首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《Journal of Asia》2020,23(4):1165-1180
Drosophila suzukii is a serious horticultural and quarantine pest, damaging various berry crops. Although the active use of olfactory communication in D. suzukii is well-known, their olfactory sensory system has not been comprehensively reported. Therefore, the present study was carried out to understand the morphology, distribution and ultrastructure of olfactory sensilla present in the antennae and maxillary palps of D. suzukii, through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The olfactory sensilla on the antennae of D. suzukii in both sexes could be classified into three major morphological types, basiconic, trichoid and coeloconic sensilla, according to their shapes. The antennal basiconic sensilla were further divided into three subtypes and the antennal trichoid sensilla into two subtypes, respectively, according to the size of individual sensillum. In contrast to the antennal olfactory sensilla showing diverse morphology, basiconic sensilla was the only type of olfactory sensilla in the maxillary palps of D. suzukii. The basiconic sensilla in the maxillary palps could be further classified into three subtypes, based on their size. Our SEM and TEM observations indicated that multiple nanoscale pores are present on the surface of all types of olfactory sensilla in the antennae and maxillary palps, except coeloconic sensilla. The difference in the morphological types and the distribution of olfactory sensilla suggests that their olfactory functions are different between antennae and maxillary palps in D. suzukii. The results of this study provide useful information for further studies to determine the function of olfactory sensilla in D. suzukii and to understand their chemical communication system.  相似文献   

2.
The morphology and ultrastructure of the olfactory sensilla on the antennae and maxillary palps were investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their responses to five volatile compounds were measured using electroantenogram (EAG) and electropalpogram (EPG) techniques in the pumpkin fruit fly, Bactrocera depressa (Shiraki; Diptera: Tephritidae). Male and female B. depressa displayed distinct morphological types of olfactory sensilla in the antennae and maxillary palps, with predominant populations of trichoid, basiconic, and coeloconic sensilla. Basiconic sensilla, the most abundant type of olfactory sensilla in the antennae, could be further classified into two different types. In contrast, the maxillary palps exhibited predominant populations of a single type of curved basiconic sensilla. High‐resolution SEM observation revealed the presence of multiple nanoscale wall‐pores on the cuticular surface of trichoid and basiconic sensilla, indicating that their primary function is olfactory. In contrast, coeloconic sensilla displayed several longitudinal grooves around the sensillum peg. The TEM observation of individual antennal olfactory sensilla indicates that the basiconic sensilla are thin‐walled, while the trichoid sensilla are thick‐walled. The profile of EAG responses of male B. depressa was different from their EPG response profile, indicating that the olfactory function of maxillary palps is different from that of antennae in this species. The structural and functional variation in the olfactory sensilla between antennae and maxillary palps suggests that each plays an independent role in the perception of olfactory signals in B. depressa.  相似文献   

3.
This review surveys the organization of the olfactory and gustatory systems in the imago and in the larva of Drosophila melanogaster, both at the sensory and the central level. Olfactory epithelia of the adult are located primarily on the third antennal segment (funiculus) and on the maxillary palps. About 200 basiconic (BS), 150 trichoid (TS) and 60 coeloconic sensilla (CS) cover the surface of the funiculus, and an additional 60 BS are located on the maxillary palps. Males possess about 30% more TS but 20% fewer BS than females. All these sensilla are multineuronal; they may be purely olfactory or multimodal with an olfactory component. Antennal and maxillary afferents converge onto approximately 35 glomeruli within the antennal lobe. These projections obey precise rules: individual fibers are glomerulus-specific, and different types of sensilla are associated with particular subsets of glomeruli. Possible functions of antennal glomeruli are discussed. In contrast to olfactory sensilla, gustatory sensilla of the imago are located at many sites, including the labellum, the pharynx, the legs, the wing margin and the female genitalia. Each of these sensory sites has its own central target. Taste sensilla are usually composed of one mechano-and three chemosensory neurons. Individual chemosensory neurons within a sensillum respond to distinct subsets of molecules and project into different central target regions. The chemosensory system of the larva is much simpler and consists essentially of three major sensillar complexes on the cephalic lobe, the dorsal, terminal and ventral organs, and a series of pharyngeal sensilla.  相似文献   

