首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the effect of growth hormone (GH) administration on adult height (AH) in two groups of isolated GH-deficient (IGHD) children born either small (birth weight below -2 SD) or appropriate (birth weight above -2 SD) for gestational age (GA). Out of 35 prepubertal IGHD children, 14 small for GA (SGA, group A) and 21 appropriate for GA (AGA, group B) were examined. All patients received continuous GH treatment at a median dose of 0.028 mg/kg/day (range 0.023-0.032) in group A and 0.024 (range 0.023-0.028) in group B. GH treatment was administered for a period of 67.0 months (range 42.37-96.05) in group A and 54.31 months (range 47.14-69.31) in group B. All children were measured using a Harpenden stadiometer every 6 months until they reached AH (growth velocity <1 cm/year). The patients underwent a retesting a few months after stopping GH therapy. A significant difference was found between group A and B as expected for birth weight SD, -2.70 (range -2.87 to -2.29) and -0.73 (range -1.30 to 0.14) respectively (p < 0.000001) and interestingly also for body mass index SDS (BMI SDS) at retesting, 0.08 (range 0.30 to -1.51) and 0.61 (range 0.73 to -1.10) respectively (p < 0.04). We observed no significant differences between groups A and B in height (expressed as the SDS for chronological age, height SDS) at diagnosis (p = 0.75), height SDS at start of puberty (p = 0.51), height SDS at retesting (p = 0.50), target height SDS (TH SDS) (p = 0.47), AH SDS (p = 0.92), corrected height SDS (height SDS - TH SDS) (p = 0.60), BMI SDS at diagnosis (p = 0.25), GH dosage (p = 0.34) and therapy duration (p = 0.52). GH treatment with a standard dose in short IGHD children leads to a normalization of AH without any significant difference between SGA and AGA patients.  相似文献   

2.
Short stature is not the only problem faced by children born small for gestational age (SGA). Being born SGA has also been associated with lowered intelligence, poor academic performance, low social competence and behavioural problems. This paper summarizes the results of a randomized, double-blind, growth hormone (GH) dose-response study (1 or 2 mg/m2/day [ approximately 0.035 or 0.07 mg/kg/day]) on growth, intelligence quotient (IQ) and psychosocial functioning in 79 children born SGA at the start, and after 2 and 8 years of GH therapy, and addresses the associations with head circumference. Mean age at start of therapy was 7.4 years; mean duration of GH treatment was 8.0 years. In 2001, 91% of children born SGA had reached a normal height (> -2.0 standard deviation score [SDS]). Block-design s-score (Performal IQ) and Total IQ score increased (p < 0.001 for both indices) from scores significantly lower than those of Dutch peers at the start of therapy (p < 0.001) to scores that were comparable to those of Dutch peers in 2001. Vocabulary s-score (Verbal IQ) was normal at the start of therapy and remained so over time. Externalizing Problem Behaviour SDS and Total Problem Behaviour SDS improved during GH therapy (p < 0.01-0.05) to scores comparable to those of Dutch peers. Internalizing Problem Behaviour SDS was comparable to that of Dutch peers at the start of therapy and remained so, whereas Self-Perception improved from the start of GH therapy until 2001 (p < 0.001), when it reached normal scores. Head circumference SDS at the start of GH therapy and head growth during GH therapy were positively related to all IQ scores (p < 0.01), whereas neither were related to height SDS at the start of, or to its improvement during, GH therapy. A significant improvement in height and head circumference in children born SGA was seen after only 3 years of GH therapy, in contrast to randomized SGA controls. In conclusion, most children born SGA showed a normalization of height during GH therapy and, in parallel to this, a significant improvement in Performal IQ and Total IQ. In addition, problem behaviour and self-perception improved significantly. Interestingly, Performal, Verbal and Total IQ scores were positively related to head circumference, both at the start of, and during, GH therapy; head circumference increased in GH-treated children born SGA, but not in untreated SGA controls. These results are encouraging but also warrant confirmational studies and further investigations into the effects of GH on the central nervous system.  相似文献   

