首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nucleotide and deduced amino acid sequences of the lacA and lacB genes of the Staphylococcus aureus lactose operon (lacABCDFEG) are presented. The primary translation products are polypeptides of 142 (Mr = 15,425) and 171 (Mr = 18,953) amino acids, respectively. The lacABCD loci were shown to encode enzymes of the tagatose 6-phosphate pathway through both in vitro studies and complementation analysis in Escherichia coli. A serum aldolase assay, modified to allow detection of the tagatose 6-phosphate pathway enzymes utilizing galactose 6-phosphate or fructose phosphate analogs as substrate, is described. Expression of both lacA and lacB was required for galactose 6-phosphate isomerase activity. LacC (34 kDa) demonstrated tagatose 6-phosphate kinase activity and was found to share significant homology with LacC from Lactococcus lactis and with both the minor 6-phosphofructokinase (PfkB) and 1-phosphofructokinase (FruK) from E. coli. Detection of tagatose 1,6-bisphosphate aldolase activity was dependent on expression of the 36-kDa protein specified by lacD. The LacD protein is highly homologous with LacD of L. lactis. Thus, the lacABCD genes comprise the tagatose 6-phosphate pathway and are cotranscribed with genes lacFEG, which specify proteins for transport and cleavage of lactose in S. aureus.  相似文献   

3.
4.
The galK gene, encoding galactokinase of the Leloir pathway, was insertionally inactivated in Streptococcus mutans UA159. The galK knockout strain displayed only marginal growth on galactose, but growth on glucose or lactose was not affected. In strain UA159, the sugar phosphotransferase system (PTS) for lactose and the PTS for galactose were induced by growth in lactose and galactose, although galactose PTS activity was very low, suggesting that S. mutans does not have a galactose-specific PTS and that the lactose PTS may transport galactose, albeit poorly. To determine if the galactose growth defect of the galK mutant could be overcome by enhancing lactose PTS activity, the gene encoding a putative repressor of the operon for lactose PTS and phospho-beta-galactosidase, lacR, was insertionally inactivated. A galK and lacR mutant still could not grow on galactose, although the strain had constitutively elevated lactose PTS activity. The glucose PTS activity of lacR mutants grown in glucose was lower than in the wild-type strain, revealing an influence of LacR or the lactose PTS on the regulation of the glucose PTS. Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional. A mutation of the permease in the multiple sugar metabolism operon did not affect growth on galactose. Thus, the galactose permease of S. mutans is not present in the gal, lac, or msm operons.  相似文献   

5.
6.
The induction of the lac operon follows cooperative kinetics. The first mechanistic model of these kinetics is the de facto standard in the modeling literature [Yagil, G., Yagil, E., 1971. On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys. J. 11, 11-17]. Yet, subsequent studies have shown that the model is based on incorrect assumptions. Specifically, the repressor is a tetramer with four (not two) inducer-binding sites, and the operon contains two auxiliary operators (in addition to the main operator). Furthermore, these structural features are crucial for the formation of DNA loops, the key determinants of lac repression and induction. Indeed, the repression is determined almost entirely (>95%) by the looped complexes [Oehler, S., Eismann, E.R., Kr?mer, H., Müller-Hill, B., 1990. The three operators of the lac operon cooperate in repression. EMBO J. 9(4), 973-979], and the pronounced cooperativity of the induction curve hinges upon the existence of the looped complexes [Oehler, S., Alberti, S., Müller-Hill, B., 2006. Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction. Nucleic Acids Res. 34(2), 606-612]. Here, we formulate a model of lac induction taking due account of the tetrameric structure of the repressor and the existence of looped complexes. We show that: (1) The kinetics are significantly more cooperative than those predicted by the Yagil and Yagil model. The cooperativity is higher because the formation of looped complexes is easily abolished by repressor-inducer binding. (2) The model provides good fits to the repression data for cells containing wild-type tetrameric or mutant dimeric repressor, as well as the induction curves for 6 different strains of Escherichia coli. It also implies that the ratios of certain looped and non-looped complexes are independent of inducer and repressor levels, a conclusion that can be rigorously tested by gel electrophoresis. (3) Repressor overexpression dramatically increases the cooperativity of the induction curve. This suggests that repressor overexpression can induce bistability in systems, such as growth of E. coli on lactose, that are otherwise monostable.  相似文献   

