首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemomechanical transduction was studied in single fibers isolated from human skeletal muscle containing different myosin isoforms. Permeabilized fibers were activated by laser-pulse photolytic release of 1.5 mM ATP from p(3)-1-(2-nitrophenyl)ethylester of ATP. The ATP hydrolysis rate in the muscle fibers was determined with a fluorescently labeled phosphate-binding protein. The effects of varying load and shortening velocity during contraction were investigated. The myosin isoform composition was determined in each fiber by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. At 12 degrees C large variations (three- to fourfold) were found between slow and fast (2A and 2A-2B) fibers in their maximum shortening velocity, peak power output, velocity at which peak power is produced, isometric ATPase activity, and tension cost. Isometric tension was similar in all fiber groups. The ATP consumption rate increased during shortening in proportion to shortening velocity. At 12 degrees C the maximum efficiency was similar (0.21-0.27) for all fiber types and was reached at a higher speed of shortening for the faster fibers. In all fibers, peak efficiency increased to approximately 0.4 when the temperature was raised from 12 degrees C to 20 degrees C. The results were simulated with a kinetic scheme describing the ATPase cycle, in which the rate constant controlling ADP release is sensitive to the load on the muscle. The main difference between slow and fast fibers was reproduced by increasing the rate constant for the hydrolysis step, which was rate limiting at low loads. Simulation of the effect of increasing temperature required an increase in the force per cross-bridge and an acceleration of the rate constants in the reaction pathway.  相似文献   

2.
MgATP binding to the actomyosin complex is followed by the dissociation of actin and myosin. The rate of this dissociation process was determined from the relationship between the maximum velocity of shortening and the MgATP concentration. It is shown here that the overall dissociation rate is rather similar in different types of muscle fibers. The relation between MgATP concentration and the maximum shortening velocity was investigated in fast and slow fibers and bundles of myofibrils of the iliofibularis muscle of Xenopus laevis at 4 degrees C from which the sarcolemma was either removed mechanically or made permeable by means of a detergent. A small segment of each fiber was used for a histochemical determination of fiber type. At 5 mM MgATP, the fast fibers had a maximum shortening velocity (Vmax) of 1.74 +/- 0.12 Lo/s (mean +/- SEM) (Lo: segment length at a sarcomere length of 2.2 microns). For the slow fibers Vmax was 0.41 +/- 0.15 Lo/s. In both cases, the relationship between Vmax and the ATP concentration followed the hyperbolic Michaelis-Menten relation. A Km of 0.56 +/- 0.06 mM (mean +/- SD) was found for the fast fibers and of 0.16 +/- 0.03 mM for the slow fibers. Assuming that Vmax is mainly determined by the crossbridge detachment rate, the apparent second order dissociation rate for the actomyosin complex in vivo would be 3.8.10(5) M-1s-1 for the fast fibers and 2.9.10(5) M-1 s-1 for the slow fibers. Maximum power output as a function of the MgATP concentration was derived from the force-velocity relationships.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The regulation of vertebrate muscle contraction with respect to the role of the different subunits of myosin remains somewhat uncertain. One approach to gaining a better understanding of the molecular basis of contraction is to study developing muscle which undergoes changes in myosin isozyme composition and contractile properties during the normal course of maturation. The present study utilizes single fibers from psoas muscles of rabbits at several ages as a model system for fast-twitch muscle development. This approach eliminates the inherent problems of interpreting results from studies on whole muscles which usually contain heterogeneous fiber types with respect to contractile properties and isoenzyme composition. Maximum velocity of shortening and tension-generating ability of individual fibers were measured and the myosin heavy chain composition of the same fibers was examined using an ultrasensitive sodium dodecyl sulfate-polyacrylamide gel system. The results indicate that 1) with regard to contractile properties, there is a transitional period from slow to fast shortening velocities within the first postnatal month; 2) a strong, positive correlation exists between the speed of shortening and tension-generating ability of individual postnatal day 7 fibers, suggesting that as more myosin is incorporated in these developing fibers it is of the fast type; and 3) there is a wide variation in maximum velocity of shortening among postnatal day 7 psoas fibers which is also a time when a mixture of heavy chain isoforms characterizes the myosin composition of single muscle fibers.  相似文献   