3.
Low birth weight has been associated with impaired insulin sensitivity, type 2 diabetes mellitus, hypertension and cardiovascular disease in later life. GH therapy is known to increase fasting and postprandial insulin levels. For this reason concern has been expressed regarding the possible detrimental effects of GH therapy in children born small for gestational age (SGA). To assess the effects of GH therapy on body composition, carbohydrate metabolism and final height in short SGA children, 165 prepubertal short children born SGA were enrolled in either a multicentre, double-blind, randomized, dose-response GH trial (n = 75) or in a GH controlled trial (n = 90). The inclusion criteria were: (1) birth length standard deviation score (SDS) below -2; (2) age 3-8 years; (3) height SDS below -2. The children's mean (SD) age was 7.3 (2.1) years (GH dose-response trial) and 6.0 (1.5) years (GH controlled trial), birth length SDS was -3.6 and height SDS was -3.0 (0.7). In the GH dose-response trial, children were randomly assigned to either 1 mg GH/m(2) per day (group A, n = 41) or 2 mg GH/m(2) per day (group B, n = 38) ( approximately 0.033 or 0.067 mg/kg per day, respectively). In the GH controlled trial, children were randomly assigned to 1 mg GH/m(2) per day (n = 60) or served as controls (n = 30). Subjects underwent standard oral glucose tolerance tests and measurement of body mass index, systolic and diastolic blood pressure and serum lipids at baseline and after 1 and 6 years of GH therapy and again 6 months after discontinuation of GH. Body composition was measured by dual energy x-ray absorptiometry at baseline and again after 3 years in the GH controlled trial. Mean (SD) final height SDS was not significantly different between the two GH dosage groups: -1.2 (0.7) in group A and -0.8 (0.7) in group B. At the start of GH therapy, 8% of children had impaired glucose tolerance (IGT). Systolic blood pressure was significantly higher in comparison with healthy peers. GH therapy induced considerably higher fasting and glucose-stimulated insulin levels after 1 and 6 years, regardless of GH dosage. After 6 years, 4% of children had IGT. Six months after discontinuation of GH, glucose levels remained normal, whereas fasting and glucose-stimulated insulin returned to levels comparable to those of healthy peers. None of the children developed diabetes. During 6 years of GH therapy both systolic and diastolic blood pressure decreased significantly and remained so after discontinuation of GH therapy. At baseline all children had reduced bone mineral content and lean body mass. Fat mass was not significantly lower than normal. Treatment with 1 mg GH/m(2) per day resulted in a significant increase in (and normalization of) bone mineral content and lean body mass in comparison with untreated short SGA controls. Fat mass decreased during the first year of GH but returned to values comparable to those at baseline in the following 2 years of GH therapy. We found that long-term, continuous GH therapy in short children born SGA leads to a normalization of height during childhood and to a normal final height in most children, regardless of GH dosage. Only very short or relatively older children may need a dosage of 2 mg GH/m(2) per day. Long-term GH therapy had no adverse effects on glucose levels and serum lipids and had a positive effect on blood pressure, even with GH dosages of up to 2 mg/m(2) per day. However, as has been reported in other patient groups, GH induced higher fasting and glucose-stimulated insulin levels, indicating insulin resistance. After discontinuation of GH serum insulin levels returned to normal age-reference levels. Short SGA children have a reduction in bone mineral content and lean body mass when compared with healthy controls, which significantly improved (normalized) with GH therapy at a dose of 1 mg/m(2) per day.  相似文献   

4.
The potential role of exogenous GH in treating short children born small for gestational age (SGA) has been discussed since the early 1960s. Pivotal studies in Europe during the last 10 years have shown that GH treatment of short children born SGA during childhood and early puberty (1) normalizes stature, (2) increases final height above predicted height and (3) allows children to reach their target height. A study now under way in the USA will provide additional much needed data about efficacy and safety of GH treatment in intrauterine growth retardation/SGA.  相似文献   

