Suessbrich H, Bleich M, and Greger R. J Med Chem 44: 3831–3837, 2001), partially (50%) inhibited Cl secretory Isc and Gt activated by PGE2 and CCh in rat colon with an IC50 of 55 nM, but in guinea pig distal colon Cl secretory Isc and Gt were unaltered. EPI-activated K+-secretory Isc and Gt also were essentially unaltered by HMR1556 in both rat and guinea pig colon. Although immunofluorescence labeling with a Kcnq1 antibody supported the basolateral membrane presence in colonic epithelium of the guinea pig as well as the rat, the Kcnq1 K+ channel is not an essential component for producing Cl secretion. Other K+ channels present in the basolateral membrane presumably must also contribute directly to the K+ conductance necessary for K+ exit during activation of Cl secretion in the colonic mucosa. HMR1556; K+ secretion; epinephrine; prostaglandin E2; cholinergic  相似文献   

11.
The present study describes the first characterization of Ca2+-activated Cl currents (IClCa) in single smooth muscle cells from a murine vascular preparation (portal veins). IClCa was recorded using the perforated patch version of the whole cell voltage-clamp technique and was evoked using membrane depolarization. Generation of IClCa relied on Ca2+ entry through dihydropyridine-sensitive Ca2+ channels because IClCa was abolished by 1 µM nicardipine and enhanced by raising external Ca2+ concentration or by application of BAY K 8644. IClCa was characterized by the sensitivity to Cl channel blockers and the effect of altering the external anion on reversal potential. Activation of IClCa after membrane depolarization was dependent on Ca2+ release from intracellular stores. Thus the amplitude of IClCa was diminished by the SR-ATPase inhibitor cyclopiazonic acid, the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate (2-APB), and the ryanodine receptor blocker tetracaine. The degree of inhibition produced by the application of 2-APB and tetracaine together was significantly greater than the effect of each agent applied alone. In current-clamp mode, injection of depolarizing current elicited a biphasic action potential, with the later depolarization being sensitive to niflumic acid (NFA; 10 µM). In isometric tension recordings, NFA inhibited spontaneous contractions. These data support a role for this conductance in portal vein excitability.  相似文献   

12.
Whole cell patch-clamprecordings were made from cultured myenteric neurons taken from murineproximal colon. The micropipette contained Cs+ to removeK+ currents. Depolarization elicited a slowly activatingtime-dependent outward current (Itdo), whereasrepolarization was followed by a slowly deactivating tail current(Itail). Itdo andItail were present in ~70% of neurons. Weidentified these currents as Cl currents(ICl), because changing the transmembraneCl gradient altered the measured reversal potential(Erev) of both Itdo andItail with that for Itailshifted close to the calculated Cl equilibrium potential(ECl). ICl areCa2+-activated Cl current[ICl(Ca)] because they were Ca2+dependent. ECl, which was measured from theErev of ICl(Ca) using agramicidin perforated patch, was 33 mV. This value is more positivethan the resting membrane potential (56.3 ± 2.7 mV), suggestingmyenteric neurons accumulate intracellular Cl.-Conotoxin GIVA [0.3 µM; N-type Ca2+ channelblocker] and niflumic acid [10 µM; knownICl(Ca) blocker], decreased theICl(Ca). In conclusion, these neurons haveICl(Ca) that are activated by Ca2+entry through N-type Ca2+ channels. These currents likelyregulate postspike frequency adaptation.

