首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 727 毫秒
1.
Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (=“brown”) food webs has remained unresolved. Measurement of detritivore trophic position is complicated by the fact that detritus is suffused with microbes, creating a detrital complex of living and nonliving biomass. Given that microbes and metazoans are trophic analogues of each other, animals feeding on detrital complexes are ingesting other detritivores (microbes), which should elevate metazoan trophic position and should be rampant within brown food webs. We tested these hypotheses using isotopic (15N) analyses of amino acids extracted from wild and laboratory‐cultured consumers. Vertebrate (fish) and invertebrate detritivores (beetles and moths) were reared on detritus, with and without microbial colonization. In the field, detritivorous animal specimens were collected and analyzed to compare trophic identities among laboratory‐reared and free‐roaming detritivores. When colonized by bacteria or fungi, the trophic positions of detrital complexes increased significantly over time. The magnitude of trophic inflation was mediated by the extent of microbial consumption of detrital substrates. When detrital complexes were fed to vertebrate and invertebrate animals, the consumers registered similar degrees of trophic inflation, albeit one trophic level higher than their diets. The wild‐collected detritivore fauna in our study exhibited significantly elevated trophic positions. Our findings suggest that the trophic positions of detrital complexes rise predictably as microbes convert nonliving organic matter into living microbial biomass. Animals consuming such detrital complexes exhibit similar trophic inflation, directly attributable to the assimilation of microbe‐derived amino acids. Our data demonstrate that detritivorous microbes elevate metazoan trophic position, suggesting that detritivory among animals is, functionally, omnivory. By quantifying the impacts of microbivory on the trophic positions of detritivorous animals and then tracking how these effects propagate “up” food chains, we reveal the degree to which microbes influence consumer groups within trophic hierarchies. The trophic inflation observed among our field‐collected fauna further suggests that microbial proteins represent an immense contribution to metazoan biomass. Collectively, these findings provide an empirical basis to interpret detritivore trophic identity, and further illuminate the magnitude of microbial contributions to food webs.  相似文献   

2.
Compound-specific stable isotope analysis (CSIA) of amino acids is a new method that enables estimates of trophic position for consumers in food webs. We examined the nitrogen isotopic composition (δ15N) of amino acids of Japanese social insects (three bee, three wasp, and four hornet species) to evaluate the potential of CSIA of amino acids in studies of terrestrial food webs. For wasps, we also examined samples at different growth stages (ranging from egg to adult) to assess the effect of metamorphosis on CSIA estimates of trophic position. The δ15N values of bulk tissues for Japanese social insects are only weakly correlated with the biologically expected trophic positions. In contrast, the trophic positions estimated from the δ15N values of amino acids (yielding values of between 2.0 and 2.3 for bees, between 2.8 and 3.3 for wasps, and between 3.5 and 4.1 for hornets) are consistent with the biologically expected trophic positions for these insects (i.e., 2.0 for bees, 3.0 for wasps, and 3.0–4.0 for hornets). Although large variability is observed among the δ15N values of individual amino acids (e.g., ranging from 3.0 to 14.9‰ for phenylalanine), no significant change is observed in the trophic position during wasp metamorphosis. Thus, the CSIA of amino acids is a powerful tool for investigating not only aquatic food webs but also terrestrial food webs with predatory insects.  相似文献   

3.
Structure of tropical river food webs revealed by stable isotope ratios   总被引:7,自引:0,他引:7  
Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relationships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish δ15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers. This was in contrast to our expectation that productive systems would promote longer food chains. Although isotope ratios could not resolve species-level feeding pathways, they did reveal how top consumers integrate isotopic variability occurring lower in the food web. Top piscivores, regardless of species, had carbon and nitrogen profiles less variable than other trophic groups.  相似文献   

