首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study purified isoforms of rat ovarian regulatory subunit of type II cAMP-dependent protein kinase (R-II) were compared with R-II purified from rat brain. A special neural form of R-II has been previously described in bovine brain. Analysis by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved three isoforms of rat ovarian R-II (R-II54, Mr = 54,000; R-II52, Mr = 52,000; and R-II51, Mr = 51,000) compared to two R-II isoforms in rat brain (R-II54 and R-II52). Polychromatic silver-stained peptide maps of purified R-II subunits indicated that peptides generated from both rat ovarian R-II52 and R-II51 were similar (if not identical) to the peptides of the neural form, R-II52, purified from rat brain. These peptides differed markedly from those generated from R-II54 of either rat ovary, brain, or heart. Ovarian R-II52/51 photoaffinity labeled with 8-N3-[32P]cAMP and analyzed by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis was shown to consist of three (rather than two) isoelectric variants, which were similar to three variants resolved from rat brain R-II and clearly distinct from that of rat heart R-II54. An antibody which recognized both the R-II54 and R-II52/51 isoforms of rat ovarian extracts also recognized both forms of rat brain R-II (R-II54 and R-II52) and similar forms in extracts of rat adrenal and parotid glands. These results strongly suggest that the R-II52 isoform previously designated as a neural specific form of R-II is present in high concentrations in a nonneural tissue, the rat ovary.  相似文献   

2.
One isoform of the regulatory subunit of type II cAMP-dependent protein kinase (R-II51; Mr = 51,000) and its electrophoretic variants (R-II51.5 and R-II52; Mr = 51,500 and 52,000, respectively) are selectively induced by estradiol and follicle-stimulating hormone (cAMP) in rat ovarian granulosa cells. To ascertain the amino acid sequence of R-II51 and to gain insight into the molecular events regulating the intracellular content of ovarian follicular R-II51, we constructed a lambda gt11 cDNA expression library from poly(A)+ RNA of hormone-primed rat granulosa cells. A 1.5-kilobase (kb) cDNA insert, isolated from a plaque-purified R-II antibody positive bacteriophage clone, selectively bound R-II51 mRNA as demonstrated by analysis of the hybrid-selected translation product. Restriction maps and sequence analyses of the 1.5-kb cDNA insert and of the 1.8- and 2.2-kb cDNA inserts from two additional clones showed overlapping sequences which span a region of 3065 nucleotides in size. The 1.5- and 1.8-kb cDNA inserts each contained poly(A) addition signals (1508 and 1761 nucleotides, respectively), terminal poly(A) sequences, and the entire coding region for R-II51 (1204 nucleotides) except for a small number of nucleotides at the 5' end. The 2.2-kb cDNA insert contained 394 nucleotides of the coding region a long 3' untranslated region and two more poly(A) addition signals (3041 and 3059 nucleotides). An amino acid microsequence surrounding the autophosphorylation site of pure rat ovarian R-II51 agreed with the amino acid sequence deduced from the nucleotide sequence of the cDNA. Northern blot analyses demonstrated two major mRNA species (1.8 and 3.2 kb in size) in hormone-primed rat ovaries which were approximately 10- and 50-fold greater than the R-II mRNA content in rat brain and rat heart, respectively. Southern blot analysis of rat liver DNA indicated that a single gene codes for R-II51 mRNA. Structural differences among rat ovarian R-II51, rat heart R-II54, and the known amino acid sequences of bovine R-II and R-I subunits also indicate that the rat ovarian R-II51 subunit is the product of a distinct gene.  相似文献   