4.
This review surveys the organization of the olfactory and gustatory systems in the imago and in the larva of Drosophila melanogaster, both at the sensory and the central level. Olfactory epithelia of the adult are located primarily on the third antennal segment (funiculus) and on the maxillary palps. About 200 basiconic (BS), 150 trichoid (TS) and 60 coeloconic sensilla (CS) cover the surface of the funiculus, and an additional 60 BS are located on the maxillary palps. Males possess about 30% more TS but 20% fewer BS than females. All these sensilla are multineuronal; they may be purely olfactory or multimodal with an olfactory component. Antennal and maxillary afferents converge onto approximately 35 glomeruli within the antennal lobe. These projections obey precise rules: individual fibers are glomerulus-specific, and different types of sensilla are associated with particular subsets of glomeruli. Possible functions of antennal glomeruli are discussed. In contrast to olfactory sensilla, gustatory sensilla of the imago are located at many sites, including the labellum, the pharynx, the legs, the wing margin and the female genitalia. Each of these sensory sites has its own central target. Taste sensilla are usually composed of one mechano-and three chemosensory neurons. Individual chemosensory neurons within a sensillum respond to distinct subsets of molecules and project into different central target regions. The chemosensory system of the larva is much simpler and consists essentially of three major sensillar complexes on the cephalic lobe, the dorsal, terminal and ventral organs, and a series of pharyngeal sensilla.  相似文献   

5.
The aqueous medium bathing the dendrites of olfactory neurons contains high concentrations of odorant-binding proteins (OBPs) whose role is still unclear. OBPs may facilitate interactions between odorants and their membrane-bound receptors, perhaps by increasing the water solubility of hydrophobic molecules. Alternatively, OBPs may be involved in the inactivation of odorants and other volatile molecules, preventing desensitization and/or protecting olfactory neurons from toxic chemicals. We report here novel features of the localization of two putative OBPs, PBPRP2 and PBPRP5, that have important and different implications for their role in olfaction. Unlike several other putative OBPs of Drosophila melanogaster that are only found in adult olfactory organs, PBPRP5 is also expressed in the larval olfactory organs, suggesting that it plays a common role in olfaction at both stages. In the adult, PBPRP5 expression is restricted to the sensillum lymph that bathes the olfactory dendrites of a subset of olfactory hairs, the basiconic sensilla. Since individual basiconic sensilla differ in olfactory specificity, PBPRP5 may be able to bind to and mediate olfactory responses to a wide range of odorants. In contrast, PBPRP2 is present in the space immediately below the antennal cuticle and in the outer cavity of approximately 30% of the double-walled coeloconic sensilla on the antennal surface. In neither case is PBPRP2 in contact with the dendritic membranes of olfactory neurons, making a carrier function unlikely for this protein. Instead, PBPRP2 may act as a sink, binding to odorants and other volatile chemicals and limiting their interactions with olfactory neurons.  相似文献   

6.
Sensilla diversity and abundance were extremely high on the apex of the maxillary and labial palpi of two species of Gryllacrididae. The terminal segment of the maxillary palpi of these species had 9 and 15 sensilla types, respectively, and up to 2,834 sensilla. The labial palpi had 7 and 12 types, respectively, and up to 5,195 sensilla. Several types of multiporous smooth and ridged olfactory basiconic sensilla, and coeloconic, coelosphaeric, placoid, and multipapilliform sensilla occurred, as well as many trichoid sensilla and the more typical uniporous basiconic contact receptors. Two species of the closely related Stenopelmatidae were compared to the gryllacridids and found to have similar sensillar diversity and abundance, but three species of the more distantly related Tettigoniidae had only 4 or 5 sensilla types and a total number ranging from 320 to 960 on their maxillary palpi.  相似文献   

7.
Single-cell recordings from olfactory sensory neurons (OSNs), housed in sensilla located at the base and at the tip of the antenna, showed selective responses to plant odors and female sex pheromone in this polyphagous moth. A spatial variation existed in sensitivity: OSNs present on the more proximal segment (P) were more sensitive than those on the more distal segment (D). OSNs of the 2 locations also differed in temporal characteristics: OSNs on P had shorter latency and displayed more phasic responses, whereas those on D had more tonic responses, especially at low stimulus concentrations. The 196 OSNs responding to our 35 monomolecular stimuli in the screening were housed in 32 functional sensillum types: 27 in basiconic, 3 in long-trichoid, 2 in coeloconic, and 3 in auricillic sensilla. The OSNs in basiconic, coeloconic, and auricillic sensilla responded to plant-associated odorants, whereas OSNs in long-trichoid sensilla responded to female-produced sex pheromone components. Short-trichoid sensilla showed spontaneous activity, but no responses to any odorant tested. OSN specificity to plant stimuli ranged from highly specific to broadly tuned, but it did not differ clearly from females in more specialized moths. OSN response diversity is discussed in terms of olfactory coding, behavior, and ecological specialization.  相似文献   

