首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A C Maarse  J Blom  L A Grivell    M Meijer 《The EMBO journal》1992,11(10):3619-3628
To identify components of the mitochondrial protein import pathway in yeast, we have adopted a positive selection procedure for isolating mutants disturbed in protein import. We have cloned and sequenced a gene, termed MPI1, that can rescue the genetic defect of one group of these mutants. MPI1 encodes a hydrophilic 48.8 kDa protein that is essential for cell viability. Mpi1p is a low abundance and constitutively expressed mitochondrial protein. Mpi1p is synthesized with a characteristic mitochondrial targeting sequence at its amino-terminus, which is most probably proteolytically removed during import. It is a membrane protein, oriented with its carboxy-terminus facing the intermembrane space. In cells depleted of Mpi1p activity, import of the precursor proteins that we tested thus far, is arrested. We speculate that the Mpi1 protein is a component of a proteinaceous import channel for translocation of precursor proteins across the mitochondrial inner membrane.  相似文献   

2.
The essential yeast gene MPI1 encodes a mitochondrial membrane protein that is possibly involved in protein import into the organelle (A. C. Maarse, J. Blom, L. A. Grivell, and M. Meijer, EMBO J. 11:3619-3628, 1992). For this report, we determined the submitochondrial location of the MPI1 gene product and investigated whether it plays a direct role in the translocation of preproteins. By fractionation of mitochondria, the mature protein of 44 kDa was localized to the mitochondrial inner membrane and therefore termed MIM44. Import of the precursor of MIM44 required a membrane potential across the inner membrane and involved proteolytic processing of the precursor. A preprotein in transit across the mitochondrial membranes was cross-linked to MIM44, whereas preproteins arrested on the mitochondrial surface or fully imported proteins were not cross-linked. When preproteins were arrested at two distinct stages of translocation across the inner membrane, only preproteins at an early stage of translocation could be cross-linked to MIM44. Moreover, solubilized MIM44 was found to interact with in vitro-synthesized preproteins. We conclude that MIM44 is a component of the mitochondrial inner membrane import machinery and interacts with preproteins in an early step of translocation.  相似文献   

3.
Summary Translation of mitochondrial cytochrome b mRNA in yeast is activated by the product of the nuclear gene CBS1. CBS1 encodes a 27 kDa precursor protein, which is cleaved to a 24 kDa mature protein during the import into isolated mitochondria. The sequences required for mitochondrial import reside in the amino-terminal end of the CBS1 precursor. Deletion of the 76 amino-terminal amino acids renders the protein incompetent for mitochondrial import in vitro and non-functional in vivo. When present on a high copy number plasmid and under the control of a strong yeast promoter, biological function can be restored by this truncated derivative. This observation indicates that the CBS1 protein devoid of mitochondrial targeting sequences can enter mitochondria in vivo, possibly due to a bypass of the mitochondrial import system.  相似文献   

4.
《The Journal of cell biology》1993,122(5):1003-1012
To identify new components that mediate mitochondrial protein import, we analyzed mas6, an import mutant in the yeast Saccharomyces cerevisiae. mas6 mutants are temperature sensitive for viability, and accumulate mitochondrial precursor proteins at the restrictive temperature. We show that mas6 does not correspond to any of the presently identified import mutants, and we find that mitochondria isolated from mas6 mutants are defective at an early stage of the mitochondrial protein import pathway. MAS6 encodes a 23-kD protein that contains several potential membrane spanning domains, and yeast strains disrupted for MAS6 are inviable at all temperatures and on all carbon sources. The Mas6 protein is located in the mitochondrial inner membrane and cannot be extracted from the membrane by alkali treatment. Antibodies to the Mas6 protein inhibit import into isolated mitochondria, but only when the outer membrane has been disrupted by osmotic shock. Mas6p therefore represents an essential import component located in the mitochondrial inner membrane.  相似文献   