7.
C A Alpert  B M Chassy 《Gene》1988,62(2):277-288
The lactose-specific factor III (FIIIlac of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was isolated from Lactobacillus casei and purified to homogeneity by conventional protein purification methods. Its apparent native Mr, estimated from steric exclusion chromatography (approx. 39 kDa), and subunit Mr, estimated from sodium dodecyl sulfate-polyacrylamide gels, indicated that it exists as a trimer of identical subunits of 13 kDa. The gene for FIII L. casei lac was cloned into Escherichia coli using the vector pUC18. The coding sequences were contained on an 860-bp BglII-HindIII DNA fragment of the L. casei lactose plasmid, pLZ64. A protein identical in properties to FIII L. casei lac was isolated from clones of E. coli carrying this DNA insert. The nucleotide sequence of the FIII L. casei lac gene was determined by the dideoxy chain-termination technique. The 336-bp open reading frame for FIII L. casei lac was followed by a stem-loop structure, analogous to a Rho-independent terminator. We concluded that the FIII L. casei lac was the terminal gene in what appears to be an operon comprised of the lactose-PTS-P-beta Gal-coding genes. Comparison of the deduced amino acid sequence of FIII L. caseilac with the amino acid sequence of FIII S. aureus lac (derived from peptide sequencing) demonstrated a high degree of homology (49 identical residues and 21 conservative exchanges out of 103 total aa residues). The FIII L. casei lac lacked his82, previously identified as the phosphorylation site of FIII S. aureus. lac His80 was proposed to be the site of histidyl phosphorylation of FIII L. casei lac.  相似文献   

8.
9.
The genes coding for the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter strain AR50 were cloned and partially sequenced. A novel lac operon was identified which contains genes coding for a lactose-binding protein (lacE), two integral membrane proteins (lacF and lacG), an ATP-binding protein (lacK) and beta-galactosidase (lacZ). The operon is transcribed in the order lacEFGZK. The operon is controlled by an upstream regulatory region containing putative -35 and -10 promoter sites, an operator site, a CRP-binding site probably mediating catabolite repression by glucose and galactose, and a regulatory gene (lacl) encoding a repressor protein which mediates induction by lactose and other galactosides in wild-type A. radiobacter (but not in strain AR50, thus allowing constitutive expression of the lac operon). The derived amino acid sequences of the gene products indicate marked similarities with other binding-protein-dependent transport systems in bacteria.  相似文献   

10.
11.
The three operators of the lac operon cooperate in repression.   总被引:30,自引:6,他引:24       下载免费PDF全文
  相似文献   

12.
Repression of the lac promoter may be achieved in two different ways: either by interference with the action of RNA polymerase or by interference with CAP activation. We investigated cooperative repression of the Escherichia coli lac operon by systematic conversion of its three natural operators (O1, O2 and O3) on the chromosome. We find that cooperative repression by tetrameric Lac repressor increases with both quality and proximity of the interacting operators. A short distance of 92 bp allows effective repression by two very weak operators (O3, O3). The cooperativity of lac operators is discussed in terms of a local increase of repressor concentration. This increase in concentration depends on flexible DNA which allows loop formation.  相似文献   

13.
Inhibitors of protein synthesis do not consistently prevent formation of the lac operon repressor, according to several published reports, although direct evidence indicates that the repressor is a protein. Inhibition of ribonucleic acid (RNA) synthesis has never been shown to block lactose repression. These results have raised the possibility that repressor is synthesized in some unusual fashion. We have studied the effect of various inhibitors upon the establishment of repression in zygotes, utilizing conditions which minimize catabolite repression. Inhibition of protein synthesis by either chloramphenicol treatment or tryptophan deprivation blocked repressor formation in our experiments. Sodium borate and 6-azauracil are compounds reported to be specific inhibitors of RNA synthesis, and their behavior in control experiments is consistent with this specificity. Both delayed the establishment of repression. Thymine deprivation, either by starvation of a thymine auxotroph or by treatment with 5-fluorodeoxyuridine, did not delay the onset of repression. We conclude that repressor formation requires RNA synthesis and probably utilizes the usual protein-forming mechanisms.  相似文献   