  相似文献   

13.
We investigated the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one(DCEBIO) on the Cl secretory response of the mouse jejunum using the Ussing short-circuit current (Isc) technique. DCEBIO stimulated a concentration-dependent, sustained increase in Isc (EC50 41 ± 1 µM). Pretreating tissues with 0.25 µM forskolin reduced the concentration-dependent increase in Isc by DCEBIO and increased the EC50 (53 ± 5 µM). Bumetanide blocked (82 ± 5%) the DCEBIO-stimulated Isc consistent with Cl secretion. DCEBIO was a more potent stimulator of Cl secretion than its parent molecule, 1-ethyl-2-benzimidazolinone. Glibenclamide or NPPB reduced the DCEBIO-stimulated Isc by >80% indicating the participation of CFTR in the DCEBIO-stimulated Isc response. Clotrimazole reduced DCEBIO-stimulated Isc by 67 ± 15%, suggesting the participation of the intermediate conductance Ca2+-activated K+ channel (IKCa) in the DCEBIO-activated Isc response. In the presence of maximum forskolin (10 µM), the DCEBIO response was reduced and biphasic, reaching a peak response of the change in Isc of 43 ± 5 µA/cm2 and then falling to a steady-state response of 17 ± 10 µA/cm2 compared with DCEBIO control tissues (61 ± 6 µA/cm2). The forskolin-stimulated Isc in the presence of DCEBIO was reduced compared with forskolin control tissues. Similar results were observed with DCEBIO and 8-BrcAMP where adenylate cyclase was bypassed. H89, a PKA inhibitor, reduced the DCEBIO-activated Isc, providing evidence that DCEBIO increased Cl secretion via a cAMP/PKA-dependent manner. These data suggest that DCEBIO stimulates Cl secretion of the mouse jejunum and that DCEBIO targets components of the Cl secretory mechanism. 1-ethyl-2-benzimidazolinone; forskolin; glibenclamide; clotrimazole; H89  相似文献   

14.
The cardiac Ca2+-independent transient outward K+ current (Ito), a major repolarizing ionic current, is markedly affected by Cl substitution and anion channel blockers. We reexplored the mechanism of the action of anions on Ito by using whole cell patch-clamp in single isolated rat cardiac ventricular myocytes. The transient outward current was sensitive to blockade by 4-aminopyridine (4-AP) and was abolished by Cs+ substitution for intracellular K+. Replacement of most of the extracellular Cl with less permeant anions, aspartate (Asp) and glutamate (Glu), markedly suppressed the current. Removal of external Na+ or stabilization of F-actin with phalloidin did not significantly affect the inhibitory action of less permeant anions on Ito. In contrast, the permeant Cl substitute Br did not markedly affect the current, whereas F substitution for Cl induced a slight inhibition. The Ito elicited during Br substitution for Cl was also sensitive to blockade by 4-AP. The ability of Cl substitutes to induce rightward shifts of the steady-state inactivation curve of Ito was in the following sequence: NO3 > Cl Br > gluconate > Glu > Asp. Depolymerization of actin filaments with cytochalasin D (CytD) induced an effect on the steady-state inactivation of Ito similar to that of less permeant anions. Fluorescent phalloidin staining experiments revealed that CytD-pretreatment significantly decreased the intensity of FITC-phalloidin staining of F-actin, whereas Asp substitution for Cl was without significant effect on the intensity. These results suggest that the Ito channel is modulated by anion channel(s), in which the actin cytoskeleton may be implicated. transient outward potassium current; anion channel; actin cytoskeleton; myocyte; potassium ion  相似文献   

15.
Patch-clamp recordings were used to study ioncurrents induced by cell swelling caused by hypotonicity in humanprostate cancer epithelial cells, LNCaP. The reversal potential of the swelling-evoked current suggested that Cl was the primarycharge carrier (termed ICl,swell). Theselectivity sequence of the underlying volume-regulated anion channels(VRACs) for different anions wasBrI > Cl > F > methanesulfonate glutamate, with relativepermeability numbers of 1.26, 1.20, 1.0, 0.77, 0.49, and 0.036, respectively. The current-voltage patterns of the whole cell currentsas well as single-channel currents showed moderate outwardrectification. Unitary VRAC conductance was determined at 9.6 ± 1.8 pS. Conventional Cl channel blockers5-nitro-2-(3-phenylpropylamino)benzoic acid (100 µM) and DIDS (100 µM) inhibited whole cell ICl,swell in a voltage-dependent manner, with the block decreasing from 39.6 ± 9.7% and 71.0 ± 11.0% at +50 mV to 26.2 ± 7.2% and14.5 ± 6.6% at 100 mV, respectively. Verapamil (50 µM), astandard Ca2+ antagonist and P-glycoprotein functioninhibitor, depressed the current by a maximum of 15%. Protein tyrosinekinase inhibitors downregulated ICl,swell(genistein with an IC50 of 2.6 µM and lavendustin A by60 ± 14% at 1 µM). The protein tyrosine phosphatase inhibitorsodium orthovanadate (500 µM) stimulatedICl,swell by 54 ± 11%. We conclude thatVRACs in human prostate cancer epithelial cells are modulated viaprotein tyrosine phosphorylation.