3.
Biochemical as well as immunochemical studies were carried out to quantitatively and qualitatively evaluate the hormonal regulation of nuclear cAMP-dependent protein kinase subunits in ovaries from estrogen-treated hypophysectomized rats. Photoaffinity labeling of nuclear extracts with 8-azido-[32P]cAMP and electrophoretic analysis showed the existence of three variants of the regulatory subunit RI and of a 52,000-dalton RII variant (RII-52) in ovarian nuclei of estrogen-primed hypophysectomized rats. After follicle-stimulating hormone (FSH) stimulation, an additional variant of RII (RII-51, Mr = 51,000) was detected in nuclei. The cytosolic RII-54 variant (Mr = 54,000) could not be identified in nuclei by photoaffinity labeling. The FSH-mediated appearance of the nuclear RII-51 variant was accompanied by an approximate 2-fold increase of nuclear catalytic subunit activity. Using quantitation by enzyme-linked immunosorbent assay, we identified a marked FSH-mediated increase of nuclear RII variant(s) and confirmed the increase of nuclear catalytic subunit levels. Furthermore, morphometric analysis of nuclear and cytoplasmic antigen density by immunogold electron microscopy demonstrated a cell-specific modulation by FSH of RII and C subunit density. In granulosa cells, both nuclear as well as cytoplasmic RII density was increased by FSH, whereas catalytic subunit density was increased in the nuclear area only. In thecal cells, FSH increased only the nuclear catalytic subunit density. These results provide biochemical as well as immunochemical evidence for a cell-specific FSH regulation of nuclear RII and catalytic subunit levels which may be involved in the molecular events responsible for the FSH-mediated differentiation of the rat ovary.  相似文献   

4.
These studies were undertaken to determine the molecular events by which estradiol and follicle-stimulating hormone (FSH) stimulate in ovarian granulosa cells the increase in the content of one of the regulatory subunits of cAMP-dependent protein kinase type II, RII51 (Mr = 51,000), and its electrophoretic variants RII51.5 (Mr = 51,500) and RII52 (Mr = 52,000). To analyze the de novo synthesis of RII51/52, granulosa cells were cultured (10(6) cells/ml) for 0, 12, 24, or 48 h with estradiol (10 nM) +/- FSH (12.5, 25, and 50 ng/ml), 8-bromo-cAMP (0.25-3 mM), or forskolin (0.5-100 microM) and then pulse-labeled with [35S]methionine (300 microCi/ml; 4 h). Labeled RII51, present either in urea extracts of total cellular protein or after partial purification from a soluble cell extract by cAMP-Sepharose chromatography, was quantitated by autoradiography of two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and by excision of the silver-stained spots of the RII51 variants from the gels and counting. Synthesis of RII51 and its electrophoretic variants was low in cells cultured with estradiol alone for 48 h, whereas it was increased 4-5-fold in cells cultured with estradiol and FSH. Changes in the synthesis of actin were minor throughout the culture period regardless of hormone treatment. Pulse-chase experiments using [35S]methionine provided evidence that the isoelectric variants RII51.5 and RII52 may be derived from RII51 by post-translation modification, such as phosphorylation. Labelling with [32P]orthophosphate showed that RII52 contained more radioactivity than RII51.5 and RII51. Northern and filter hybridization assays demonstrated a 6-10-fold dose- and time-dependent increase in the amount of RII51 mRNA in granulosa cells exposed to estradiol and FSH or estradiol and forskolin compared to those cultured with estradiol alone. In vitro translation of poly(A)+ mRNA of granulosa cells from estradiol- and FSH-treated hypophysectomized rats also demonstrated an increase in the content of translatable RII51 mRNA. These studies indicate that in cultured rat granulosa cells the synthesis of RII51 and the content of its mRNA are selectively increased by estradiol and cAMP in a time- and dose-dependent manner. Based on these observations, RII51 appears to be a useful marker to determine the molecular (genomic?) sites of estradiol and FSH action in differentiating rat granulosa cells.  相似文献   