4.
Limits to trophic levels and omnivory in complex food webs: theory and data   总被引:1,自引:0,他引:1  
While trophic levels have found broad application throughout ecology, they are also in much contention on analytical and empirical grounds. Here, we use a new generation of data and theory to examine long-standing questions about trophic-level limits and degrees of omnivory. The data include food webs of the Chesapeake Bay, U.S.A., the island of Saint Martin, a U.K. grassland, and a Florida seagrass community, which appear to be the most trophically complete food webs available in the primary literature due to their inclusion of autotrophs and empirically derived estimates of the relative energetic contributions of each trophic link. We show that most (54%) of the 212 species in the four food webs can be unambiguously assigned to a discrete trophic level. Omnivory among the remaining species appears to be quite limited, as judged by the standard deviation of omnivores' energy-weighted food-chain lengths. This allows simple algorithms based on binary food webs without energetic details to yield surprisingly accurate estimates of species' trophic and omnivory levels. While maximum trophic levels may plausibly exceed historically asserted limits, our analyses contradict both recent empirical claims that these limits are exceeded and recent theoretical claims that rampant omnivory eliminates the scientific utility of the trophic-level concept.  相似文献   

5.
Traditional ecological theory predicts that the stability of simple food webs will decline with an increasing number of trophic levels and increasing amounts of omnivory. These ideas have been tested using protozoans in laboratory microcosms. However, the results are equivocal, and contrary to expectation, omnivory is common in natural food webs. Two recent developments lead us to re-evaluate these predictions using food webs assembled from protists and bacteria. First, recent modelling work suggests that omnivory is actually stabilizing, providing that interactions are not too strong. Second, it is difficult to evaluate the degree of omnivory of some protozoan species without explicit experimental tests. This study used seven species of ciliated protozoa and a mixed bacterial flora to assemble four food webs with two trophic levels, and four webs with three trophic levels. Protist species were assigned a rank for their degree of omnivory using information in the literature and the results of experiments that tested whether the starvation rate of predators was influenced by the amount of bacteria on which they may have fed and whether cannibalism (a form of omnivory) occurred. Consistent with recent modelling work, both bacterivorous and predatory species with higher degrees of omnivory showed more stable dynamics, measured using time until extinction and the temporal variability of population density. Systems with two protist species were less persistent than systems with one protist species, supporting the prediction that longer food chains will be less stable dynamically. Received: 28 December 1997 / Accepted: 22 June 1998  相似文献   

6.
Human-mediated disturbances such as fishing, habitat modification, and pollution have resulted in significant shifts in species composition and abundance in marine ecosystems which translate into degradation of food-web structure. Here, we used a comparative ecological modelling approach and data from two food webs (North-Central Adriatic and South Catalan Sea) and two time periods (mid-late 1970s and 1990s) in the Mediterranean Sea to evaluate how changes in species composition and biomass have affected food-web properties and the extent of ecosystem degradation. We assembled species lists and ecological information for both regions and time periods into stochastic structural and mass-balance food-web models, and compared the outcomes of 22 food-web properties. Our results show strong similarities in structural food-web properties between the North-Central Adriatic and South Catalan Seas indicating similar ecosystem structure and levels of ecological degradation between regions and time periods. In contrast, a comparison with other published marine food webs (Caribbean, Benguela, and US continental shelf) suggested that Mediterranean webs are in an advanced state of ecological degradation. This was reflected by lower trophic height, linkage density, connectance, omnivory, species involved in looping, trophic chain length and fraction of biomass at higher trophic levels, as well as higher generality and fraction of biomass at lower trophic levels. An analysis of robustness to simulated species extinction revealed lower robustness to species removals in Mediterranean webs and corroborated their advanced state of degradation. Importantly, the two modelling approaches used delivered comparable results suggesting that they both capture fundamental information about how food webs are structured. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Documenting trophic links in a food web has traditionally required complex exclusion experiments coupled with extraordinarily labor-intensive direct observations of predator foraging. Newer techniques such as stable isotope analysis (SIA) may facilitate relatively quick and accurate assessments of consumer feeding behavior. Ratios of N and C isotopes are thought to be useful for determining species' trophic position (e.g., 1 degrees consumer, 2 degrees consumer, or omnivore) and their original carbon source (e.g., C3 or C4 plants; terrestrial or marine nutrients). Thus far, however, applications of stable isotopes to terrestrial arthropod food webs have suggested that high taxon-specific variation may undermine the effectiveness of this method. We applied stable isotope analysis to a pear orchard food web, in which biological control of a dominant pest, pear psylla (Cacopsylla pyricola), involves primarily generalist arthropod predators with a high frequency of omnivory. We found multiple sources of isotopic variation in this food web, including differences among plant tissues; time, stage, and taxon-specific differences among herbivores (despite similar feeding modes); and high taxon-specific variation among predators (with no clear evidence of omnivory). Collectively, these multiple sources of isotopic variation blur our view of the structure of this food web. Idiosyncrasies in consumer trophic shifts make ad hoc application of SIA to even moderately complex food webs intractable. SIA may not be a generally applicable "quick and dirty" method for delineating terrestrial food web structure-not without calibration of specific consumer food trophic shifts.  相似文献   

