首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Thirty eight green and 2 albino plants were regenerated from400 kanamycin-resistant colonies derived from protoplasts isolatedfrom cell suspensions of Oryza sativa variety Taipei 309 andelectroporated with pCaMVNEO carrying the neomycin phosphotransferaseII (nptII) gene. Twenty of the green transgenic Ro plants weretransferred to the glasshouse, where 3 flowered after 7 months.Of 15 plants analysed by DNA hybridization, all carried thenptll gene, but only 2 of 11 plants assayed for NPTII activityexpressed the nptll gene. One transgenic Ro plant produced 59seeds following self-pollination. The seeds, when germinatedon medium containing kanamycin sulphate, gave 16 green transgenicR, plants. Five transgenic R1 plants flowered and set seed,7 flowered but failed to produce seeds, while 4 did not producepanicles. Transgenic Ro and R1 plants were shorter, requiredlonger to flower, and had reduced pollen viability comparedto non-transformed R1 protoplast-derived plants. The nptII genewas present in all 16 transgenic R1 plants, but NPTII activitywas detected in only 8 of these plants. Key words: Oryza sativa variety Taipei 309, rice, protoplasts, direct DNA uptake, kanamycin-resistant tissues, transgenic plants, DNA hybridization, neomycin phosphotransferase II (NPTII), gene expression and inheritance  相似文献   

2.
We determined whether T-DNA molecules introduced into plant cells using Agrobacterium are suitable substrates for homologous recombination. For the detection of such recombination events different mutant versions of a NPTII construct were used. In a first set of experiments protoplasts of Nicotiana tabacum SR1 were cocultivated with two Agrobacterium tumefaciens strains. Each strain contained a different T-DNA, one carrying a 5' deleted NPTII gene and the other a NPTII gene with a 3' deletion. A restored NPTII gene was found in 1-4% of the protoplasts that had been cotransformed with both T-DNAs. Restoration of the NPTII gene could only be the consequence of homologous recombination between the two different T-DNAs in the plant cell, since the possibility of recombination in Agrobacterium was excluded in control experiments. In subsequent experiments was investigated the potential use of Agrobacterium for gene targeting in plants. A transgenic tobacco line with a T-DNA insertion carrying a defective NPTII gene with a 3' deletion was transformed via Agrobacterium with a T-DNA containing a defective NPTII repair gene. Several kanamycin resistant plant lines were obtained with an intact NPTII gene integrated in their genome. In one of these lines the defective NPTII gene at the target locus had been properly restored. Our results show that in plants recombination can occur between a chromosomal locus and a homologous T-DNA introduced via A. tumefaciens. This opens the possibility of using the Agrobacterium transformation system for site directed mutagenesis of the plant genome.  相似文献   

3.
Transgenic rice plants have been regenerated from kanamycin-resistant callus of Oryza sativa (cv. Taipei 309) derived from protoplasts electroporated with pCaMVNEO carrying the neomycin phosphotransferase II ( nptII ) gene. Of 6 randomly selected plants, all contained the nptll gene, but only 2 plants expressed NPTII activity. The transgenic plants were significantly shorter, produced fewer tillers, took longer to flower and had reduced fertility compared to non-transformed protoplastderived plants. Fifty-six seeds collected from one transgenic plant expressing NPTII activity germinated on medium containing kanamycin sulphate to give 16 green, first seed generation (R1) plants. The latter could be divided into 3 groups: (i) Plants which set seed, had normal floret morphology and produced a total of 76 seeds; (ii) Plants which flowered, but which failed to set seed; (iii) Plants which failed to flower, were shorter and had significantly fewer tillers than plants of groups (i) and (ii). The nptII gene was present in all transgenic R1 plants, but only 8 plants expressed the gene. Phenotypic characteristics, observed in transgenic R1 plants were also seen in the transforned R2 plants. These included reduced stature, a longer vegetative phase and reduced fertility compared to non-transformed plants.  相似文献   