5.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate (8-azido-cyclic [32P]AMP) was used to analyze both the cAMP-binding component of the purified cAMP-dependent protein kinase, and the cAMP-binding proteins present in crude tissue extracts of bovine cardiac muscle. 8-Azido-cyclic [32P]AMP reacted specifically and in stoichiometric amounts with the cAMP-binding proteins of bovine cardiac muscle. Upon phosphorylation, the purified cAMP-binding protein from bovine cardiac muscle changed its electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels from an apparent molecular weight of 54,000 to an apparent molecular weight of 56,000. In tissue extracts of bovine cardiac muscle, most of the 8-azido-cyclic [32P]AMP was incorporated into a protein band with an apparent molecular weight of 56,000 which shifted to 54,000 upon treatment with a phosphoprotein phosphatase. Thus a substantial amount of the cAMP-binding protein appeared to be in the phosphorylated form. Autoradiograms following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both the pure and impure cAMP-binding proteins labeled with 8-azido-cyclic [32P]AMP revealed another binding component with a molecular weight of 52,000 which incorporated 32P from [gamma-32P]ATP without changing its electrophoretic mobility. Limited proteolysis of the 56,000- and 52,000-dalton proteins labeled with 32P from either [gamma-32P]ATP.Mg2+ or 8-azido-cyclic [32P]AMP showed patterns indicating homology. On the other hand, peptide maps of the major 8-azido-cyclic [32P]AMP-labeled proteins from tissue extracts of bovine cardiac muscle (Mr = 56,000) and rabbit skeletal muscle (Mr = 48,000) displayed completely different patterns as expected for the cAMP-binding components of types II and I protein kinases. Both phospho- and dephospho-cAMP-binding components from the purified bovine cardiac muscle protein kinase were also resolved by isoelectric focusing on polyacrylamide slab gels containing 8 M urea. The phosphorylated forms labeled with 32P from either [gamma-32P]ATP or 8-azido-cyclic [32P]AMP migrated as a doublet with a pI of 5.35. The 8-azido-cyclic [32P]AMP-labeled dephosphorylated form also migrated as a doublet with a pI of 5.40. The phosphorylated and dephosphorylated cAMP-binding proteins migrated with molecular weights of 56,000 and 54,000, respectively, following a second dimension electrophoresis in sodium dodecyl sulfate. The lower molecular weight cAMP-binding component (Mr = 52,000) was also apparent in these gels. Similar experiments with the cAMP-binding proteins present in tissue extracts of bovine cardiac muscle indicate that they are predominantly in the phosphorylated form.  相似文献   

6.
Phosphorylation of pure fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase from bovine heart by cAMP-dependent protein kinase and protein kinase C was investigated. The major enzyme form (subunit Mr of 58,000) was rapidly phosphorylated by both cAMP-dependent protein kinase and protein kinase C, incorporating 0.8 and 1.0 mol/mol of subunit, respectively. The rate of phosphorylation of the heart enzyme by cAMP-dependent protein kinase was 10 times faster than that of the rat liver enzyme. The minor enzyme (subunit Mr of 54,000), however, was phosphorylated only by protein kinase C and was phosphorylated much more slowly with a phosphate incorporation of less than 0.1 mol/mol of subunit. Phosphorylation by either cAMP-dependent protein kinase or protein kinase C activated the enzyme, but each phosphorylation affected different kinetic parameters. Phosphorylation by cAMP-dependent protein kinase lowered the Km value for fructose 6-phosphate from 87 to 42 microM without affecting the Vmax, whereas the phosphorylation by protein kinase C increased the Vmax value from 55 to 85 milliunits/mg without altering the Km value. The phosphorylated peptides were isolated, and their amino acid sequences were determined. The phosphorylation sites for both cAMP-dependent protein kinase and protein kinase C were located in a single peptide whose sequence was Arg-Arg-Asn-Ser-(P)-Phe-Thr-Pro-Leu-Ser-Ser-Ser-Asn-Thr(P)-Ile-Arg-Arg-Pro. The seryl residue nearest the N terminus was the residue specifically phosphorylated by cAMP-dependent protein kinase, whereas the threonine residue nearest the C terminus was phosphorylated by protein kinase C.  相似文献   