8.
Stable nitrogen isotopic composition of amino acids (δ15NAA) has recently been employed as a powerful tool in ecological food web studies, particularly for estimating the trophic position (TP) of animal species in food webs. However, the validity of these estimates depends on the consistency of the trophic discrimination factor (TDF; = Δδ15NAA at each shift of trophic level) among a suite of amino acids within the tissues of consumer species. In this study, we determined the TDF values of amino acids in tadpoles (the Japanese toad, Bufo japonicus) reared exclusively on one of three diets that differed in nutritional quality. The diets were commercial fish‐food pellets (plant and animal biomass), bloodworms (animal biomass), and boiled white rice (plant carbohydrate), representing a balanced, protein‐rich, and protein‐poor diet, respectively. The TDF values of two “source amino acids” (Src‐AAs), methionine and phenylalanine, were close to zero (0.3–0.5‰) among the three diets, typifying the values reported in the literature (~0.5‰ and ~0.4‰, respectively). However, TDF values of “trophic amino acids” (Tr‐AAs) including alanine, valine, leucine, isoleucine, and glutamic acid varied by diet: for example, the glutamic acid TDF was similar to the standard value (~8.0‰) when tadpoles were fed either the commercial pellets (8.0‰) or bloodworms (7.9‰), but when they were fed boiled rice, the TDF was significantly reduced (0.6‰). These results suggest that a profound lack of dietary protein may alter the TDF values of glutamic acid (and other Tr‐AAs and glycine) within consumer species, but not the two Src‐AAs (i.e., methionine and phenylalanine). Knowledge of how a nutritionally poor diet can influence the TDF of Tr‐ and Src‐AAs will allow amino acid isotopic analyses to better estimate TP among free‐roaming animals.  相似文献   

9.
Large‐scale patterns in species diversity and community composition are associated with environmental gradients, but the implications of these patterns for food‐web structure are still unclear. Here, we investigated how spatial patterns in food‐web structure are associated with environmental gradients in the Barents Sea, a highly productive shelf sea of the Arctic Ocean. We compared food webs from 25 subregions in the Barents Sea and examined spatial correlations among food‐web metrics, and between metrics and spatial variability in seawater temperature, bottom depth and number of days with ice cover. Several food‐web metrics were positively associated with seawater temperature: connectance, level of omnivory, clustering, cannibalism, and high variability in generalism, while other food‐web metrics such as modularity and vulnerability were positively associated with sea ice and negatively with temperature. Food‐web metrics positively associated with habitat heterogeneity were: number of species, link density, omnivory, path length, and trophic level. This finding suggests that habitat heterogeneity promotes food‐web complexity in terms of number of species and link density. Our analyses reveal that spatial variation in food‐web structure along the environmental gradients is partly related to species turnover. However, the higher interaction turnover compared to species turnover along these gradients indicates a consistent modification of food‐web structure, implying that interacting species may co‐vary in space. In conclusion, our study shows how environmental heterogeneity, via environmental filtering, influences not only turnover in species composition, but also the structure of food webs over large spatial scales.  相似文献   

10.
We constructed the food webs of six Mediterranean streams in order to determine ecological generalities derived from analysis of their structure and to explore stabilizing forces within these ecosystems. Fish, macroinvertebrates, primary producers and detritus are the components of the studied food webs. Analysis focused on a suite of food web properties that describe species’ trophic habits, linkage complexity and food chains. A great structural similarity was found in analyzed food webs; we therefore suggest average values for the structural properties of Mediterranean stream food webs. Percentage of omnivorous species was positively correlated with connectance, and there was a predominance of intermediate trophic level species that had established simple links with detritus. In short, our results suggest that omnivory and the weak interactions of detritivores have a stabilizing role in these food webs.  相似文献   