4.
An efficient variety-independent method for producing transgenic eggplant (Solanum melongena L.) via Agrobacterium tumefaciens-mediated genetic transformation was developed. Root explants were transformed by co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBAL2 carrying the reporter gene beta-glucuronidase intron (GUS-INT) and the marker gene neomycin phosphotransferase (NPTII). Transgenic calli were induced in media containing 0.1 mg l(-1) thidiazuron (TDZ), 3.0 mg l(-1) N(6)-benzylaminopurine, 100 mg l(-1) kanamycin and 500 mg l(-1) cefotaxime. The putative transgenic shoot buds elongated on basal selection medium and rooted efficiently on Soilrite irrigated with water containing 100 mg l(-1) kanamycin sulphate. Transgenic plants were raised in pots and seeds subsequently collected from mature fruits. Histochemical GUS assay and polymerase chain reaction analysis of field-established transgenic plants and their offsprings confirmed the presence of the GUS and NPTII genes, respectively. Integration of T-DNA into the genome of putative transgenics was further confirmed by Southern blot analysis. Progeny analysis of these plants showed a pattern of classical Mendelian inheritance for both the NPTII and GUS genes.  相似文献   

5.
To elucidate the mechanism for intermolecular homologous recombination in plants we cotransformed Nicotiana tabacum cv Petit Havana SR1 protoplasts with constructs carrying different defective derivatives of the NPTII gene. The resulting kanamycin resistant clones were screened for possible recombination products by PCR, which proved to be a valuable technique for this analysis. Our results show that the double-stranded circular DNA molecules used in this study recombine predominantly via a pathway consistent with the single-strand annealing (SSA) model as proposed for extrachromosomal recombination in mammalian cells. In the remaining cases recombination occurred via a single reciprocal recombination, gene conversion and possibly double reciprocal recombination. Since single-stranded DNA is considered to be an important intermediate in homologous recombination we also established the recombination ability of single-stranded DNA in intermolecular recombination. We found that single-stranded DNA enters in recombination processes more efficiently than the corresponding double-stranded DNA. This was also reflected in the recombination mechanisms that generated the functional NPTII gene. Recombination between a single-stranded DNA and the complementing DNA duplex occurred at similar rates via a single reciprocal recombination and the SSA pathway.  相似文献   

6.
We have obtained fertile transgenic plants of Indica rice variety IR36, by using electroporation to transfer the neomycin phosphotransferase II (nptII) gene into cells of mature embryos. Resistant calli were selected in the presence of 30 g/ml G418. Nearly thirty transgenic plants were regenerated within three months after transformation. Many of them yielded seeds following self-pollination. Data from molecular analysis and enzyme assay proved that the foreign gene was stably integrated into the genome of resistant calli, R0 and R1 plants, and also expressed. Mendelian segregation of the nptII gene was observed in R1 progeny plants.Abbreviations NOS nopaline synthase - NPTII and nptII neomycin phosphotransferase II - OCS octopine synthase - Km kanamycin  相似文献   

7.
Summary Kanamycin resistant plants of Solarium melongena L. (eggplant) cv. Picentia were obtained following the cocultivation of leaf explants with Agrobacterium tumefaciens. A disarmed binary vector system containing the neomycin phosphotransferase (NPTII) gene as the selectable marker and chloramphenicol acetyltransferase (CAT) as a reporter gene was utilized. In vitro grown plants were used as sources of explants to produce transgenic plants on selective medium containing 100 mg/l kanamycin. The transformation and expression of the foreign genes was confirmed by DNA hybridizations, leaf disc assays, and by measuring NPTII and CAT enzyme activities. This technique is simple, rapid, efficient, and transgenic eggplants of this commercial cultivar have been transferred to soil where they have flowered and set seed.Abbreviations CAT chloramphenicol acetyltransferase - MS Murashige and Skoog - NPTII neomycin phosphotransferase - NOS nopaline synthase - ZEA zeatin  相似文献   

8.
Helianthus annuus protoplasts were transformed with the plasmid pCaMVNEO (Frommet al. 1986) conferring kanamycin resistance to plant. Transformed calli were selected with a frequency of 4 calli for 106 treated protoplasts. DNA was extracted from kanamycin resistant calli. Analysis of this DNA shows the presence of the NPTII gene.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4 dichlorophenoxyacetic acid - IAA Indole-3-acetic acid - NAA 1-naphtalenoacetic acid - NPT Neomycin phosphotransferase - PEG Polyethyleneglycol  相似文献   