5.
In animals, dihydroorotate dehydrogenase (DHODH) is a mitochondrial protein that carries out the fourth step in de novo pyrimidine biosynthesis. Because this is the only enzyme of this pathway that is localized to mitochondria and because the enzyme is cytosolic in some bacteria and fungi, we carried out studies to understand the mode of targeting of animal DHODH and its submitochondrial localization. Analysis of fractionated rat liver mitochondria revealed that DHODH is an integral membrane protein exposed to the intermembrane space. In vitro-synthesized Drosophila, rat and human DHODH proteins were efficiently imported into the intermembrane space of isolated yeast mitochondria. Import did not alter the size of the in vitro synthesized protein, nor was there a detectable size difference when compared to the DHODH protein found in vivo. Thus, there is no apparent proteolytic processing of the protein during import either in vitro or in vivo. Import of rat DHODH into isolated yeast mitochondria required inner membrane potential and was at least partially dependent upon matrix ATP, indicating that its localization uses the well described import machinery of the mitochondrial inner membrane. The DHODH proteins of animals differ from the cytosolic proteins found in some bacteria and fungi by the presence of an N-terminal segment that resembles mitochondrial-targeting presequences. Deletion of the cationic portion of this N-terminal sequence from the rat DHODH protein blocked its import into isolated yeast mitochondria, whereas deletion of the adjacent hydrophobic segment resulted in import of the protein into the matrix. Thus, the N-terminus of the DHODH protein contains a bipartite signal that governs import and correct insertion into the mitochondrial inner membrane.  相似文献   

6.
The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.  相似文献   

7.
M Ohba  G Schatz 《The EMBO journal》1987,6(7):2117-2122
Treatment of isolated yeast mitochondria with high levels (1 mg/ml) of trypsin severely inhibits protein import but does not destroy the integrity of the outer membrane or abolish mitochondrial energy coupling. If the outer membrane of these trypsin-inactivated mitochondria is disrupted by osmotic shock, the resulting mitoplasts are again able to import proteins. Protein import into mitoplasts, like that into intact mitochondria, is energy-dependent; however, whereas import into mitochondria is inhibited by antibody against 45-kd proteins of the outer membrane [Ohba and Schatz, EMBO J., 6, 2109-2115 (1987)], import into mitoplasts not affected by this antibody. Protein import into mitoplasts appears to bypass one or more steps normally occurring at the mitochondrial surface.  相似文献   

8.
The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells.  相似文献   

9.
Mitochondrial protein import   总被引:1,自引:0,他引:1  
Most polypeptides of mitochondria are imported from the cytosol. Precursor proteins contain targeting and sorting information, often in the form of amino-terminal presequences. Precursors first bind to receptors in the outer membrane. Two putative import receptors have been identified: a 19-kilodalton protein (MOM19) inNeurospora mitochondria, and a 70-kilodalton protein (MAS70) in yeast. Some precursors integrate directly into the outer membrane, but the majority are translocated through one or both membranes. This process requires an electrochemical potential across the inner membrane. Import appears to occur through a hydrophilic pore, although the inner and outer membranes may contain functionally separate translocation machineries. In yeast, a 42-kilodalton protein (ISP42) probably forms part of the outer membrane channel. After import, precursors interact with chaperonin ATPases in the matrix. Presequences then are removed by the matrix protease. Finally, some proteins are retranslocated across the inner membrane to the intermembrane space.  相似文献   

10.
Many metabolic processes essential for plant viability take place in mitochondria. Therefore, mitochondrial function has to be carefully balanced in accordance with the developmental stage and metabolic requirements of the cell. One way to adapt organellar function is the alteration of protein composition. Since most mitochondrial proteins are nuclear encoded, fine-tuning of mitochondrial protein content could be achieved by the regulation of protein translocation. Here we present evidence that the import of nuclear-encoded mitochondrial proteins into plant mitochondria is influenced by calcium and calmodulin. In pea mitochondria, the calmodulin inhibitor ophiobolin A as well as the calcium ionophores A23187 and ionomycin inhibit translocation of nuclear-encoded proteins in a concentration-dependent manner, an effect that can be countered by the addition of external calmodulin or calcium, respectively. Inhibition was observed exclusively for proteins translocating into or across the inner membrane but not for proteins residing in the outer membrane or the intermembrane space. Ophiobolin A and the calcium ionophores further inhibit translocation into mitochondria with disrupted outer membranes, but their effect is not mediated via a change in the membrane potential across the inner mitochondrial membrane. Together, our results suggest that calcium/calmodulin influences the import of a subset of mitochondrial proteins at the inner membrane. Interestingly, we could not observe any influence of ophiobolin A or the calcium ionophores on protein translocation into mitochondria of yeast, indicating that the effect of calcium/calmodulin on mitochondrial protein import might be a plant-specific trait.  相似文献   