11.
The abundance and biomass of benthic foraminifera are high in intertidal rocky‐shore habitats. However, the availability of food to support their high biomass has been poorly studied in these habitats compared to those at seafloor covered by sediments. Previous field and laboratory observations have suggested that there is diversity in the food preferences and modes of life among rocky‐shore benthic foraminifera. In this study, we used the stable nitrogen isotopic composition of amino acids to estimate the trophic position, trophic niche, and feeding strategy of individual foraminifera species. We also characterized the configuration and structure of the endobiotic microalgae in foraminifera using transmission electron microscopy, and we identified the origin of endobionts based on nucleotide sequences. Our results demonstrated a large variation in the trophic positions of different foraminifera from the same habitat, a reflection of endobiotic features and the different modes of life and food preferences of the foraminifera. Foraminifera did not rely solely on exogenous food sources. Some species effectively used organic matter derived from endobionts in the cell cytoplasm. The high biomass and species density of benthic foraminifera found in intertidal rocky‐shore habitats are thus probably maintained by the use of multiple nitrogen resources and by microhabitat segregation among species as a consequence.  相似文献   

12.
Multichannel omnivory by generalist predators, especially the use of both grazing and epigeic prey, has the potential to increase predator abundance and decrease herbivore populations. However, predator use of the epigeic web (soil surface detritus/microbe/algae consumers) varies considerably for reasons that are poorly understood. We therefore used a stable isotope approach to determine whether prey availability and predator hunting style (active hunting vs. passive web-building) impacted the degree of multichannel omnivory by the two most abundant predators on an intertidal salt marsh, both spiders. We found that carbon isotopic values of herbivores remained constant during the growing season, while values for epigeic feeders became dramatically more enriched such that values for the two webs converged in August. Carbon isotopic values for both spider species remained midway between the two webs as values for epigeic feeders shifted, indicating substantial use of prey from both food webs by both spider species. As the season progressed, prey abundance in the grazing food web increased while prey abundance in the epigeic web remained constant or declined. In response, prey consumption by the web-building spider shifted toward the grazing web to a much greater extent than did consumption by the hunting spider, possibly because passive web-capture is more responsive to changes in prey availability. Although both generalist predator species engaged in multichannel omnivory, hunting mode influenced the extent to which these predators used prey from the grazing and epigeic food webs, and could thereby influence the strength of trophic cascades in both food webs.  相似文献   

13.
In marine ecosystems, the study of trophic relationships has extensively benefited from the development of stable isotope analyses (SIA) as dietary tracers. SIA are particularly useful in elucidating the structure of deep sea food webs given the constraints involved in obtaining gut‐content data from deep trawling. We used carbon and nitrogen stable isotope analyses and Stable Isotope Bayesian Ellipses in R (SIBER) and Stable Isotope Analysis in R (SIAR) routines, to determine the trophic ecology of five deep‐sea fishes from the upper continental slope of the Celtic Sea. SIA made it possible to deduce some general tendencies in food‐web structure and species trophic interactions and confirmed diet determined by gut‐content analysis for the same species, in other ecoregions. More specifically, mixing models revealed that the deep sea species considered are omnivorous and are able to feed on all the sampled taxa. Based on isotopic ratio, no clear differences in fish diet could be detected from one species to another except for rabbit fish, which has benthic affinities. Three species, blackbelly rosefish, greater forkbeard and softhead grenadier showed overlapping isotopic niches. This study is the first attempt to describe the trophic ecology of deep sea species on the Celtic Sea upper continental slope. In the context of the development of ecosystem integrated modeling approaches for managing fisheries in the Celtic sea, and considering the vulnerability of deep‐water species, improving the knowledge on the trophic ecology of these local species is of importance in order to allow their sustainable exploitation.  相似文献   