9.
Rice protoplasts (Oryza sativa L. v Taipei 309) have been transformed to kanamycin resistance following uptake of pCaMVNEO induced by electroporation, PEG and PEG combined with electroporation. Protoplast-derived colonies selected on medium containing 100 g/ml of kanamycin expressed NPTII activity, and contained DNA that hybridised to a 1.0 Kb BamHI fragment of pCaMVNEO carrying the NPTII gene. Expression of the transformation frequency in relative terms (number of kanamycin resistant colonies compared to the number of colonies on kanamycin free medium) gave frequencies of 26.1%, 8.5% and 2.9% following electroporation, PEG and PEG with electroporation respectively. In absolute terms (number of kanamycin resistant colonies compared to the number of protoplasts plated) these represent frequencies of 19.9×10–5, 9.0×10–5 and 2.7×10–5 for the three procedures.  相似文献   

10.
Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.)   总被引:17,自引:0,他引:17  
A gene derived from grapevine (Vitis vinifera) coding for stilbene synthase has been transferred into protoplasts of the commercially important japonica rice cultivar Nipponbare using PEG-mediated direct gene transfer. Transgenic plants were regenerated from calli selected on kanamycin. Southern blot analysis of genomic DNA isolated from regenerants and progeny plants demonstrated that the stilbene synthase gene is stably integrated in the genome of transgenic rice plants and inherited in the offspring. The transient formation of stilbene-synthase-specific mRNA shortly after inoculation with the fungus of the rice blast Pyricularia oryzae has demonstrated that the grapevine stilbene synthase promoter is also active in monocotyledonous plants. Preliminary results indicate an enhanced resistance of transgenic rice to P. oryzae. Received: 1 July 1996 / Revision received: 5 November 1996 / Accepted: 30 November 1996  相似文献   

11.
Protoplasts were isolated from primary calli of barley (Hordeum vulgare L.), and an antibiotic (G418) resistance gene was introduced into these protoplasts using a polyethylene glycol (PEG) DNA uptake method. Sixty-four G418 resistant calli were obtained in nine experiments, and two plants were regenerated from these calli. NPTII ELISA and Southern analysis indicated that the G418 resistance gene was introduced and expressed in two T0 plants. These plants set seed and the introduced gene was transmitted to T1 plants. These results suggest that our transformation system using primary callus-derived protoplasts is a useful method for the generation of transgenic barley. Received: 14 November 1997 / Revision received: 12 March 1998 / Accepted: 24 April 1998  相似文献   

12.
A system for the production of transgenic papaya (Carica papaya L.) plants using zygotic embryos and embryogenic callus as target cells for particle bombardment is described. Phosphinothricin (bar ) and kanamycin (npt II) resistance genes were used as selectable markers, and the gus gene (uidA) as a reporter gene. Selection with 100 mg/l kanamycin and 4 mg/l phosphinothricin (PPT) yielded a total of over 90 resistant embryogenic colonies from three independent experiments using embryogenic callus as a target tissue. This represents an efficiency of 60 transgenic clones per gram of fresh weight callus bombarded. The efficiency of genetic transformation using zygotic embryos was lower, as only 8 independent resistant clones were recovered out of 645 bombarded zygotic embryos, giving a efficiency of 1.24%. Subsequent subculture of transgenic somatic embryos both from zygotic embryos and embryogenic callus led to the development of plants with apparently normal morphology. Histological, fluorimetric assay for GUS, NPT II assay and DNA analysis (Southern hybridization) showed that kanamycin /PPT resistant plants carried and expressed the transgenes.Abbreviations Gus -glucuronidase - NPTII neomycin phophotransferase II - bar phophinothricin acetyl transferase gene - Pat phosphinothricin acetyl transferase - PPT phosphinothricin - Km kanamycin - 2,4-D 2,4-dichlorophenoxyacetic acid - K kinetin - BAP benzylaminopurine - IBA indolbutyric acid  相似文献   