4.
In this study, we tested the hypothesis that skeletal muscle from pigeons would display age-related alterations in isometric force and contractile parameters as well as a shift of the single muscle fiber cross-sectional area (CSA) distribution toward smaller fiber sizes. Maximal force output, twitch contraction durations and the force–frequency relationship were determined in tensor propatagialis pars biceps muscle from young 3-year-old pigeons, middle-aged 18-year-old pigeons, and aged 30-year-old pigeons. The fiber CSA distribution was determined by planimetry from muscle sections stained with hematoxylin and eosin. Maximal force output of twitch and tetanic contractions was greatest in muscles from young pigeons, while the time to peak force of twitch contractions was longest in muscles from aged pigeons. There were no changes in the force–frequency relationship between the age groups. Interestingly, the fiber CSA distribution in aged muscles revealed a greater number of larger sized muscle fibers, which was verified visually in histological images. Middle-aged and aged muscles also displayed a greater amount of slow myosin containing muscle fibers. These data demonstrate that muscles from middle-aged and aged pigeons are susceptible to alterations in contractile properties that are consistent with aging, including lower force production and longer contraction durations. These functional changes were supported by the appearance of slow myosin containing muscle fibers in muscles from middle-aged and aged pigeons. Therefore, the pigeon may represent an appropriate animal model for the study of aging-related alterations in skeletal muscle function and structure.  相似文献   

5.
Threads of contractile proteins were formed via extrusion and their isometric tensions and isotonic contraction velocities were measured. We obtained reproducible data by using a new and sensitive tensiometer. The force-velocity curves of actomyosin threads were similar to those of muscle, with isometric tensions of the order of 10g/cm2 and maximum contraction velocites of the order of 10(-2) lengths/s. The data could be fitted by Hill's equation. Addition of tropomyosin and troponin to the threads increased isometric tension and maximum contraction velocity. Threads which contained troponin and tropomyosin required Ca++ for contraction and the dependence of their isometric tension on the level of free Ca++ was like that of muscle. The dependence of tension or of contraction velocity upon temperature or upon ionic strength is similar for actomyosin threads and muscle fibers. In contrast, the dependence of most parameters which are characteristic of the actomyosin interaction in solution (or suspension) upon these variables is not similar to the dependence of the muscle fiber parameters. The conclusion we have drawn from these results is that the mechanism of tension generation in the threads is similar to the mechanism that exists in muscle. Because the protein composition of the thread system can be manipulated readily and because the tensions and velocities of the threads can be related directly to the physiological parameters of muscle fibers, the threads provide a powerful method for studying contractile proteins.  相似文献   

6.
Human skeletal muscle fibres can be divided in five groups: 1, 1-2A, 2A, 2A-2B and 2B, by using myosin heavy chain (MHC) isoforms as molecular markers. This study aimed to define the contribution of each fibre type to the contractile performance of human muscles. Single fibre segments were dissected from bioptic samples of vastus lateralis and chemically skinned. Force-velocity properties, including isometric tension (P0), maximal shortening velocity (Vmax), maximum power output (Wmax) and the velocity at which Wmax is reached (Vopt), were determined at maximum calcium activation. Among these parameters Wmax showed the largest range of variation: about nine times between 2B and slow fibres. Vopt also showed large (about four times) and significant variations between fibre types. Force development at submaximum calcium activation was studied and force-pCa curves were obtained for each fibre type. Calcium sensitivity was greater in 2B than in 2A and in slow fibres. The slope of the force-pCa curve was greater in fast than in slow fibres. At the end of the experiment the MHC isoform composition of each fibre segment was determined by gel electrophoresis. The functional properties of each fibre type are discussed in the light of the motor unit recruitment mechanism to understand their possible physiological role.  相似文献   

7.
Spaceflight (SF) has been shown to cause skeletal muscle atrophy; a loss in force and power; and, in the first few weeks, a preferential atrophy of extensors over flexors. The atrophy primarily results from a reduced protein synthesis that is likely triggered by the removal of the antigravity load. Contractile proteins are lost out of proportion to other cellular proteins, and the actin thin filament is lost disproportionately to the myosin thick filament. The decline in contractile protein explains the decrease in force per cross-sectional area, whereas the thin-filament loss may explain the observed postflight increase in the maximal velocity of shortening in the type I and IIa fiber types. Importantly, the microgravity-induced decline in peak power is partially offset by the increased fiber velocity. Muscle velocity is further increased by the microgravity-induced expression of fast-type myosin isozymes in slow fibers (hybrid I/II fibers) and by the increased expression of fast type II fiber types. SF increases the susceptibility of skeletal muscle to damage, with the actual damage elicited during postflight reloading. Evidence in rats indicates that SF increases fatigability and reduces the capacity for fat oxidation in skeletal muscles. Future studies will be required to establish the cellular and molecular mechanisms of the SF-induced muscle atrophy and functional loss and to develop effective exercise countermeasures.  相似文献   