  相似文献   

16.
Human lung epithelial (Calu-3) cells were used to investigate the effects of protease-activated receptor (PAR) stimulation on Cl secretion. Quantitative RT-PCR (QRT-PCR) showed that Calu-3 cells express PAR-1, -2, and -3 receptor mRNAs, with PAR-2 mRNA in greatest abundance. Addition of either thrombin or the PAR-2 agonist peptide SLIGRL to the basolateral solution of monolayers mounted in Ussing chambers produced a rapid increase in short-circuit current (Isc: thrombin, 21 ± 2 µA; SLIGRL, 83 ± 22 µA), which returned to baseline within 5 min after stimulation. Pretreatment of monolayers with the cell-permeant Ca2+-chelating agent BAPTA-AM (50 µM) abolished the increase in Isc produced by SLIGRL. When monolayers were treated with the cyclooxygenase inhibitor indomethacin (10 µM), nearly complete inhibition of both the thrombin- and SLIGRL-stimulated Isc was observed. In addition, basolateral treatment with the PGE2 receptor antagonist AH-6809 (25 µM) significantly inhibited the effects of SLIGRL on Isc. QRT-PCR revealed that Calu-3 cells express mRNAs for CFTR, the Ca2+-activated KCNN4 K+ channel, and the KCNQ1 K+ channel subunit, which, in association with KCNE3, is known to be regulated by cAMP. Stimulation with SLIGRL produced an increase in apical Cl conductance that was blocked in cells expressing short hairpin RNAs designed to target CFTR. These results support the conclusion that PAR stimulation of Cl secretion occurs by an indirect mechanism involving the synthesis and release of prostaglandins. In addition, PAR-stimulated Cl secretion requires activation of CFTR and at least two distinct K+ channels located in the basolateral membrane. cystic fibrosis transmembrane conductance regulator; KCNQ1; calcium-activated potassium channels; KCNN4; cAMP  相似文献   

17.
We used the short-circuit current (Isc) technique to investigate the effects of the isoflavone genistein on the electrogenic Cl secretion of the mouse jejunum. Genistein stimulated a sustained increase in Isc that was dose dependent. Bumetanide inhibited 76 ± 5% of the genistein-stimulated Isc consistent with activation of Cl secretion. Genistein failed to stimulate Isc following maximal activation of the cAMP pathway by forskolin. In addition, forskolin had a reduced effect on Isc of the mouse jejunum in the presence of genistein. Glibenclamide, a blocker of CFTR, eliminated the genistein-stimulated increase of Isc and reduced the forskolin-activated Isc. Clotrimazole, a Ca2+-activated K+ channel blocker, failed to reduce the genistein-stimulated Isc. Vanadate, a blocker of tyrosine-dependent phosphatases, reduced the genistein-activated Isc. Tyrphostin A23, a tyrosine kinase inhibitor, reduced basal Isc, after which genistein failed to stimulate Isc. These data suggest that genistein activated a sustained Cl secretory response of the mouse jejunum and that the effect of genistein was via a tyrosine-dependent phosphorylation pathway. 1-ethyl-2-benzimidazolone; vanadate; tyrphostin A23; cantharidic acid; phosphatase  相似文献   