13.
A reproducible and efficient transformation system has been developed for maize that is based on direct DNA uptake into embryogenic protoplasts and regeneration of fertile plants from protoplast-derived transgenic callus tissues. Plasmid DNA, containing the -glucuronidase (GUS) gene, under the control of the doubled enhancer element (the –208 to –46 bp upstream fragment) from CaMV 35S promoter, linked to the truncated (up to –389 bp from ATG) promoter of wheat, -amylase gene was introduced into protoplasts from suspension culture of HE/89 genotype. The constructed transformation vectors carried either the neomycin phosphotransferase (NPTII) or phosphinothricin acetyltransferase (PAT) gene as selective marker. The applied DNA uptake protocol has resulted at least in 10–20 resistant calli, or GUS-expressing colonies after treatment of 106 protoplasts. Vital GUS staining of microcalli has made possible the shoot regeneration from the GUS-stained tissues. 80–90% of kanamycin or PPT resistant calli showed GUS activity, and transgenic plants were regenerated from more than 140 clones. Both Southern hybridization and PCR analysis showed the presence of introduced foreign genes in the genomic DNA of the transformants. The chimeric promoter, composed of a tissue specific monocot promoter, and the viral enhancer element specified similar expression pattern in maize plants, as it was determined by the full CaMV 35S promoter in dicot and other monocot plants. The highest GUS specific activity was found in older leaves with progressively less activity in young leaves, stem and root. Histochemical localization of GUS revealed promoter function in leaf epidermis, mesophyll and vascular bundles, in the cortex and vascular cylinder of the root. In roots, the meristematic tip region and vascular tissues stained intensively. Selected transformants were grown up to maturity, and second-generation seedlings with segregation for GUS activity were obtained after outcrossing. The GUS-expressing segregants carried also the NPTII gene as shown by Southern hybridization.  相似文献   

14.
Genetic transformation of Cymbidium orchid by particle bombardment   总被引:13,自引:0,他引:13  
 A protocol is presented for genetically engineering Cymbidium orchid using particle bombardment. This protocol enabled the routine transformation of orchid plants that were previously difficult to transform. Liquid culture was used to generate a large number of protocorm-like bodies (PLBs) to be bombarded and to promote continued development of the bombarded meristematic tissue. Plasmid DNA (pKH200) carrying the GUS-INT and NPTII genes flanked by tobacco matrix attachment regions was introduced into the meristematic cells of PLBs by particle acceleration. The transformed PLBs were proliferated and selected for kanamycin resistance conferred by the introduced NPTII gene. Shoot regeneration was then induced from the kanamycin-resistant PLBs, and transgenic plantlets were produced. Both the kanamycin-resistant PLBs and regenerated shoots expressed the GUS-INT gene. The presence of the introduced gene in the transformed orchid plants was confirmed by PCR analysis, sequencing and Southern blot analysis of the PCR product. The recovered transgenic plants were established in soil and acclimatized in the greenhouse. Received: 20 July 1998 / Revision received: 2 December 1998 / Accepted: 17 December 1998  相似文献   

15.
Anti-kanamycin antibodies produced in rabbits, following coupling of the antibiotic to bovine serum albumin, were used to immunoprecipitate radioactively labelled phosphorylated kanamycin from transformed bacterial or plant extracts in a novel assay system, for the detection of neomycin phosphotransferase II (NPTII) activity. Radioactive counts in the immunoprecipitated pellet give a semiquantitative measure of the kanamycin phosphorylation and hence the amount of NPTII activity. This assay is sensitive, uses very small amounts of radioactivity, and is very rapid, allowing many samples to be processed within a few hours. Immunoprecipitated counts from reactions with bacteria carrying a kanamycin resistance gene or from tobacco and Brassica napus plants transformed with NPTII gene-containing vectors were consistently higher than counts from nontransformed controls. Results obtained with this assay correlate well with those from the previously described gel overlay and dot-blot assays, but can be obtained in an appreciably shorter time frame.  相似文献   

16.
Protoplasts obtained from immature seeds of Glycine max (L.) Merr. cv. Clark 63 (soybean) were electroporated with DNA carrying either the kanamycin or hygromycin resistance genes and the reporter genes, β-glucuronidase or opine synthesis. Antibiotic resistance could be selected for at the frequency of about one colony from 2 000 electroporated protoplasts (0.05%) and the reporter genes were expressed in from 75 to 90% of the selected colonies. Antibiotic resistance and reporter gene expression were not found in untreated protoplasts. Shoots formed within about 5 months after a number of transfers of selected portions of the callus on the regeneration medium. The shoots have been rooted to form plants which express the reporter genes and contain the transforming DNA in their leaves as shown by Southern hybridization. The reporter genes are expressed (opine synthesis) in all leaves and roots and NPTII activity was present in all leaves, indicating that the transformed plants are not chimeral. We expect these plants to set seed since untransformed plants regenerated from protoplasts did. We can obtain shoots from several of the soybean genotypes we have used so far. Thus, we should have a method for the efficient production of nonchimeral, transformed plants of the important crop plant soybean.  相似文献   