7.
The responsiveness of granulosa cells to the gonadotropins and cAMP increases as ovarian follicles mature. To determine if this change in response might be related to either the content or cAMP-dependent phosphorylation of specific proteins, we labeled proteins in 30,000 X g supernatant fractions (cytosol) with [gamma-32P] ATP in the presence or absence of cAMP. Using two-dimensional gel electrophoresis, we observed that granulosa cells of preantral follicles exhibited low amounts of cAMP-dependent phosphorylation of two proteins with apparent molecular weights of 54,000-56,000 and 43,000. Using [32P]8-N3cAMP and photoaffinity labeling procedures, the Mr = 54,000-56,000 protein was identified as RII, the regulatory subunit of type II protein kinase. Polychromatic silver staining, as well as the photoaffinity labeling, revealed that RII exists in three forms, each of which was also labeled by [gamma-32P] ATP. Based on the relative isoelectric points and specific silver staining of highly purified actin and phosphorylated actin, the Mr = 43,000 protein has been provisionally identified as actin. Five proteins (Mr = 37,500, 27,500, 22,500, 19,000, and 15,000), in addition to RII and actin, were phosphorylated in cytosol of granulosa cells from preovulatory follicles. By adding increasing concentrations of exogenous catalytic subunit to the cytosols, we demonstrated that the content, as well as the phosphorylation of these proteins, was increased selectively in granulosa cells of antral follicles. By using hypophysectomized rats, we demonstrated that these five proteins are induced by follitropin (FSH). Because they were not present in cytosols of thecal cells or corpora lutea, they appear to be specific markers for granulosa cells. The content and phosphorylation of RII was also dramatically increased in cytosols of granulosa cells from antral follicles, whereas that of actin remained unchanged. These observations indicate that granulosa cell differentiation involves regulation by FSH of specific proteins which are substrates for cAMP-dependent protein kinase. Thus, FSH and cAMP appear to regulate the intracellular content and phosphorylation of a cAMP response system in granulosa cells. The extent to which RII and the five specific phosphoproteins themselves regulate granulosa cell responsiveness remains to be determined.  相似文献   

8.
Agents that elevated intracellular cyclic adenosine 3',5'-monophosphate (cAMP) caused a 3- to 10-fold increase in the luteinizing hormone (LH) receptor level and in progesterone biosynthesis in primary cultures of pig ovarian granulosa cells. Associated with these effects was a 2- to 4-fold increase in the total activity of the catalytic subunit of cAMP-dependent protein kinase in the tissue. From quantitation by [3H]cAMP binding and changes in the specific labeling with the photoaffinity analog [32P]-8-azido-cAMP, these agents were found to cause a concomitant 5- to 15-fold increase in two isoforms of the type II R-subunit (Mr = 54,000 and 56,000) of the protein kinase. Since the two intrasubunit cAMP binding sites of the protein kinase have been found to be positively cooperative, the addition of a combination of an analog selective for site 1 and an analog selective for site 2 causes synergistic increases in protein kinase activation in vitro and synergistic increases in intact cell responses if mediated by the cAMP-dependent protein kinase. In the present study, the addition of such a combination of site 1- and site 2-selective analogs to granulosa cells caused a synergistic increase in LH receptor induction and progesterone production. For both responses, synergism did not occur when two analogs selective for the same site were combined. The results indicated that these responses are mediated by either of the two major isozyme types of cAMP-dependent protein kinase.  相似文献   

9.
Three peptides (Mr = 45,000, 47,000 and 52,000) in the cholate extract from rat heart cell membranes were radiolabeled when the extract was incubated in the presence of activated cholera toxin and [32P]NAD. A single peptide of Mr = 41,000 in this extract was ADP-ribosylated by pertussis toxin in the presence of [32P]NAD.  相似文献   