11.
Import of precursor proteins into the yeast mitochondrial matrix can occur directly across the inner membrane. First, disruption of the outer membrane restores protein import to mitochondria whose normal import sites have been blocked by an antibody against the outer membrane or by a chimeric, incompletely translocated precursor protein. Second, a potential- and ATP-dependent import of authentic or artificial precursor proteins is observed with purified inner membrane vesicles virtually free of outer membrane components. Third, import into purified inner membrane vesicles is insensitive to antibody against the outer membrane. Thus, while outer membrane components are clearly required in vivo, the inner membrane contains a complete protein translocation system that can operate by itself if the outer membrane barrier is removed.  相似文献   

12.
Two different functions have been proposed for the phosphate carrier protein/p32 of Saccharomyces cerevisiae mitochondria: transport of phosphate and requirement for import of precursor proteins into mitochondria. We characterized a yeast mutant lacking the gene for the phosphate carrier/p32 and found both a block in the import of phosphate and a strong reduction in the import of preproteins transported to the mitochondrial inner membrane and matrix. Binding of preproteins to the surface of mutant mitochondria and import of outer membrane proteins were not inhibited, indicating that the inhibition of protein import occurred after the recognition step at the outer membrane. The membrane potential across the inner membrane of the mutant mitochondria was strongly reduced. Restoration of the membrane potential restored preprotein import but did not affect the block of phosphate transport of the mutant mitochondria. We conclude that the inhibition of protein import into mitochondria lacking the phosphate carrier/p32 is indirectly caused by a reduction of the mitochondrial membrane potential (delta(gamma)), and we propose a model that the reduction of delta(psi) is due to the defective phosphate import, suggesting that phosphate transport is the primary function of the phosphate carrier/p32.  相似文献   

13.
M Eilers  W Oppliger    G Schatz 《The EMBO journal》1987,6(4):1073-1077
We have investigated the energy requirement of mitochondrial protein import with a simplified system containing only isolated yeast mitochondria, energy sources and a purified precursor protein. This precursor was a fusion protein composed of 22 residues of the cytochrome oxidase subunit IV pre-sequence fused to mouse dihydrofolate reductase. Import of this protein required not only an energized inner membrane, but also ATP. ATP could be replaced by GTP, but not by CTP, TTP or non-hydrolyzable ATP analogs. Added ATP did not increase the membrane potential of respiring mitochondria; it supported import even if the proton-translocating mitochondrial ATPase and the entry of ATP into the matrix were blocked. We conclude that ATP exerts its effect on mitochondrial protein import outside the inner membrane.  相似文献   

14.
M Ohba  G Schatz 《The EMBO journal》1987,6(7):2109-2115
Import of several precursor proteins into isolated yeast mitochondria is inhibited by rabbit antiserum raised against the total mitochondrial outer membrane or against electrophoretically purified 45-kd outer membrane proteins. Antisera against other outer membrane proteins are only marginally active or inactive. Inhibition by the antiserum against 45-kd proteins is only weak with untreated mitochondria, but reaches 80-90% with mitochondria that had been pretreated with 0.1 mg/ml trypsin. This trypsin pretreatment by itself inhibits precursor import only slightly (30-50%). Selective inhibition of import does not correlate with binding of the various IgGs to the mitochondrial surface and is also observed with the corresponding Fab fragments. Inhibition by antibodies against 45-kd outer membrane proteins strongly suggests the existence of a mitochondrial surface protein mediating protein import and offers a means of isolating this protein.  相似文献   

15.
A receptor for protein import into potato mitochondria   总被引:3,自引:0,他引:3  
Five potential surface receptors for protein import into plant mitochondria were identified by gentle trypsin treatment of intact mitochondria from potato tubers and subsequent preparation of outer mitochondrial membranes. One of them, a 23 kDa protein, was purified to homogeneity and analysed by direct protein sequencing. Copy DNA clones encoding the corresponding polypeptide were isolated with labelled oligonucleotides derived from the amino acid data. The 23 kDa protein shares significant sequence similarity with protein import receptors from fungal mitochondria and contains one of their typical tetratricopeptide motifs. Its integration into the outer membrane is independent of protease accessible surface receptors and not accompanied by proteolytic processing. Monospecific antibodies against the 23 kDa protein significantly reduce import capacity of isolated mitochondria indicating that this component is indeed involved in the recognition or import of precursor proteins. As in fungi, immunological inhibition of protein import with IgGs against a single receptor is incomplete suggesting the existence of other receptors in the outer mitochondrial membrane of plant mitochondria.  相似文献   