14.
Under equilibrium conditions, previous theory has shown that the presence of omnivory destabilizes food webs. Correspondingly, omnivory ought to be rare in real food webs. Although, early food web data appeared to verify this, recently many ecologists have found omnivory to be ubiquitous in food web data gathered at a high taxonomic resolution. In this paper, we re-investigate the role of omnivory in food webs using a non-equilibrium perspective. We find that the addition of omnivory to a simple food chain model (thus a simple food web) locally stabilizes the food web in a very complete way. First, non-equilibrium dynamics (e.g. chaos) tend to be eliminated or bounded further away from zero via period-doubling reversals invoked by the omnivorous trophic link. Second, food chains without interior attractors tend to gain a stable interior attractor with moderate amounts of omnivory.  相似文献   

15.
The loss of riparian forests can disrupt the structure and function of lotic ecosystems through increased habitat homogenization and decreased resource diversity. We conducted a field experiment and manipulated structural complexity and basal resource diversity to determine their effect on multiple aspects of community and food‐web structure of degraded tropical streams. In‐stream manipulations included the addition of woody debris (WD) and the addition of wood and leaf packs (WLP). The addition of structural complexity to degraded streams promoted detritus retention and had a positive effect on stream taxonomic richness, abundance and biomass. At the conclusion of the experiment, abundance and richness in the WD‐treated reaches increased by over 110% and 80%, respectively, while abundance and richness in the WLP‐treated reaches increased by over 280% and 170% respectively. Wood debris and leaves were consumed only by few taxa. Detritivorous taxa were the most abundant trophic guild at the beginning and at the end of the experiment. Food webs in treated reaches were relatively more complex in terms of links and species at the conclusion of the experiment, with highest maximum food chain length in the WD treatments and highest number of trophic species, links, link density, predators and prey at the WLP treatment. Despite differences observed in diet‐based food webs, there was little variation in isotopic niche space, likely due to the high degree of omnivory and trophic redundancy, which was attributed to the importance of fine detritus that supported a broad range of consumers. Even in these degraded streams, aquatic taxa responded to the addition of increased complexity suggesting that these efforts may be an effective first step to restoring the structure and function of these food webs.  相似文献   

16.
Abstract This study investigated the structure and properties of a tropical stream food web in a small spatial scale, characterizing its planktonic, epiphytic and benthic compartments. The study was carried out in the Potreirinho Creek, a second‐order stream located in the south‐east of Brazil. Some attributes of the three subwebs and of the conglomerate food web, composed by the trophic links of the three compartments plus the fish species, were determined. Among compartments, the food webs showed considerable variation in structure. The epiphytic food web was consistently more complex than the planktonic and benthic webs. The values of number of species, number of links and maximum food chain length were significantly higher in the epiphytic compartment than in the other two. Otherwise, the connectance was significantly lower in epiphyton. The significant differences of most food web parameters were determined by the increase in the number of trophic species, represented mainly by basal and intermediate species. High species richness, detritus‐based system and high degree of omnivory characterized the stream food web studied. The aquatic macrophytes probably provide a substratum more stable and structurally complex than the sediment. We suggest that the greater species richness and trophic complexity in the epiphytic subweb might be due to the higher degree of habitat complexity supported by macrophyte substrate. Despite differences observed in the structure of the three subwebs, they are highly connected by trophic interactions, mainly by fishes. The high degree of fish omnivory associated with their movements at different spatial scales suggests that these animals have a significant role in the food web dynamic of Potreirinho Creek. This interface between macrophytes and the interconnections resultant from fish foraging, diluted the compartmentalization of the Potreirinho food web.  相似文献   

17.
Stable carbon and nitrogen isotope ratios in the skeletal elements of both ancient and modern marine species from the Beagle Channel were used to compare the structure of Late Holocene and modern food webs, and predict potential changes as a result of a Sea Surface Temperature (SST) increase in the region. Complementary, ancient and modern shells of limpets and mussels were isotopically analysed to explore changes in the isotopic baseline and compare marine food webs through time after an appropriate correction for baseline shifts. Results confirmed a declining pattern of marine primary productivity during the Late Holocene in the Beagle Channel. In general, the isotopic niches overlapped largely in the ancient food web in comparison to the current marine one, with the exception of that of cormorants (Phalacrocorax sp.). Our data suggest that all the species that have undergone intense human exploitation (Arctocephalus australis, Otaria flavescens and Merluccius sp.) significantly increased their trophic levels. The most important finding of this work was the very high isotopic overlap between snoek (Thyrsites atun) and hake (Merluccius sp.) during the Late Holocene. Increasing SST as a result of global warming could favour the recolonization of the southern South‐Western Atlantic Ocean by snoek from the South‐Eastern Pacific Ocean, with a potential impact on the landings of the economically important Argentine and Austral hake. These findings highlight the relevance of using zooarchaeological remains for providing predictions about marine food webs changes in the near future.  相似文献   