8.
Slow stretch ramps (velocity: 0.17 fiber lengths s-1) were imposed during fused tetanic contractions of intact muscle fibers of the frog (1.4-3.0 degrees C; sarcomere length: 2.12-2.21 microns). Instantaneous force-extension relations were derived both under isometric conditions and during slow stretch by applying fast (0.2 ms) length steps to the fiber. An increase in tonicity (98 mM sucrose added to control Ringer solution) led to significant reduction of the maximum isometric tension but at the same time to marked increase in the force enhancement during slow stretch. The maximum force level reached during the stretch was affected very little. Experiments on relaxed fibers showed that recruitment of passive parallel elastic components were of no relevance for these effects. Hypertonicity slightly increased the instantaneous stiffness of the active fiber both in the presence and in the absence of stretch. The total extension of the undamped fiber elasticity was considerably reduced by increased tonicity under isometric conditions but was only slightly affected during slow stretch. The change in length of the undamped cross-bride elasticity upon stretch was thus greater in the hypertonic than in the normotonic solution suggesting a greater increase in force per cross-bridge in the hypertonic medium. The contractile effects are consistent with the assumptions that hypertonicity reduces the capability of the individual cross-bridge to produce active force and, furthermore, that hypertonicity has only minor effects on the number of attached cross-bridges and the maximum load-bearing capacity of the individual bridge.  相似文献   

9.
The total distance travelled during the first two kinematic stages of the escape response of short-horn sculpin was significantly greater in post spawning fish (0·41 L) than in gravid fish (0·23 L). The maximum velocity of the snout during the C-bend was significantly higher (5·6 L s−1) in postspawning fish than in gravid fish (3·8 L s−1). To investigate some of the mechanisms underlying changes in swimming performance, the contractile properties of fast muscle fibres were determined in fish of similar body length. The rate of tetanic force relaxation (time from last stimulus to 50% peak force) was 34% faster in gr avid than in postspawning fish. Maximum contraction velocity, determined by the slack-test method, was significantly higher in gravid than in postspawning fish (6·8 v . 5·9 muscle lengths s−1). In contrast, both maximum isometric stress and power output (determined from the force–velocity relationship) were >50% higher in fibres from postspawning than from gravid fish, even though myofibrillar protein and water contents were similar (120 mg g−1 wet mass and 86% of body mass, respectively). The results show that swimming performance and the contractile properties of fast muscle fibres vary with the reproductive cycle in short-horn sculpin acclimated to the same photoperiodic and temperature regime.  相似文献   

10.
In this study maximum shortening velocity (Vmax) and isometric tension (P0) in skinned single fibers from rat slow soleus (SOL) and fast superficial vastus lateralis (SVL) muscles were examined after varying degrees of filament lattice compression with dextran. In both fiber types Vmax was greatest in the absence of dextran and decreased as the concentration of dextran was increased between 2.5 and 10 g/100 ml. At 10% dextran, which compressed fiber width by 31-38%, Vmax relative to the initial 0% dextran value was 0.28 +/- 0.03 (mean +/- SE) and 0.26 +/- 0.02 in SVL and SOL fibers, respectively. The effect of compression to depress Vmax was reversed completely by returning the fiber to 0% dextran. The force-generating capability of skinned fibers was not as sensitive to variations in cell width. In both the SOL and SVL fibers P0 increased by 3-7% when the concentration of dextran was increased from 0 to 5%. Further compression of lattice volume with 10% dextran resulted in a 8-13% decline in P0 relative to the initial value. While the precise mechanism by which filament lattice spacing modulates contractile function is not known, our results suggest that the major effect is upon the rate constant for cross-bridge detachment.  相似文献   