18.
Primary brain tumors (gliomas) often present with peritumoral edema. Their ability to thrive in this osmotically altered environment prompted us to examine volume regulation in human glioma cells, specifically the relative contribution of Cl channels and transporters to this process. After a hyposmotic challenge, cultured astrocytes, D54-MG glioma cells, and glioma cells from human patient biopsies exhibited a regulatory volume decrease (RVD). Although astrocytes were not able to completely reestablish their original prechallenge volumes, glioma cells exhibited complete volume recovery, sometimes recovering to a volume smaller than their original volumes (VPost-RVD < Vbaseline). In glioma cells, RVD was largely inhibited by treatment with a combination of Cl channel inhibitors, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and Cd2+ (VPost-RVD > 1.4*Vbaseline). Volume regulation was also attenuated to a lesser degree by the addition of R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid (DIOA), a known K+-Cl cotransporter (KCC) inhibitor. To dissect the relative contribution of channels vs. transporters in RVD, we took advantage of the comparatively high temperature dependence of transport processes vs. channel-mediated diffusion. Cooling D54-MG glioma cells to 15°C resulted in a loss of DIOA-sensitive volume regulation. Moreover, at 15°C, the channel blockers NPPB + Cd2+ completely inhibited RVD and cells behaved like perfect osmometers. The calculated osmolyte flux during RVD under these experimental conditions suggests that the relative contribution of Cl channels vs. transporters to this process is 60–70% and 30–40%, respectively. Finally, we identified several candidate proteins that may be involved in RVD, including the Cl channels ClC-2, ClC-3, ClC-5, ClC-6, and ClC-7 and the transporters KCC1 and KCC3a. voltage-gated chloride channel family; potassium-chloride cotransporters; peritumoral edema  相似文献   

19.
The effect of -adrenergic stimulation on cardiac Na+/Ca2+ exchange has been controversial. To clarify the effect, we measured Na+/Ca2+ exchange current (INCX) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When INCX was defined as a 5 mM Ni2+-sensitive current in guinea pig ventricular myocytes, 1 µM isoproterenol apparently augmented INCX by 32%. However, this increase was probably due to contamination of the cAMP-dependent Cl current (CFTR-Cl current, ICFTR-Cl), because Ni2+ inhibited the activation of ICFTR-Cl by 1 µM isoproterenol with a half-maximum concentration of 0.5 mM under conditions where INCX was suppressed. Five or ten millimolar Ni2+ did not inhibit ICFTR-Cl activated by 10 µM forskolin, an activator of adenylate cyclase, suggesting that Ni2+ acted upstream of adenylate cyclase in the -adrenergic signaling pathway. Furthermore, in a low-extracellular Cl bath solution, 1 µM isoproterenol did not significantly alter the amplitude of Ni2+-sensitive INCX at +50 mV, which is close to the reversal potential of ICFTR-Cl. No change in INCX amplitude was induced by 10 µM forskolin. When INCX was activated by extracellular Ca2+, it was not significantly affected by 1 µM isoproterenol in guinea pig, mouse, or rat ventricular cells. We concluded that -adrenergic stimulation does not have significant effects on INCX in guinea pig, mouse, or rat ventricular myocytes. cystic fibrosis transmembrane conductance regulator; nickel ion  相似文献   

20.
A possible role of extracellular Cl concentration ([Cl]o) in fatigue was investigated in isolated skeletal muscles of the mouse. When [Cl]o was lowered from 128 to 10 mM, peak tetanic force was unchanged, fade was exacerbated (wire stimulation electrodes), and a hump appeared during tetanic relaxation in both nonfatigued slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles. Low [Cl]o increased the rate of fatigue 1) with prolonged, continuous tetanic stimulation in soleus, 2) with repeated intermittent tetanic stimulation in soleus or EDL, and 3) to a greater extent with repeated tetanic stimulation when wire stimulation electrodes were used rather than plate stimulation electrodes in soleus. In nonfatigued soleus muscles, application of 9 mM K+ with low [Cl]o caused more rapid and greater tetanic force depression, along with greater depolarization, than was evident at normal [Cl]o. These effects of raised [K+]o and low [Cl]o were synergistic. From these data, we suggest that normal [Cl]o provides protection against fatigue involving high-intensity contractions in both fast- and slow-twitch mammalian muscle. This phenomenon possibly involves attenuation of the depolarization caused by stimulation- or exercise-induced run-down of the transsarcolemmal K+ gradient. potassium; skeletal muscle contraction; membrane potential; myotonia  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号