10.
The concentration of regulatory subunits (R) of type II cAMP-dependent protein kinase increased 4- to 5-fold when Friend erythroleukemic cells were either grown in medium containing 0.5 mM 8-bromo-cAMP and 0.2 mM methylisobutylxanthine or stimulated to differentiate. Two species of RII with apparent Mr values of 54,000 (RII-54) and 52,000 (RII-52) are expressed in Friend cells. Both forms of RII were (a) covalently labeled with 8-N3-[32P]cAMP, (b) phosphorylated by the catalytic subunit of protein kinase II, and (c) complexed by polyclonal anti-RII IgGs. RII-52 and RII-54 were not interconverted by phosphorylation or dephosphorylation. A monoclonal antibody that recognizes an internal site in RII resolved the two cAMP-binding proteins by preferentially binding RII-54. The structural diversity suggested by the monoclonal antibody experiment was further examined by comparing two-dimensional maps of tryptic peptides obtained from metabolically labeled [( 35S]met) RII-52 and RII-54. Groups of 35S-labeled peptides that were either uniquely derived from RII-54 or obtained only from RII-52 were readily distinguished, thereby demonstrating that Friend cells produce two separate and distinct forms of type II cAMP-binding subunits. The relative rate of synthesis of RII-52 increased 12- to 14-fold during erythroid differentiation and treatment with 8-bromo-cAMP, while the rate of RII-54 synthesis either declined slowly or was unchanged. Thus, two homologous forms of RII are subject to different modes of physiological (differentiation) and pharmacological (chronic 8-Br-cAMP) regulation, and the accumulation of total RII observed in the present and previous (Schwartz, D. A., and Rubin, C. S. (1983) J. Biol. Chem. 258, 777-784) studies results from a selective increase in the rate of biosynthesis of RII-52.  相似文献   

11.
Regulatory (R) subunits and their association with catalytic subunits to form cAMP-dependent protein kinase holoenzymes were investigated in corpora lutea of pregnant rats. Following separation by DEAE-cellulose chromatography, R subunits were identified by labeling with 8-N3[32P]cAMP and autophosphorylation on one and two-dimensional gel electrophoresis and by reactivity with antisera. DEAE-cellulose elution of R subunits with catalytic subunits as holoenzymes or without catalytic subunits was determined by sedimentation characteristics on sucrose density gradient centrifugation and by cAMP-stimulated kinase activation characteristics on Eadie-Scatchard analysis. We identified the presence of a type I holoenzyme containing RI alpha (Mr 47,000) subunits, a prominent type II holoenzyme containing RII beta (Mr 52,000) subunits, and a second more acidic type II holoenzyme peak containing both RII beta and RII alpha (Mr 54,000) subunits. However, the majority of total R subunit activity was associated with a catalytic subunit-free peak of RI alpha protein which on elution from DEAE-cellulose was associated with cAMP. This report establishes the more basic elution position from DEAE-cellulose of the prominent rat luteal RII beta holoenzyme in very close proximity to free RI alpha and presents one of the few reports of a normal tissue containing a large percentage of catalytic subunit-free RI alpha.  相似文献   