11.
The mechanical roles of tendon and muscle contractile elements during locomotion are often considered independently, but functionally they are tightly integrated. Tendons can enhance muscle performance for a wide range of locomotor activities because muscle-tendon units shorten and lengthen at velocities that would be mechanically unfavorable for muscle fibers functioning alone. During activities that require little net mechanical power output, such as steady-speed running, tendons reduce muscular work by storing and recovering cyclic changes in the mechanical energy of the body. Tendon stretch and recoil not only reduces muscular work, but also allows muscle fibers to operate nearly isometrically, where, due to the force-velocity relation, skeletal muscle fibers develop high forces. Elastic energy storage and recovery in tendons may also provide a key mechanism to enable individual muscles to alter their mechanical function, from isometric force-producers during steady speed running to actively shortening power-producers during high-power activities like acceleration or uphill running. Evidence from studies of muscle contraction and limb dynamics in turkeys suggests that during running accelerations work is transferred directly from muscle to tendon as tendon stretch early in the step is powered by muscle shortening. The energy stored in the tendon is later released to help power the increase in energy of the body. These tendon length changes redistribute muscle power, enabling contractile elements to shorten at relatively constant velocities and power outputs, independent of the pattern of flexion/extension at a joint. Tendon elastic energy storage and recovery extends the functional range of muscles by uncoupling the pattern of muscle fiber shortening from the pattern of movement of the body.  相似文献   

12.
We have investigated (a) effects of varying proton concentration on force and shortening velocity of glycerinated muscle fibers, (b) differences between these effects on fibers from psoas (fast) and soleus (slow) muscles, possibly due to differences in the actomyosin ATPase kinetic cycles, and (c) whether changes in intracellular pH explain altered contractility typically associated with prolonged excitation of fast, glycolytic muscle. The pH range was chosen to cover the physiological pH range (6.0-7.5) as well as pH 8.0, which has often been used for in vitro measurements of myosin ATPase activity. Steady-state isometric force increased monotonically (by about threefold) as pH was increased from pH 6.0; force in soleus (slow) fibers was less affected by pH than in psoas (fast) fibers. For both fiber types, the velocity of unloaded shortening was maximum near resting intracellular pH in vivo and was decreased at acid pH (by about one-half). At pH 6.0, force increased when the pH buffer concentration was decreased from 100 mM, as predicted by inadequate pH buffering and pH heterogeneity in the fiber. This heterogeneity was modeled by net proton consumption within the fiber, due to production by the actomyosin ATPase coupled to consumption by the creatine kinase reaction, with replenishment by diffusion of protons in equilibrium with a mobile buffer. Lactate anion had little mechanical effect. Inorganic phosphate (15 mM total) had an additive effect of depressing force that was similar at pH 7.1 and 6.0. By directly affecting the actomyosin interaction, decreased pH is at least partly responsible for the observed decreases in force and velocity in stimulated muscle with sufficient glycolytic capacity to decrease pH.  相似文献   

13.
Cross-sectional area (CSA), peak Ca2+-activated force (Po), fiber specific force (Po/CSA), and unloaded shortening velocity (Vo) were measured in slow-twitch [containing type I myosin heavy chain (MHC)] and fast-twitch (containing type II MHC) chemically skinned soleus muscle fiber segments obtained from three strains of weight-bearing and 7-day hindlimb-suspended (HS) mice. HS reduced soleus slow MHC content (from approximately 50 to approximately 33%) in CBA/J and ICR strains without affecting slow MHC content in C57BL/6 mice ( approximately 20% of total MHC). Two-way ANOVA revealed HS-induced reductions in CSA, Po, and Po/CSA of slow and fast fibers from all strains. Fiber Vo was elevated post-HS, but not consistently across strains. No MHC x HS treatment interactions were observed for any variable for C57BL/6 and CBA/J mice, and the two significant interactions found for the ICR strain (CSA, Po) appeared related to inherent pre-HS differences in slow vs. fast fiber CSA. In the mouse HS models studied here, fiber atrophy and contractile dysfunction were partially dependent on animal strain and generally independent of fiber MHC isoform content.  相似文献   

14.
Postnatal transitions in myosin heavy chain (MHC) isoformexpression were found to be associated with changes in both isometric and isotonic contractile properties of rat diaphragm muscle(Diam). Expression of MHCneo predominated inneonatal Diam fibers but was usually coexpressed withMHCslow or MHC2A isoforms. Expression ofMHCneo disappeared by day 28. Expression ofMHC2X and MHC2B emerged at day 14 andincreased thereafter. Associated with these MHC transitions in theDiam, maximum isometric tetanic force (Po), maximum shortening velocity, and maximum power output progressively increased during early postnatal development. Maximum power output ofthe Diam occurred at ~40% Po at days0 and 7 and at ~30% Po in older animals.Susceptibility to isometric and isotonic fatigue, defined as a declinein force and power output during repetitive activation, respectively,increased with maturation. Isotonic endurance time, defined as the timefor maximum power output to decline to zero, progressively decreasedwith maturation. In contrast, isometric endurance time, defined as thetime for force to decline to 30-40% Po, remained>300 s until after day 28. We speculate that with thepostnatal transition to MHC2X and MHC2Bexpression energy requirements for contraction increase, especiallyduring isotonic shortening, leading to a greater imbalance betweenenergy supply and demand.