5.
BACKGROUND/AIMS: The beneficial effects of growth hormone (GH) therapy on statural growth in children are well established, but the effects on skeletal maturation are less clear. The progression of bone age (BA) was therefore studied during the first year of GH treatment in pre-pubertal children with idiopathic GH deficiency (GHD), Turner syndrome (TS) or idiopathic short stature (ISS), and in short pre-pubertal children born small for gestational age (SGA). METHODS: Cross-sectional data on 2,209 short children with idiopathic GHD, 694 with TS, 569 with ISS and 153 with SGA were analysed. Longitudinal data were also analysed from 308 children with idiopathic GHD, 99 with TS, 57 with ISS and 29 with SGA. All patients included in the study were enrolled in KIGS (Pfizer International Growth Database) and were being treated with recombinant human GH (Genotropin). BA was assessed using the Greulich and Pyle method at baseline and after 1 year of GH therapy. RESULTS: In all groups of patients the mean progression of BA was 1 year during the year of GH therapy, although there was considerable individual variation. Progression of BA was not correlated with chronological age, BA, height SD score (SDS) or body mass index SDS at the onset of GH therapy. There was also no consistent effect of the GH dose on BA progression. CONCLUSION: Progression of BA appears to be normal in patients receiving GH in these diagnostic groups, at least over the first year of treatment in pre-puberty.  相似文献   

6.
Twelve years of growth hormone (GH) therapy of short children born small for gestational age (SGA) have demonstrated that GH is an effective and well-tolerated therapy. Most children will reach a normal adult height (AH). AH of 55 SGA adolescents was comparable for those treated with a GH dose of 1 or 2 mg/m2 (approximately 0.033 or 0.066 mg/kg) per day, mean (SD) AH SDS being -1.2 (0.7) and -0.8 (0.7), respectively. GH therapy had no influence on the age at onset, the progression of puberty, duration of puberty and pubertal height gain. GH therapy induced higher fasting and glucose-stimulated insulin levels after 1 and 6 years, but 6 months after GH stop, all levels returned to normal. At baseline mean systolic blood pressure was significantly increased, but both systolic and diastolic blood pressure decreased significantly during 6 years of GH and remained so after GH stop. GH therapy demonstrated a beneficial effect on serum lipid profiles, body composition, bone mineral density and head growth. Treatment with 2 mg GH/m2 per day induced mean serum IGF-I levels of +2 SDS, whereas IGF-I levels remained within the normal range with 1 mg GH/m2 per day. In conclusion, long-term GH therapy of short SGA children with 1 mg/m2 per day appears to be effective and safe. Since the future consequences of high serum IGF-I levels during long-term GH therapy with 2 mg/m2 per day are as yet unknown, it seems safer to treat short prepubertal SGA children with a GH dose of 1 mg/m2 per day when children are to be treated continuously for many years.  相似文献   

7.
Recent reports have shown that high-dose growth hormone (GH) treatment in short children born with small for gestational age (SGA) resulted in a pronounced acceleration of linear growth. We describe the results of multicenter trials of recombinant human GH (rhGH) treatment in short SGA children in Japan. Two clinical studies were performed and the results were combined. Study 1 comprised 104 SGA children and study 2 comprised 61 SGA children. The patients were divided into three groups: group 1 consisted of 20 patients (13 boys and 7 girls) who received rhGH 25 microg/kg per day six or seven times per week in the first year and 50 microg/kg per day in the second year and thereafter; group 2 consisted of 48 patients (28 boys, 20 girls) who received rhGH 45/50 microg/kg per day; group 3 consisted of 44 patients (28 boys, 16 girls) who received 90/100 microg/kg per day. The mean increments in height SDS were 0.46, 0.67 and 0.94 SD in boys and 0.49, 0.79 and 0.93 SD in girls in groups 1, 2 and 3, respectively. The mean increment in height SDS at 2 years in group 3 was significantly greater than that in group 1, but it was not significantly different from that in group 2 in boys and girls. Our data demonstrated that high-dose GH administration significantly improved height velocity and height SDS in short SGA children. Additional studies are necessary to optimize a long-term GH treatment regimen and combined luteinizing hormone releasing hormone analog treatment for final height. Careful observation is also necessary to assess the metabolic effects of high-dose GH, especially on carbohydrate metabolism.  相似文献   