17.
18.
To study the possibility of gene rescue in plants by direct gene transfer we chose the Arabidopsis mutant GH50 as a source of donor DNA. GH50 is tolerant of chlorsulfuron, a herbicide of the sulfonylurea class. Tobacco protoplasts were cotransfected with genomic DNA and the plasmid pHP23 which confers kanamycin resistance. A high frequency of cointegration of the plasmid and the genomic DNA was expected, which would allow the tagging of the plant selectable trait with the plasmid DNA. After transfection by electroporation the protoplasts were cultivated on regeneration medium supplemented with either chlorsulfuron or kanamycin as a selective agent. Selection on kanamycin yielded resistant calluses at an absolute transformation frequency (ATF) of 0.8 x 10(-3). Selection on chlorsulfuron yielded resistant calluses at an ATF of 4.7 x 10(-6). When a selection on chlorsulfuron was subsequently applied to the kanamycin resistant calluses, 8% of them showed resistance to this herbicide. Southern analysis carried out on the herbicide resistant transformants detected the presence of the herbicide resistance gene of Arabidopsis into the genome of the transformed tobacco. Segregation analysis showed the presence of the resistance gene and the marker gene in the progeny of the five analysed transformants. 3 transformants showed evidence of genetic linkage between the two genes. In addition we show that using the same technique a kanamycin resistance gene from a transgenic tobacco could be transferred into sugar beet protoplasts at a frequency of 0.17% of the transformants.  相似文献   

19.
Transgenic soybean (Glycine max [L.] Merr.) plants were regenerated from calli derived from protoplasts electroporated with plasmid DNA-carrying genes for a selectable marker, neomycin phosphotransferase (NPTII), under the control of the cauliflower mosaic virus 35-Svedberg unit promoter, linked with a nonselectable mannityl opine synthesis marker. Following electroporation and culture, the protoplast-derived colonies were subjected to kanamycin selection (50 micrograms per milliliter) beginning on day 15 for 6 weeks. Approximately, 370 to 460 resistant colonies were recovered from 1 × 106 electroporated protoplasts, giving an absolute transformation frequency of 3.7 to 4.6 × 10−4. More than 80% of the kanamycin-resistant colonies showed NPTII activity, and about 90% of these also synthesized opines. This indicates that the linked marker genes were co-introduced and co-expressed at a very high frequency. Plants were regenerated from the transformed cell lines. Southern blot analysis of the transformed callus and leaf DNA demonstrated the integration of both genes. Single-plant assays performed with different plant parts showed that both shoot and root tissues express NPTII activity and accumulate opines. Experiments with NPTII and mannityl opine synthesis marker genes on separate plasmids resulted in a co-expression rate of 66%. These results indicate that electroporation can be used to introduce both linked and unlinked genes into the soybean to produce transformed plants.  相似文献   

20.
Genetic transformation of buckwheat (Fagopyrum esculentum Moench.) and regeneration of transgenic plants were obtained by using Agrobacterium tumefaciens strains as vectors. Buckwheat cotyledons were excised from imbibed seeds, co-cultivated with A. tumefaciens and subjected to previously reported protocols for callus and shoot regeneration. The transformation with oncogenic strains was confirmed by opine and DNA analyses of tumour tissue extracts. Plants were regenerated on cotyledon fragments incubated with strain A281, harboring pGA472, which carries the neomycin phosphotransferase II gene for kanamycin resistance. The transformation of resistant shoot clones was confirmed by NPTII enzyme assay and DNA hybridization. A large number of transformed shoots were rooted and fertile plantlets were raised in the greenhouse. Transgenic plants comprised pin and thrum clones, which were allowed to cross-pollinate. In about 180 R2 seeds tested for kanamycin resistance, the ratio of resistant to sensitive seedlings was roughly 3:1.Abbreviations BAP 6-benzylaminopurine - 2,4-D dichloro-phenoxyacetic acid - 2iP 6-(, ,-dimethylallyl-amino)-purine - IBA indole-3-butyric acid - IAA indole-3-acetic acid - Km kanamycin - NPTII neomycin phosphotransferase II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号