16.
17.
We have studied the import of the precursor to yeast cytochrome c oxidase subunit Va, a protein of the mitochondrial inner membrane. Like the majority of mitochondrial precursor proteins studied thus far, import of presubunit Va was dependent upon both a membrane potential (delta psi) and the hydrolysis of ATP. However, the levels of ATP necessary for the import of presubunit Va were significantly lower than those required for the import of a different mitochondrial precursor protein, the beta subunit of the F1-ATPase. The rate of import of presubunit Va was found to be unaffected by temperature over the range 0 to 30 degrees C, and was not facilitated by prior denaturation of the protein. These results, in conjunction with those of an earlier study demonstrating that presubunit Va could be efficiently targeted to mitochondria with minimal presequences, suggest that the subunit Va precursor normally exists in a loosely folded conformation. Presubunit Va could also be imported into mitochondria that had been pretreated with high concentrations of trypsin or proteinase K (1 mg/ml and 200 micrograms/ml, respectively). Furthermore, the rate of import into trypsin-treated mitochondria, at both 0 and 30 degrees C, was identical to that observed with the untreated organelles. Thus, import of presubunit Va is not dependent upon the function of a protease-sensitive surface receptor. When taken together, the results of this study suggest that presubunit Va follows an unusual import pathway. While this pathway uses several well-established translocation steps, in its entirety it is distinct from either the receptor-independent pathway used by apocytochrome c, or the more general pathway used by a majority of mitochondrial precursor proteins.  相似文献   

18.
Mitochondria have many different functions, the most important one of which is oxidative phosphorylation. They originated from an endosymbiotic event between a bacterium and an archaeal host cell. It was the evolution of a protein import system that marked the boundary between the endosymbiotic ancestor of the mitochondrion and a true organelle that is under the control of the nucleus. In present day mitochondria more than 95% of all proteins are imported from the cytosol in a proces mediated by hetero‐oligomeric protein complexes in the outer and inner mitochondrial membranes. In this review we compare mitochondrial protein import in the best studied model system yeast and the parasitic protozoan Trypanosoma brucei. The 2 organisms are phylogenetically only remotely related. Despite the fact that mitochondrial protein import has the same function in both species, only very few subunits of their import machineries are conserved. Moreover, while yeast has 2 inner membrane protein translocases, one specialized for presequence‐containing and one for mitochondrial carrier proteins, T. brucei has a single inner membrane translocase only, that mediates import of both types of substrates. The evolutionary implications of these findings are discussed.   相似文献   

19.
Whilst investigating whether GTP hydrolysis may be required for the import of preproteins into mitochondria we have found that a GTP-binding protein is located at the contact sites between mitochondrial inner and outer membranes. When mitochondrial outer membranes purified from rat liver were UV-irradiated in the presence of [alpha-32P]GTP, a 52 kDa protein was radiolabelled, whereas [alpha-32P]ATP did not label this protein. GTP-binding proteins were also labelled in the cytosolic and microsomal fractions, but the 52 kDa protein was concentrated in mitochondrial membranes and was the only protein specifically labelled by GTP in these membranes. Fractionation of mitochondrial membrane vesicles into outer membranes, inner membranes and contact sites between outer and inner membranes showed that the GTP-binding activity was highly enriched in contact sites, the location at which preprotein import is believed to occur. A protein of almost identical size was also found to be labelled in mitochondria from yeast.  相似文献   

20.
L Ramage  T Junne  K Hahne  T Lithgow    G Schatz 《The EMBO journal》1993,12(11):4115-4123
We have identified a 20 kDa yeast mitochondrial outer membrane protein (termed MAS20) which appears to function as a protein import receptor. We cloned, sequenced and physically mapped the MAS20 gene and found that the protein is homologous to the MOM19 import receptor from Neurospora crassa. MAS20 and MOM19 contain the sequence motif F-X-K-A-L-X-V/L, which is repeated several times with minor variations in the MAS70/MOM72 receptors. To determine how MAS20 functions together with the previously identified yeast receptor MAS70, we constructed yeast mutants lacking either one or both of the receptors. Deletion of either receptor alone had little or no effect on fermentative growth and only partially inhibited mitochondrial protein import in vivo. Deletion of both receptors was lethal. Deleting only MAS70 did not affect respiration; deleting only MAS20 caused loss of respiration, but respiration could be restored by overexpressing MAS70. Import of the F1-ATPase beta-subunit into isolated mitochondria was only partly inhibited by IgGs against either MAS20 or MAS70, but both IgGs inhibited import completely. We conclude that the two receptors have overlapping specificities for mitochondrial precursor proteins and that neither receptor is by itself essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号