8.
OBJECTIVE: To study the effects of different regimens of growth hormone (GH) treatment on serum leptin levels in 78 short prepubertal children born small for gestational age (SGA). METHODS: The children were originally included in two independent multicenter trials, one in Belgium and one in the Nordic countries. SGA children were randomized either to remain untreated or to be treated with GH at a daily dose of 0.1, 0.2 or 0.3 IU/kg for 2 years. Thereafter, treatment was continued for another 2 years in the Nordic children, whereas it was discontinued in the Belgian children. RESULTS: In the GH treatment groups, a significant dose-dependent decrease in leptin levels was found during the first year of therapy, with a mean decrease of 13, 23 and 32% in the groups receiving GH at 0.1, 0.2 and 0.3 IU/kg, respectively. When high-dose treatment was interrupted, serum leptin increased within 1 year to pretreatment levels. CONCLUSION: Serum leptin levels in short children born SGA are transiently reduced by GH treatment in a dose-dependent fashion. The most pronounced changes in serum leptin were documented within the first year after initiation and withdrawal of high-dose GH treatment.  相似文献   

9.
BACKGROUND/AIMS: To evaluate quality of life (QoL) in adolescents born SGA without spontaneous catch-up growth, treated with and without long-term growth hormone (GH) therapy. Additionally, to assess whether GH treatment has a positive effect on QoL, besides improving adult height and height SDS during childhood. METHODS: Two groups of adolescents born SGA without spontaneous catch-up growth participated in the QoL evaluation; a GH-treated group (n = 44, mean GH duration: 8.8 (1.7) years) and an untreated group (n = 28), both mean age 15.8 (2.1) years. QoL was measured by self-reports of the TACQOL-S, a disorder-specific questionnaire, and the CHQ, a generic questionnaire. RESULTS: The GH group scored significantly better health status and health-related QoL on several scales of the TACQOL-S. On all TACQOL-S scales the GH group scored better QoL than the untreated group, with effect sizes of moderate to large, not all differences reaching statistical significance. The generic CHQ did not reveal significant differences in QoL between the GH group and the untreated group. CONCLUSIONS: Firstly, adolescents born SGA, with a GH-induced improved height, had in many aspects a better QoL than untreated adolescents born SGA, according to the disorder-specific questionnaire. Secondly, we advise to use, in addition to a generic questionnaire, a disorder-specific questionnaire for measuring QoL in children treated for short stature, as the generic CHQ did not reveal such differences.  相似文献   

10.
Ali O  Cohen P 《Hormone research》2003,60(Z3):115-123
The insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) are important regulators of growth and metabolism and are the key mediators of the actions of growth hormone (GH). Children born small for gestational age (SGA) have a host of medical problems including an increased risk of poor growth later in life, a tendency to develop metabolic abnormalities and a high incidence of learning disabilities. IGFs and related molecules may be linked to all of these concerns. Mouse models of IGF-I and IGF-II deficiencies have phenotypes reminiscent of human SGA, including slow growth, insulin resistance, and mental dysfunction. Humans with IGF-I mutations are born SGA and exhibit very poor subsequent growth, metabolic syndrome and mental retardation. Current management of children born SGA who present with growth failure during childhood includes treatment with GH. SGA children usually have growth factor levels within the normal range; however, as a group, they display lower IGFBP-3 levels in relation to their IGF-I levels. GH is effective in improving growth in children born SGA, but higher doses of GH are required to achieve optimal outcome, suggesting a component of GH insensitivity in SGA children. As in other indications for GH, a rational monitoring approach (focusing on maintaining IGF levels in the high normal range) is prudent.  相似文献   

11.
The aim of the study was to investigate the post-natal growth of subjects born small for gestational age (SGA) by describing adult height distribution and by testing the effects of parental, neonatal and pregnancy-related parameters on the risk for adult short stature. The study population was made of adults selected on birth data from a maternity registry and born either small (SGA, n = 734, birth weight < 10th percentile) or appropriate for gestational age (AGA, n = 886, 25th < birth weight < 75th percentile) in whom anthropometric parameters were measured at 22 years of age. The SGA group demonstrated significantly reduced body size in comparison to the AGA group with a mean loss of 0.7 standard deviation (SD) in adult height. The frequency of adult short stature (< -2 SD) was 10.3% in the SGA group vs. 2.4% in the AGA group (p = 0.0001), adult height < -2.5 SD was observed in only 3.7% of the SGA group. Maternal (OR = 0.31 (0.16-0.62), p = 0.0001) and paternal (OR = 0.45 (0.31-0.67), p = 0.0001) heights and subjects birth length (OR = 0.78 (0.62-0.99), p = 0.04) significantly influenced the risk of adult short stature. In summary, post-natal growth defect remains moderate in the majority of subjects born SGA and < 4% only will end up with severe short stature requiring GH therapy according to most current recommendations. The role of parental height and birth length suggests that adult short stature in SGA subjects results at least in some cases from a familial and likely genetic growth disorder with antenatal onset.  相似文献   