12.
By using ethidium bromide fluorescence to measure cellular permeability and the photoaffinity probe, 8-azido-[32P] cyclic adenosine monophosphate (cAMP), to label cAMP-dependent protein kinases, washed bovine epididymal spermatozoa were examined for the presence of "ectokinases" on the sperm surface. In washed, intact spermatozoa, three proteins of Mr 49,000, 54,000, and 56,000 specifically bound 8-azido-[32P] cAMP. The Mr 49,000 protein corresponded to the type I regulatory subunit while the Mr 56,000 and 54,000 proteins comigrated with phosphorylated and dephosphorylated forms, respectively, of type IIA regulatory subunit of bovine heart. The addition of Nonidet P-40 (0.1%) increased the radioactive labeling of all three proteins and caused the appearance of a cAMP binding protein of Mr 40,000, which was likely a proteolytic fragment of the regulatory subunit. Although these data could support the concept of a surface location for regulatory subunits in spermatozoa, it was necessary to determine if the appearance of cAMP binding sites was correlated with the loss of membrane integrity. A population of washed epididymal spermatozoa appeared to contain 10-20% damaged cells based on ethidium bromide fluorescence. The same population of cells also had 10-20% of the regulatory subunits of the cAMP-dependent protein kinase accessible to labeling with the cyclic AMP photoaffinity probe. When spermatozoa were sonicated for increasing lengths of time, ethidium bromide fluorescence was found to be related directly to the relative amount of regulatory subunit labeling by the probe. It is suggested that the major apparent cAMP-dependent "ectokinases" in sperm represent artifacts resulting from cellular damage.  相似文献   

13.
The activating kinase of protein phosphatase 1I is distributed in approximately equal amounts between the cytosolic and particulate fractions of bovine brain homogenates. Both species of this protein kinase have been purified to near homogeneity. The cytosolic form, purified about 7,000-fold, has an apparent Mr = approximately 75,000, as estimated by gel filtration chromatography on Sephacryl S-300. The enzyme contains two subunits, with apparent Mr = 52,000 and 46,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both subunits undergo phosphorylation when the enzyme is incubated with Mg2+ and [gamma-32P]ATP. Peptide maps of the two subunits are different, and rabbit antibodies to the 52-kDa subunit show only very minor cross-reactivity to the 46-kDa subunit. These observations indicate that the two subunits are different. The species of protein phosphatase 1I activating kinase that is associated with the membrane fraction has an apparent Mr = approximately 105,000 as estimated by gel filtration. This species also contains two subunits, with apparent Mr = 52,000 and 46,000, the properties of which are very similar, if not identical, to those of the two subunits comprising the cytosolic form of the protein kinase.  相似文献   

14.
Fructose-6-P,2-kinase:fructose-2,6-bisphosphatase has been purified to homogeneity from beef heart. The enzyme was bifunctional and the specific activities of the kinase and the phosphatase of the pure enzyme were 60 and 30 milliunits/mg, respectively. The molecular weight of the enzyme was 118,000, consisting of two subunits of 58,000. In some preparations of the enzyme a minor protein with a subunit Mr of 54,000 was present. This minor protein (54,000) was also bifunctional and showed the same immunoreactivity as the major protein. The specific activity of fructose-6-P,2-kinase of the minor component was three times higher than that of the major enzyme (58,000), but fructose-2,6-bisphosphatase activity was the same. These two forms have been separated by phosphocellulose chromatography. The tryptic peptide maps of these enzymes were very similar. The 58,000 enzyme was phosphorylated by cAMP-dependent protein kinase but the 54,000 enzyme was not. These results indicated that the minor 54,000 protein might be a proteolytically digested form of the 58,000 enzyme. The Km of the kinase for fructose-6-P and ATP was 70 microM and 260 microM, respectively for both the 58,000 and the 54,000 enzymes. Km for fructose-2,6-P2 and Ki for fructose-6-P of the phosphatase was approximately 40 and 11 microM, respectively. The enzyme was phosphorylated by fructose-2,6-P2 but the stoichiometry of the phosphate incorporation was 0.05 mol/mol subunit, while 0.4 mol/mol was incorporated in rat liver enzyme under the same conditions.  相似文献   