8.
Two alleles of the mutant lozengeof Drosophila melanogaster, lzand lz3,lack basiconic sensilla on the antennal funiculus. To elucidate the role of these sensilla for the perception of food odors, we studied the locomotor behavior and the electroantennogram (EAG) activity of lozenge flies in response to olfactory stimuli. The significance of basiconic sensilla on the maxillary palps was assessed by testing the locomotion of flies surgically deprived of their palps. The behavioral data suggest that antennal and maxillary basiconic sensilla may be important receptors for short chain alcohols and organic acids but less crucial receptors for acetates, aldehydes, and ketones. In agreement with this interpretation, EAG responses to alcohols (but not to esters) were found to be markedly lower in lozengethan in the wild type.  相似文献   

9.
A transmission electron microscope study of the antennal sensilla of the whitefly Trialeurodes vaporariorum and Aleyrodes proletella (Homoptera : Aleyrodidae) revealed that of the sensilla unique to the antennal flagellum (basiconic, coeloconic and small digitate-tipped sensory pegs), basiconic and coeloconic sensilla occur as subtypes. Four subtypes of basiconic cone sensilla occur on the flagella of T. vaporariorum and 3 on A. proletella. All the subtypes of basiconic sensilla have an ultrastructure typical of olfactory sensilla and probably have a primary olfactory function. Two subtypes of coeloconic sensilla occur on the flagella of both species. Their ultrastructure suggests primarily a chemosensory function. The digitate-tipped sensory peg of both species possesses a triad of neurones which have ultrastructural characteristics similar to the known thermo-/hygroreceptors of other insect species. The other sensilla, which occur on the antennae of the whiteflies, include cheatae, campaniform and subcuticular sensilla, all of which have an ultrastructure typical of mechanoreceptors.  相似文献   

10.
Drosophila olfactory receptor neurons are found within specialized sensory hairs on antenna and maxillary palps. The linking of odorant-induced responses to olfactory neuron activities is often accomplished via Single Sensillum Recordings (SSR), in which an electrode inserted into a single sensory hair records the neuronal activities of all the neurons housed in that sensillum. The identification of the recorded sensillum requires matching the neuronal responses with known odor-response profiles. To record from specific sensilla, or to systematically screen all sensillar types, requires repetitive and semi-random SSR experiments. Here, we validate an approach in which the GAL4/UAS binary expression system is used for targeting specific sensilla for recordings. We take advantage of available OrX-Gal4 lines, in combination with recently generated strong membrane targeted GFP reporters, to guide electrophysiological recordings to GFP-labeled sensilla. We validate a full set of reagents that can be used to rapidly screen the odor-response profiles of all basiconic, intermediate, and trichoid sensilla. Fluorescence-guided SSR further revealed that two antennal trichoid sensilla types should be re-classified as intermediate sensilla. This approach provides a simple and practical addition to a proven method for investigating olfactory neurons, and can be extended by the addition of UAS-geneX effectors for gain-of-function or loss-of-function studies.  相似文献   

11.
The ultrastructure and physiology of the maxillary palp of Drosophila melanogaster have been studied in wild-type and lozenge mutants. Olfactory physiology in the maxillary palp is shown to depend upon the lozenge(lz) gene. Reduced response amplitudes were recorded for all odorants tested, and the physiological defect was shown to map to the lz locus. The structure of the maxillary palp sensilla is described by scanning electron microscopy (SEM) at high magnification, initially in the wild-type. A linear arrangement of pores, connected by furrows, was found in one class of sensilla, the basiconic sensilla. In the lz 3 mutant, morphological alterations in the basiconic sensilla and duplications of sensilla are documented by SEM. The correlation of structural abnormalities in the lz sensilla and physiological abnormalities in odorant response are consistent with an olfactory role for the basiconic sensilla of the maxillary palp. Accepted: 10 September 1996  相似文献   