  相似文献   

15.
The effects of 2 and 4 mo of bed rest, with or without exercise countermeasures, on the contractile properties of slow fibers in the human soleus muscle were examined. Mean fiber diameters were 8 and 36% smaller after 2 and 4 mo of bed rest, respectively, than the pre-bed rest level. Maximum tetanic force (P(o)), maximum activated force (F(max)) per cross-sectional area (CSA), and the common-logarithm value of free Ca(2+) concentration required for half-maximal activation (pCa(50)) also decreased after 2 and 4 mo of bed rest. In contrast, maximum unloaded shortening velocity (V(o)) was increased after 2 and 4 mo of bed rest. After 1 mo of recovery, fiber diameters, P(o), F(max) per CSA (P > 0.05), and pCa(50) were increased and V(o) decreased toward pre-bed rest levels. Effects of knee extension/flexion exercise by wearing an anti-G Penguin suit for 10 h daily, and the effects of loading or unloading of the plantar flexors with (Penguin-1) or without (Penguin-2) placing the elastic loading elements of the suit, respectively, were investigated during ~2 mo of bed rest. In the Penguin-1 group, mean fiber diameter, P(o), F(max) per CSA, V(o), and pCa(50) were similar before and after bed rest. However, the responses of fiber size and contractile properties to bed rest were not prevented in the Penguin-2 group, although the degree of the changes was less than those induced by bed rest without any countermeasure. These results indicate that long-term bed rest results in reductions of fiber size, force-generation capacity, and Ca(2+) sensitivity, and enhancement of shortening velocity in slow fibers of the soleus. The data indicate that continuous mechanical loading on muscle, such as stretching of muscle, is an effective countermeasure for the prevention of muscular adaptations to gravitational unloading.  相似文献   

16.
Recent work has provided measurements of power output in avian skeletal muscles during running and flying, but little is known about the contractile properties of avian skeletal muscle. We used an in situ preparation to characterize the force-velocity properties of two hind limb muscles, the lateral gastrocnemius (LG) and peroneus longus (PL), in Wild Turkeys (Meleagris gallopavo). A servomotor measured shortening velocity for at least six different loads over the plateau region of the length-tension curve. The Hill equation was fit to the data to determine maximum shortening velocity and peak instantaneous power. Maximum unloaded shortening velocity was 13.0+/-1.6 L s(-1) for the LG muscle and 14.8+/-1.0 L s(-1) for the PL muscle (mean+/-S.E.M.). These velocities are within the range of values published for reptilian and mammalian muscles. Values recorded for maximum isometric force per cross-sectional area, 271+/-28 kPa for the LG and 257+/-30.5 kPa for the PL, and peak instantaneous power output, 341.7+/-36.4 W kg(-1) for the LG and 319.4+/-42.5 W kg(-1) for the PL, were also within the range of published values for vertebrate muscle. The force-velocity properties of turkey LG and PL muscle do not reveal any extreme differences in the mechanical potential between avian and other vertebrate muscle.  相似文献   

17.
Contractile protein populations were determined, using gel electrophoresis, during development of the claw closer muscles of the lobster Homarus americanus. In the adult the paired claw closer muscles are asymmetric, consisting of a crusher muscle with all slow fibers and a cutter muscle with a majority of fast and a few slow fibers. The electrophoretic banding pattern of these adult fast and slow fibers shows a similarity in the major proteins including myosin, actin, and tropomyosin which are common to both fiber types. Paramyosin is slightly heavier in fast fibers than in slow. However, fast fibers have three proteins and slow fibers have four proteins which are unique to themselves. Several of these unique proteins belong to the regulatory troponin complexes. In juvenile 4th stage lobster, where the paired closer muscles are undifferentiated, the banding pattern reveals the presence of proteins common to both fiber types including myosin, actin, and tropomysin but the conspicuous absence of all unique fast fiber proteins as well as one unique slow fiber protein. By the juvenile 10th stage most of these unique proteins are present except for one unique slow fiber protein. Thus lobster fast and slow fiber differentiation entails coordinate gene activation to add unique contractile proteins.  相似文献   