12.
Research during the last decade shows clearly that growth hormone (GH) therapy causes a sustained increase in growth velocity when applied to short children born small for gestational age (SGA). This occurs even though GH deficiency per se is an unlikely explanation for their lack of catch-up growth. In the United States, children born weighing less than -2 SD for gestational age and who show no growth recovery (usually defined as stature persisting below -2 SD at age 2 years) are eligible for GH treatment using doses up to 0.48 mg/kg per week. The management of these children brings new challenges to the pediatric endocrinologist. Intrauterine growth retardation reflects a variety of etiologies, some of which merit special consideration and may respond variably to GH. The dose of GH used exceeds physiologic replacement and is higher than that commonly used to treat other non-GH-deficient conditions such as Turner syndrome. Thus, what constitutes optimal therapy in terms of dose, timing and patient selection remains an important question. While GH therapy provides a means by which one aspect of the SGA syndrome can be helped, there are other issues for SGA apart from height. Future efforts should include studies that better define how GH should be used in the short child born SGA and address more broadly the medical, social and psychological needs of these patients.  相似文献   

13.

Background

Growth hormone (GH) treatment has become a frequently applied growth promoting therapy in short children born small for gestational age (SGA). Children born SGA have a higher risk of developing attention deficit hyperactivity disorder (ADHD). Treatment of ADHD with methylphenidate (MP) has greatly increased in recent years, therefore more children are being treated with GH and MP simultaneously. Some studies have found an association between MP treatment and growth deceleration, but data are contradictory.

Objective

To explore the effects of MP treatment on growth in GH-treated short SGA children

Methods

Anthropometric measurements were performed in 78 GH-treated short SGA children (mean age 10.6 yr), 39 of whom were also treated with MP (SGA-GH/MP). The SGA-GH/MP group was compared to 39 SGA-GH treated subjects. They were matched for sex, age and height at start of GH, height SDS at start of MP treatment and target height SDS. Serum insulin-like growth factor-I (IGF-I) and IGF binding protein-3 (IGFBP-3) levels were yearly determined. Growth, serum IGF-I and IGFBP-3 levels during the first three years of treatment were analyzed using repeated measures regression analysis.

Results

The SGA-GH/MP group had a lower height gain during the first 3 years than the SGA-GH subjects, only significant between 6 and 12 months of MP treatment. After 3 years of MP treatment, the height gain was 0.2 SDS (±0.1 SD) lower in the SGA-GH/MP group (P = 0.17). Adult height was not significantly different between the SGA-GH/MP and SGA-GH group (−1.9 SDS and −1.9 SDS respectively, P = 0.46). Moreover, during the first 3 years of MP treatment IGF-I and IGFBP-3 measurements were similar in both groups.

Conclusion

MP has some negative effect on growth during the first years in short SGA children treated with GH, but adult height is not affected.  相似文献   

14.
Noeker M 《Hormone research》2005,64(Z3):83-88
Interest in the neurocognitive and psychosocial outcomes in children who are born small for gestational age (SGA) has increased since the recent approval of growth hormone (GH) therapy in this indication. The objective of GH treatment in SGA children is to provide a symptomatic treatment for growth retardation. From a patient perspective, the ultimate goals of GH therapy are the reduction in the present or future risk of neurocognitive, psychological, social or occupational impairment, not the accompanying improvements in growth velocity and final height per se. Therefore, from a scientific perspective, neurocognitive and psychosocial endpoints become relevant domains of assessment to determine the final treatment benefit experienced by the patient born SGA. This article reviews recent available studies on developmental risks in SGA, and then transforms the empirical findings into an integrated conceptual framework on the sources and mediators of neurocognitive and psychosocial outcomes in intrauterine growth retardation and SGA. This framework depicts two distinct therapeutic pathways by which GH therapy may improve neurocognitive and behavioural outcomes. The first ('traditional') pathway is the prevention of exposure to short-stature-related stressors via an improvement in growth velocity and final height. The second pathway refers to potential metabolic, and thus neurotropic and psychotropic, effects of GH binding at receptors in the central nervous system, thus changing neuronal activity. To date, the existence and potential mechanisms of such physiologically and not psychologically mediated effects of GH on neurocognitive functioning in SGA patients remain hypothetical.  相似文献   