15.
M H Melner  S L Young 《Steroids》1991,56(5):232-236
Previous studies have shown that the gonadotropins follicle-stimulating hormone and luteinizing hormone stimulate proopiomelanocortin (POMC) promoter activity and mRNA levels in ovarian granulosa cells. The objective of these studies was to determine the role of cAMP-dependent protein kinases (pKA) in gonadotropin-stimulated gene expression. Primary cultures of rat granulosa cells were transfected with a gene construct consisting of the POMC promoter (-150 to +63; designated pOMC-CAT) fused to the chloramphenicol acetyltransferase (CAT) reporter gene either alone or cotransfected with an expression plasmid (designated mutant RI), which overexpresses a mutant form of the murine RI subunit incapable of binding cAMP and serving as an irreversible inhibitor of the catalytic subunit of pKA. Follicle-stimulating hormone or isoproterenol caused a significant stimulation of pOMC-CAT activity in transfected cells. Cotransfection of pOMC-CAT with mutant RI caused a significant inhibition of basal pOMC-CAT activity and abolished the gonadotropin stimulation. As a control, transfection of the SV-40 viral enhancer-promoter fused to CAT (pSV2-CAT) was unresponsive to follicle-stimulating hormone stimulation and cotransfection with mutant RI had no significant effect on pSV2-CAT activity. These studies suggest that gonadotropin regulation of the POMC promoter is mediated by pKA and that promoter activity is stringently controlled by pKA.  相似文献   

16.
The active NAD-dependent glutamate dehydrogenase of wild type yeast cells fractionated by DEAE-Sephacel chromatography was inactivated in vitro by the addition of either the cAMP-dependent or cAMP-independent protein kinases obtained from wild type cells. cAMP-dependent inhibition of glutamate dehydrogenase activity was not observed in the crude extract of bcy1 mutant cells which were deficient in the regulatory subunit of cAMP-dependent protein kinase. The cAMP-dependent protein kinase of CYR3 mutant cells, which has a high K alpha value for cAMP in the phosphorylation reaction, required a high cAMP concentration for the inactivation of NAD-dependent glutamate dehydrogenase. An increased inactivation of partially purified active NAD-dependent glutamate dehydrogenase (Mr = 450,000) was observed to correlate with increased phosphorylation of a protein subunit (Mr = 100,000) of glutamate dehydrogenase. The phosphorylated protein was labeled by an NADH analog, 5'-p-fluorosulfonyl[14C]benzoyladenosine. Activation and dephosphorylation of inactive NAD-dependent glutamate dehydrogenase fractions were observed in vitro by treatment with bovine alkaline phosphatase or crude yeast cell extracts. These results suggested that the conversion of the active form of NAD-dependent glutamate dehydrogenase to an inactive form is regulated by phosphorylation through cAMP-dependent and cAMP-independent protein kinases.  相似文献   

17.
The properties of the cAMP-dependent protein kinases in AtT20 mouse pituitary tumor cells were characterized by a combination of immunological and biochemical techniques. Ninety per cent of the total cAMP-dependent protein kinase was in the 40,000 X g supernatant fraction. Protein kinases I and II were immunoprecipitated with specific antisera directed against their regulatory subunits. The immunoprecipitated kinases bound [3H]cAMP and were catalytically active when incubated with [gamma-32P]ATP-Mg and protamine or histone H2B. Immunoprecipitated protein kinases I and II bound [3H]cAMP with apparent Kb values of 1.5 and 15 nM, respectively. Regulatory subunit concentrations in AtT20 cells were measured by immunoprecipitation of [3H]cAMP-R complexes. R-I and R-II levels were 2.7 and 3.0 pmol of [3H]cAMP binding activity per mg of cytosolic protein, respectively, however, the ratio of protein kinase II to protein kinase I was 2.5 indicating the presence of a significant amount of free R-I. This was confirmed by DEAE-cellulose chromatography and the isolation of immunoreactive R-I devoid of protein kinase activity. A significant amount of R-I also coeluted with protein kinase II when AtT20 cell extracts were subjected to DEAE-cellulose chromatography. In quantitative immunoprecipitation experiments, 0.1 microliter of anti-brain R-II serum complexed up to 0.5 pmol of the [3H]cAMP-binding activity of protein kinase II prepared from bovine and rat brain, and AtT20 cells while 2 microliter of anti-brain R-II serum was required to precipitate an equal amount of protein kinase II from bovine skeletal muscle showing that the protein kinase II in AtT20 cells contained the neural-specific R-II subunit.  相似文献   