12.
The fine structural characteristics of various sensory receptors on the antenna of a millipede, Orthomorphella pekuensis, were observed with field emission scanning electron microscopy. The antenna of this millipede has eight segments, called articles. On the surface of the antenna, there are a variety of sensory receptors, including olfactory and mechanical receptors. According to their morphological and fine structural characteristics, we could identify four basic types of antennal sensillum: chaetiform sensilla (CS), trichoid sensilla (TS), basiconic sensilla (BS) and apical cone sensilla (AS). The BS are divided further into three subtypes: large basiconic sensilla (BS1) on the 5th and 6th articles; small basiconic sensilla (BS2) on the 5th article; and a distinct type of basiconic spiniform sensilla (BS3) on the 7th article. The most prominent sensilla are four large AS on the distal tip of the 8th segment. Based on our results, we conclude that the main function of the CS and TS are related to mechanical reception, and that the BS and AS are likely to function in olfactory reception of volatile odors of plants, as these sensilla have base and apex pores, respectively.  相似文献   

13.
Abstract. First-instar larvae of Dermatobia hominis collected 1, 4 and 7 days after having penetrated experimentally infected rats, were studied by scanning electron microscope (SEM) observation. On the pseudocephalon there are basiconic and trichoid sensilla (antennal sensory complex), and basiconic, coeloconic and campaniform sensilla (maxillary sensory complex). The thoracic segments bear several rows of small, backwardly pointed, spines, and trichoid, campaniform, coeloconic and pit sensilla. The anterior spiracle is a minute opening. Both small and large spines directed posteriorly are on the first to fourth abdominal segments, which also bear coeloconic and companiform sensilla. These sensilla are present on the unarmed (fifth and sixth) and armed (seventh) abdominal segments. The seventh and the last (eight) abdominal segments have forwardly directed spines. Each spiracular plate has two spiracular openings and four spatulate-like structures called sun rays. The anus and the coeloconic sensilla are proeminent on the last segment. The results are compared with other parasitic dipteran larvae, and emphasize that the multiple types of sensilla on D. hominis larva may have importance in establishing the parasitic phase of the life cycle of this insect.  相似文献   

14.
A comparison was performed of the antennal sensilla of females of four chalcid wasp species Ceratosolen emarginatus Mayr, 1906, Sycophaga sp., Philotrypesis longicaudata Mayr, 1906, and Sycoscapter roxburghi Joseph, 1957, which are specific and obligatory associated with Ficus auriculata (Lour, 1790). The four species exhibit different oviposition strategies in the fig ovules where their offspring hatch and develop. Antennal sensilla morphology was evaluated using scanning electron microscopy. Females of the four species present 11 morphologically similar types of sensilla: trichoid sensilla, sensilla obscura, chaetica sensilla 1 and 2, which all have mechanosensory functions; uniporous basiconic sensilla, which are presumably contact chemosensilla; basiconic capitate peg sensilla, coeloconic sensilla 1, multiporous basiconic and placoid sensilla, which may be regarded as olfactory sensilla, and coeloconic sensilla 2 and 3, which are presumed to be proprioreceptors or pressure receptors. The four species have significant differences in the abundance and arrangement of trichoid sensilla and chaetica sensilla 1 on the flagellum. The coeloconic sensilla and sensilla obscura only occur on the antennae of C. emarginatus that enter figs. The chemosensilla which are presumably involved in host discrimination, i.e., basiconic sensilla, multiporous placoid sensilla and basiconic capitate peg sensilla, are similar in shape and configuration, although they present some differences in abundance. These findings provide practical information on the adaptations of fig wasps and the relationship between multisensory antennae and functions in fig wasp behaviour.  相似文献   

15.
By immunizing mice with homogenized brains, heads, or a mixture of heads and antennae of D. melanogaster, we obtained six monoclonal antibodies (mabs) that bind to the olfactory system of Drosophila with various degrees of specificity. They can be divided into three groups with respect to their staining pattern: (1) The antibodies ca51/2, na21/2, and nb230 label both in the third (olfactory) antennal segment and in the visual ganglia. All of them bind to antennal structures that can be correlated with basiconic sensilla. The antibody ca51/2 labels sensory neurons of these sensilla. In the antenna of the lozenge 3 mutant, which lacks basiconic sensilla, no labeling is present. In Western blots ca51/2 recognizes in the antenna an antigen of 43.5 kDa, which is expressed in the antenna only in the presence of basiconic sensilla. The antibody na21/2 binds to basiconic and coeloconic sensilla, most likely to the apical part of sheath cells. In immunoblots it recognizes in the antenna two antigens of 42.2 kDa and 46.7 kDa. The latter appears to be correlated in the antenna with the presence of basiconic sensilla. (2) The staining pattern of antibody nc10 is associated with the sheath cells of basiconic and coeloconic sensilla. Moreover, nc10 binds to a subset of glomeruli in the antennal lobe. (3) The staining pattern of the antibodies VG2 and I24B5 is restricted to the antenna. I24B5 recognizes coeloconic sensilla and VG2 recognizes both coeloconic and basiconic sensilla. Staining patterns in both cases include sheath cells.  相似文献   