18.
H Iwamoto 《Biophysical journal》1998,74(3):1452-1464
The mechanism underlying the calcium sensitivity of the velocity of shortening of skeletal muscle fibers was investigated using a multiple shortening protocol: within a single contraction, skinned rabbit psoas fibers were made to shorten repetitively under a light load by briefly stretching back to their initial length at regular intervals. At saturating [Ca2+], the initial fast shortening pattern was repeated reproducibly. At submaximal [Ca2+], the first shortening consisted of fast and slow phases, but only the slow phase was observed in later shortenings. When the fibers were held isometric after the first shortening, the velocity of the second shortening recovered with time. The recovery paralleled tension redevelopment, implying a close relationship between the velocity and the number of the preexisting force-producing cross-bridges. However, this parallelism was lost as [Ca2+] was increased. Thus, the velocity was modified in a manner consistent with the cooperative thin filament activation by strong binding cross-bridges and its modulation by calcium. The present results therefore provide evidence that the thin filament cooperativity is primarily responsible for the calcium sensitivity of velocity. The effect of inorganic phosphate to accelerate the slow phase of shortening is also explained in terms of the cooperative activation.  相似文献   

19.
The purpose of this study was to examine single cell contractile mechanics of skeletal muscle before and after 12 wk of progressive resistance training (PRT) in older men (n = 7; age = 74 +/- 2 yr and weight = 75 +/- 5 kg). Knee extensor PRT was performed 3 days/wk at 80% of one-repetition maximum. Muscle biopsy samples were obtained from the vastus lateralis before and after PRT (pre- and post-PRT, respectively). For analysis, chemically skinned single muscle fibers were studied at 15 degrees C for peak tension [the maximal isometric force (P(o))], unloaded shortening velocity (V(o)), and force-velocity parameters. In this study, a total of 199 (89 pre- and 110 post-PRT) myosin heavy chain (MHC) I and 99 (55 pre- and 44 post-PRT) MHC IIa fibers were reported. Because of the minimal number of hybrid fibers identified post-PRT, direct comparisons were limited to MHC I and IIa fibers. Muscle fiber diameter increased 20% (83 +/- 1 to 100 +/- 1 microm) and 13% (86 +/- 1 to 97 +/- 2 microm) in MHC I and IIa fibers, respectively (P < 0.05). P(o) was higher (P < 0.05) in MHC I (0.58 +/- 0.02 to 0.90 +/- 0.02 mN) and IIa (0.68 +/- 0.02 to 0.85 +/- 0.03 mN) fibers. Muscle fiber V(o) was elevated 75% (MHC I) and 45% (MHC IIa) after PRT (P < 0.05). MHC I and IIa fiber power increased (P < 0.05) from 7.7 +/- 0.5 to 17.6 +/- 0.9 microN. fiber lengths. s(-1) and from 25.5 to 41.1 microN. fiber lengths. s(-1), respectively. These data indicate that PRT in elderly men increases muscle cell size, strength, contractile velocity, and power in both slow- and fast-twitch muscle fibers. However, it appears that these changes are more pronounced in the MHC I muscle fibers.  相似文献   

20.
Histochemical and physiological characteristics of the rat diaphragm   总被引:5,自引:0,他引:5  
The histochemical and contractile characteristics of the adult rat diaphragm were determined. Based on enzyme histochemistry, the rat diaphragm contained 40% type I, 27% type IIa, and 34% type IIb fibers. There were significantly more type I fibers in the ventral costal (VEN) compared with the crural (CRU) region of the muscle and a slightly higher percentage of type I's on the thoracic relative to the abdominal surface. The contractile properties and the effect of temperature (Q10) were similar in the VEN and CRU regions. Increasing temperature produced higher isometric peak tetanic tension, whereas twitch tension, contraction, and one-half relaxation time all decreased. The maximal shortening velocity increased linearly from 22 and 30 degrees C, then plateaued before decreasing between 35 and 37 degrees C. The VEN and CRU force-velocity curves became less concave as temperature increased from 22 to 35 degrees C. Furthermore, the force-frequency relation of both regions was shifted to the right as temperature increased. The isometric and isotonic contractile properties and fiber type distribution are similar in the VEN and CRU regions of the diaphragm. The rat diaphragm is clearly heterogeneous in fiber type distribution and functionally lies intermediate between slow- and fast-twitch limb skeletal muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号