18.
Although the major form of soluble cAMP-dependent protein kinase in bovine cerebral cortex can be classified as a type II kinase, the regulatory subunit (RII) can be distinguished from RII found in other tissues such as heart. Heart and brain RII were distinguished qualitatively by autophosphorylation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The mobility of dephosphorylated heart RII shifted from an apparent Mr of 55,000 to 57,000 following autophosphorylation. In contrast, when RII purified from brain was autophosphorylated with [gamma-32P]ATP, two radiolabeled bands were visualized, a minor band (less than or equal to 20%) which migrated with an Mr of 57,000 similar to the heart protein and a band with Mr = 55,000 which did not shift its mobility in response to autophosphorylation. Brain RII was further distinguished from heart RII on the basis of cAMP binding. Millipore filtration and equilibrium dialysis indicated that 2 mol of cAMP bound/mol of RII in contrast to 4 mol/mol with heart RII. Immunological differences were also apparent. Radioimmunoassays using monoclonal antibodies to RII showed that the brain protein had less than 4% of the cross-reactivity of heart RII. Both immunoblotting and immunoprecipitation using monoclonal as well as serum antibodies established that the cross-reactivity in phosphorylated brain RII was associated exclusively with the 57,000 component that behaved like heart RII. The lack of cross-reactivity of neural RII with two different monoclonal antibodies targeted the hinge region of RII as an area where structural differences might be anticipated, and comparative sequence analysis of this region definitively established that the major form of RII in brain is a unique gene product from the RII expressed in heart.  相似文献   

19.
The orientation of the transmembranous enzyme, pyridine dinucleotide transhydrogenase, in the inner mitochondrial membrane of rat liver has been determined by evaluating effects of proteases on the integrity of the enzyme in mitoplasts and submitochondrial particles. Following treatment of these membranes with the nonspecific protease, proteinase K, antigenic proteolytic products were detected by immunoblot analysis using polyclonal antibody prepared against purified bovine heart enzyme. Proteinase K treatment of mitoplasts converted the 110,000 transhydrogenase monomer into a single immunoreactive species having Mr 75,000. This proteolytic product is stable to further incubation with the protease. Treatment of submitochondrial particles with proteinase K resulted in the disappearance of the 110,000 monomer and the transient formation of an intermediate product with Mr 52,000. Information from these proteolysis studies was used to construct a model of the orientation of transhydrogenase in the inner mitochondrial membrane. This model indicates that transhydrogenase (Mr 110,000) contains a core of proteolytically inaccessible proteins within the membrane (Mr 23,000) bounded by extramembranous domains on the matrix (Mr 52,000) and cytoplasmic (Mr 35,000) face of the inner mitochondrial membrane.  相似文献   

20.
Ornithine decarboxylase (ODC) was induced in rat small intestine by treatment with hypotonic solution in vitro and purified by two procedures, a conventional procedure and an immunoaffinity procedure. SDS-polyacrylamide gel electrophoresis showed that the molecular weight of the preparation purified by the immunoaffinity procedure (Mr = 53,000) was slightly larger than that of the preparation obtained by the conventional procedure (Mr = 52,000). Values for the Km for L-ornithine (0.1 mM), the isoelectric point (5.4), and the final specific activity (5.1-5.5 x 10(5) nmol CO2/mg protein/30 min) of the two preparations were similar to those reported for the rat liver ODC. Addition of a protease inhibitor (limabean trypsin inhibitor) to the crude extract prevented the appearance of the smaller enzyme (Mr = 52,000) obtained by the conventional purification procedure. Our result indicates that the large enzyme is native ODC and the smaller one is a partial proteolysis product of native ODC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号