18.
《Trends in parasitology》2023,39(9):749-759
Wild animals are usually infected with parasites that can alter their hosts’ trophic niches in food webs as can be seen from stable isotope analyses of infected versus uninfected individuals. The mechanisms influencing these effects of parasites on host isotopic values are not fully understood. Here, we develop a conceptual model to describe how the alteration of the resource intake or the internal resource use of hosts by parasites can lead to differences of trophic and isotopic niches of infected versus uninfected individuals and ultimately alter resource flows through food webs. We therefore highlight that stable isotope studies inferring trophic positions of wild organisms in food webs would benefit from routine identification of their infection status.  相似文献   

19.
Multiple anthropogenic pressures including the widespread introductions of non‐native species threaten biodiversity and ecosystem functioning notably by modifying the trophic structure of communities. Here, we provided a global evaluation of the impacts of non‐native species on the isotopic structure (δ13C and δ15N) of freshwater fish communities. We gathered the stable isotope values (n = 4030) of fish species in 496 fish communities in lentic (lakes, backwaters, reservoirs) and lotic (running waters such as streams, rivers) ecosystems throughout the world and quantified the isotopic structure of communities. Overall, we found that communities containing non‐native species had a different isotopic structure than communities without non‐native species. However, these differences varied between ecosystem types and the trophic positions of non‐native species. In lotic ecosystems, communities containing non‐native species had a larger total isotopic niche than communities without non‐native species. This was primarily driven by the addition of non‐native predators at the top of the food chain that increased δ15N range without modifying the isotopic niche size of native species. In lentic ecosystems, non‐native primary consumers increased δ15N range and this was likely driven by an increase of resource availability for species at higher trophic levels, increasing food chain length. The introduction of non‐native secondary consumers at the centre of the isotopic niche of recipient communities decreased the core isotopic niche size, the δ13C range of recipient communities and the total isotopic niche of coexisting native species. These results suggested a modified contribution of the basal resources consumed (e.g. multi‐chain omnivory) and an increase level of competition with native species. Our results notably imply that, by affecting the isotopic structure of freshwater fish communities at a global scale, non‐native species represent an important source of perturbations that should be accounted for when investigating macro‐ecological patterns of community structure and biotic interactions.  相似文献   

20.
Many consumers display flexible feeding strategies that vary among individuals or populations, through life‐history, or spatiotemporally. Despite the recognized influence of flexible feeding on the structure and dynamics of food webs, the consequences of these feeding strategies on the actual shape and characteristics of trophic position distributions have received less attention. We proposed and tested several a priori hypotheses to predict the likely effect of niche‐dependent (e.g. herbivore, secondary consumer) foraging on the shape and statistical properties of consumer trophic position distributions using natural abundance stable isotope data from a diverse dataset of consumers. We found evidence that the structural characteristics of consumer trophic position distributions varied as a function of trophic niche. Herbivores and tertiary consumers tended to be ‘packed’ closely near their mean trophic position, with few individuals realizing trophic positions markedly higher or lower than the mean. Conversely, secondary consumers often displayed broad trophic position distributions with many individuals dispersed away from the center of the distribution. We examined the effect of applying constant versus dynamic isotope trophic fractionation models and found that both models yielded similar although not identical results. Our findings suggest that trophic level omnivory supports a larger fraction of consumer diet at intermediate trophic positions than at either the lowest or the highest positions in aquatic food webs. These results suggest that vertical trophic niche declines among higher order consumers despite general evidence that the range of potential foraging options (i.e. horizontal trophic niche) tends to increase at higher trophic positions. Although further work is needed to test the generality of these patterns in other ecosystems, proactively examining trophic position distributions and reporting appropriate measures of central tendency (e.g. arithmetic versus geometric means) will increase the accuracy of individual trophic studies as well as the applicability of results for meta‐analytical food web models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号