15.
Z Zadik  U Mira  H Landau 《Hormone research》1992,37(4-5):150-155
The aim of this study was to test the effect of growth hormone (GH) therapy on final height in peripubertal boys with idiopathic short stature in whom a subnormal integrated concentration of GH (< 3.2 micrograms/l) was found. Twenty-eight peripubertal children were studied. Height was below 2 SD for age, growth velocity was < 4.5 cm/year, bone age was more than 2 SD below mean for age and GH response to provocative tests was more than 10 micrograms/l. Eleven subjects (group B) were treated with recombinant GH 0.75 unit/kg/week, divided into 3 weekly doses for 2 years, and then the same weekly dose divided into daily injections was administered until final height was attained. Seventeen untreated children (group A) who were followed until cessation of growth served as controls. The GH-treated patients reached their target heights (-2.1 +/- 0.5, mean +/- SD in SDS) and predicted heights (-1.8 +/- 0.8) determined by the Bayley and Pinneau method, while the final heights of the untreated patients were significantly lower than their target heights and their predicted final heights (-2.7 +/- 0.7, -1.8 +/- 1.0 and -2.7 +/- 0.7, respectively). The main effect of GH was observed during the 1st year of treatment when height velocity was significantly higher in the GH-treated group than in the untreated one (9.3 +/- 2.1 vs. 5.3 +/- 1.1, respectively, p < 0.001). The high cost of the treatment in this specific age group should be weighed against the results.  相似文献   

16.
BACKGROUND: Treatment of short children born small for gestational age SGA with recombinant human growth hormone r-hGH increases growth velocity during childhood. As in other indications, the growth velocity in these patients is more marked during the first year of treatment and then decreases. This study was undertaken to evaluate the efficacy of different r-hGH treatment schedules (67 microg/kg/day in a discontinuous or continuous regimen) during the second year of r-hGH treatment by comparing height velocity changes and total gain of height over a 4-year period. METHODS: 58 growth-retarded SGA children aged 2-5 years were randomized to a TOTO regimen (4 years alternating treatment (T) and observation (O), n = 30) or a TTOO regimen (2 years' treatment, followed by 2 years' observation, n = 28). Height velocity HV and total height gain were assessed during the 4-year study. RESULTS: In both groups, HV and HV standard deviation score HV-SDSCA increased during treatment and decreased during observation periods. Interruption of treatment in the TOTO group did not result in a better gain in height standard deviation score H-SDSCA when compared with the TTOO group. After 4 years of study, the gain in H-SDSCA was 1.4 + or - 01 in the TOTO group and 1.6 + or - 0.2 in the TTOO group leading to a mean height of -2.0 + or - 1.0 SDS and -2.0 + or - 0.8 SDS, respectively. The rate of bone maturation was similar in the two groups. CONCLUSIONS: In short SGA children, TOTO and TTOO regimens produced significant improvements in growth during r-hGH treatment. However, treatment interruption after 1 year did not influence the overall gain in height SDS when compared with 2 years' continuous treatment.  相似文献   