16.
By immunizing mice with homogenized brains, heads, or a mixture of heads and antennae of D. melanogaster, we obtained six monoclonal antibodies (mabs) that bind to the olfactory system of Drosophila with various degrees of specificity. They can be divided into three groups with respect to their staining pattern: (1) The antibodies ca51/2, na21/2, and nb230 label both in the third (olfactory) antennal segment and in the visual ganglia. All of them bind to antennal structures that can be correlated with basiconic sensilla. The antibody ca51/2 labels sensory neurons of these sensilla. In the antenna of the lozenge 3 mutant, which lacks basiconic sensilla, no labeling is present. In Western blots ca51/2 recognizes in the antenna an antigen of 43.5 kDa, which is expressed in the antenna only in the presence of basiconic sensilla. The antibody na21/2 binds to basiconic and coeloconic sensilla, most likely to the apical part of sheath cells. In immunoblots it recognizes in the antenna two antigens of 42.2 kDa and 46.7 kDa. The latter appears to be correlated in the antenna with the presence of basiconic sensilla. (2) The staining pattern of antibody nc10 is associated with the sheath cells of basiconic and coeloconic sensilla. Moreover, nc10 binds to a subset of glomeruli in the antennal lobe. (3) The staining pattern of the antibodies VG2 and I24B5 is restricted to the antenna. I24B5 recognizes coeloconic sensilla and VG2 recognizes both coeloconic and basiconic sensilla. Staining patterns in both cases include sheath cells.  相似文献   

17.
The relative sensitivities of the olfactory receptors in the antenna and maxillary palp of the fleshfly, Neobellieria bullata, were assessed using simultaneous electroantennograms (EAGs) and electropalpograms (EPGs). In general, the antennae and maxillary palps were more sensitive to odors related to animals (blood extract and saturated carboxylic acid) than to odors that were plant-derived (citral, hexenol, hexenal). In addition, the maxillary palps were relatively less sensitive to plant-derived odorants than the antennae, perhaps related to their anatomical position. Scanning electron microscopy was also used to assess the types of sensilla found on the two organs. In addition, NADPH-diaphorase histochemistry was used in an attempt to localize the enzyme nitric oxide synthase (NOS) in the antenna and the maxillary palps. We found evidence of NADPH-diaphorase staining in both organs, with localized staining in the antennal cells and more general staining in the maxillary palps. When NOS was selectively blocked using the antagonist L-NAME, the amplitude of the EAGs and EPGs to odorants fell by 30-50%. In contrast, application of the inactive enantiomer, D-NAME, did not change the amplitude of the EAGs or the EPGs. Our results indicate that NOS is involved in the function of olfactory receptor cells in the fleshfly.  相似文献   

18.
A comparative morphological study of the apical regions of palps in Trichoptera from different evolutionary lines of the order was carried out, and a comparison was made with representatives of Lepidoptera and Mecoptera. Light and scanning electron microscopy methods were used to study the structure of palpal apices in 81 species of the order Trichoptera, 6 of Lepidoptera, and 2 species of Mecoptera. As a result, 11 types of sensilla were identified on the terminal palpal segments, and highly differentiated apical sensory zones with thick short basiconic sensilla were found on the maxillary and labial palps. The presence of an apical sensory zone in caddisflies and related orders is recognized as a plesiomorphic character.  相似文献   

19.
20.
应用扫描电镜观察七星瓢虫Coccinella septempunctata的唇须和附节,以便确认在感应农药残留时起主要作用的化学感受器。研究证明分布在下颚须上的感器类型包括两种锥形感器(兼有机械感受器和化学感受器的功能)和一种钟形感器。同时本文首次报道了对这些感器精确的形态测量,明确了其性二型性。对下颚须的测量表明其左右末节的长度差异与七星瓢虫的性别之间有明显的相关性。文中还记述了下唇须上一种新的钟形感器,其在每个下唇须上的数量大约为12~17个。经测量这些机械感受器的平均直径为2.4 μm。早期研究中所记述的锥形感器被证实是下唇须上仅有的化学感应器,并且首次证明这些锥形感器的数量与性别相关,雄性平均为18个,雌性平均为16个。附节上也存在性别差异: 第2跗节跗垫的宽度在雄性中是从后向前逐渐增大,而在雌性中刚好相反。本文还就这些差异的意义以及新发现感器的功能进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号