17.
Growth hormone (GH) therapy is often associated with adverse side effects, including impaired insulin sensitivity. GH treatment of children with idiopathic short stature does not lead to an optimized final adult height. It has been demonstrated that FFA reduction induced by pharmacological antilipolysis can stimulate GH secretion per se in both normal subjects and those with GH deficiency. However, to date, no investigation has been undertaken to establish efficacy of combination treatment with GH and FFA regulators on linear body growth. Using a model of maternal undernutrition in the rat to induce growth-restricted offspring, we investigated the hypothesis that combination treatment with GH and FFA regulators can enhance linear body growth above that of GH alone. At postnatal day 28, male offspring of normally nourished mothers (controls) and offspring born with low birth weight [small for gestational age (SGA)] were treated with saline, GH, or GH (5 mg.kg(-1).day(-1)) in combination with acipimox (GH + acipimox, 20 mg.kg(-1).day(-1)) or fenofibrate (GH + fenofibrate, 30 mg.kg(-1).day(-1)) for 40 days. GH plus acipimox treatment significantly enhanced linear body growth in the control and SGA animals above that of GH, as quantified by tibial and total body length. Treatment with GH significantly increased fasting plasma insulin, insulin-to-glucose ratio, and plasma volumes in control and SGA animals but was not significantly different between saline and GH-plus-acipimox-treated animals. GH-induced lipolysis was blocked by GH plus acipimox treatment in both control and SGA animals, concomitant with a significant reduction in fasting plasma FFA and insulin concentrations. This is the first study to show that GH plus acipimox combination therapy, via pharmacological blocking of lipolysis during GH exposure, can significantly enhance the efficacy of GH in linear growth promotion and ameliorate unwanted metabolic side effects.  相似文献   

18.
Severe growth retardation and profoundly altered body composition are observed in children with juvenile chronic arthritis receiving glucocorticoids. This study assessed the effects of growth hormone (GH) on height velocity, body composition and bone density. Fourteen patients were treated with GH (1.4 U/kg/week) for 1 year and then studied for a 2nd year off GH. The treatment increased insulin-like growth factor 1 and insulin-like growth factor binding protein 3 plasma levels. All patients showed an increase in height velocity. Lean body mass increased by 12%. After the cessation of GH therapy, height velocity fell to pretreatment values, and weight and fat mass increased markedly. Bone formation and resorption markers significantly increased during treatment and returned to pretreatment values after discontinuation of GH treatment. These results suggest that GH may partially counteract the adverse effects of glucocorticoids on growth and metabolism in patients with chronic inflammatory disease.  相似文献   

19.
AIM: To examine psychosocial functioning of medically referred adolescents with idiopathic short stature (ISS) or persistent short stature born small for gestational age (SGA) during 3 years of combined growth hormone (GH) and gonadotropin-releasing hormone agonist (GnRHa) treatment. METHODS: Thirty-eight adolescents participated in a controlled trial with GH/GnRHa treatment or no intervention. Each year the adolescents and their parents completed questionnaires and structured interviews. Multilevel analysis was used to analyze data. RESULTS: The adolescents of the treatment group showed a worse outcome than the adolescents of the control group on 3 of 16 variables: perceived competence of scholastic (p < 0.01) and athletic ability (p < 0.05) and trait anxiety (p < 0.05). Adolescents in both the treatment and control groups perceived improved current height (p < 0.001) and self-appraisal of physical appearance (p < 0.05). The parents did not report changes in their children during treatment. CONCLUSION: The observation of some adverse psychological consequences as experienced by the adolescents indicates that it is useful to monitor psychosocial functioning during a combined GH/GnRHa treatment in adolescents with ISS or SGA. It is uncertain whether the hypothesized positive effects of the expected gain in final height by adulthood can sufficiently counterbalance possible short-term negative effects.  相似文献   

20.
OBJECTIVE: To study the effects of long-term growth hormone (GH) treatment on left ventricular (LV) dimensions in children with Noonan's syndrome (NS). METHODS: Echocardiographic measurements of LV dimensions were performed before and during GH treatment in 27 participants (21 boys, 6 girls) in a partly controlled 3-year trial of high-dose GH treatment (0.15 IU/kg/day). Nineteen children had a congenital heart defect, 1 of them had hypertrophic obstructive cardiomyopathy. In the first 3 years, the children were assigned to 1 of 2 groups: group A with discontinuation of GH treatment in the 3rd year, or group B without GH treatment in the 1st year. After the 3rd year, 12 of the 27 children were followed up for 2 additional years to evaluate the long-term effects of GH treatment on the heart. RESULTS: At baseline, LV internal diameters were smaller, while posterior wall thickness were thicker than normal. Over the 1st year, changes in LV dimensions were comparable between the 2 groups. No significant differences were found in LV dimensions between the situation at baseline and after 4 years of GH treatment. CONCLUSION: Long-term high-dose GH treatment does not have clinically significant adverse effects on LV dimensions in children with NS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号