14.
Partial lactose-fermenting revertants from lactose-negative (lac(-)) mutants of Streptococcus lactis C2 appeared on a lawn of lac(-) cells after 3 to 5 days of incubation at 25 C. The revertants grew slowly on lactose with a growth response similar to that for cryptic cells. In contrast to lac(+)S. lactis C2, the revertants were defective in the accumulation of [(14)C]thiomethyl-beta-d-galactoside, indicating that they were devoid of a transport system. Hydrolysis of o-nitrophenyl-beta-d-galactoside-6-phosphate by toluene-treated cells confirmed the presence of phospho-beta-d-galactosidase (P-beta-gal) in the revertant. However, this enzyme was induced only when the cells were grown in the presence of lactose; galactose was not an inducer. In lac(+)S. lactis C2, enzyme induction occurred in lactose- or galactose-grown cells. The revertants were defective in EII-lactose and FIII-lactose of the phosphoenolpyruvate-dependent phosphotransferase system. Galactokinase activity was detected in cell extracts of lac(+)S. lactis C2, but the activity was 9 to 13 times higher in extracts from the revertant and lac(-), respectively. This suggested that the lac(-) and the revertants use the Leloir pathway for galactose metabolism and that galactose-1-phosphate rather than galactose-6-phosphate was being formed. This may explain why lactose, but not galactose, induced P-beta-gal in the revertants. Because the revertant was unable to form galactose-6-phosphate, induction could not occur. This compound would be formed on hydrolysis of lactose phosphate. The data also indicate that galactose-6-phosphate may serve not only as an inducer of the lactose genes in S. lactis C2, but also as a repressor of the Leloir pathway for galactose metabolism.  相似文献   

15.
Streptococcus lactis strain DR1251 was capable of growth on lactose and galactose with generation times, at 30 degrees C, of 42 and 52 min, respectively. Phosphoenolpyruvate-dependent phosphotransferase activity for lactose and galactose was induced during growth on either substrate. This activity had an apparent K(m) of 5 x 10(-5) M for lactose and 2 x 10(-2) M for galactose. beta-d-Phosphogalactoside galactohydrolase activity was synthesized constitutively by these cells. Strain DR1251 lost the ability to grow on lactose at a high frequency when incubated at 37 degrees C with glucose as the growth substrate. Loss of ability to metabolize lactose was accompanied by the loss of a 32-megadalton plasmid, pDR(1), and Lac(-) isolates did not revert to a Lac(+) phenotype. Lac(-) strains were able to grow on galactose but with a longer generation time. Galactose-grown Lac(-) strains were deficient in beta-d-phosphogalactoside galactohydrolase activity and phosphoenolpyruvate phosphotransferase activity for both lactose and galactose. There was also a shift from a predominantly homolactic to a heterolactic fermentation and a fivefold increase in galactokinase activity, relative to the Lac(+) parent strain grown on galactose. These results suggest that S. lactis strain DR1251 metabolizes galactose primarily via the tagatose-6-phosphate pathway, using a lactose phosphoenolpyruvate phosphotransferase activity to transport this substrate into the cell. Lac(-) derivatives of strain DR1251, deficient in the lactose phosphoenolpyruvate phosphotransferase activity, appeared to utilize galactose via the Leloir pathway.  相似文献   

16.
Based on primary sequence homology between the lactose repressor protein and periplasmic sugar-binding proteins (Müller-Hill, B. (1983) Nature 302, 163-164), a hypothetical sugar-binding site for the lac repressor was proposed using the solved x-ray crystallographic structure of the arabinose-binding protein (ABP) (Sams, C. F., Vyas, N. K., Quiocho, F. A., and Matthews, K. S. (1984) Nature 310, 429-430). By analogy to Arg151 in the ABP sugar site, Arg197 is predicted to play an important role in lac repressor binding to inducer sugars. Hydrogen bonding occurs between Arg151 and the ring oxygen and 4-hydroxyl of the sugar ligand, two backbone carbonyls, and a side chain in ABP, and similar interactions in the lac repressor would be anticipated. To test this hypothesis, Arg197 in the lac repressor protein was altered by oligonucleotide-directed site-specific mutagenesis to substitute Gly, Leu, or Lys. Introduction of these substitutions at position 197 had no effect on operator binding parameters of the isolated mutant proteins, whereas the affinity for inducer was dramatically decreased, consistent with in vivo phenotypic behavior obtained by suppression of nonsense mutations at this site (Kleina, L. G., and Miller, J. H. (1990) J. Mol. Biol. 212, 295-318). Inducer binding affinity was reduced approximately 3 orders of magnitude for Leu, Gly, or Lys substitutions, corresponding to a loss of 50% of the free energy of binding. The pH shift characteristic of wild-type repressor is conserved in these mutants. Circular dichroic spectra demonstrated no significant alterations in secondary structure for these mutants. Thus, the primary effect of substitution for Arg197 is a very significant decrease in the affinity for inducer sugars. Arginine is uniquely able to make the multiple contacts found in the ABP sugar site, and we conclude that this residue plays a similar role in sugar binding for lactose repressor protein. These results provide experimental validation for the proposed homology between ABP and the lac repressor and suggest that homology with ABP may be employed to generate additional insight into the structure and function of this regulatory protein.  相似文献   

17.
18.
Glucose-lactose diauxie in Escherichia coli   总被引:10,自引:3,他引:7  
Growth of Escherichia coli in medium containing glucose, at a concentration insufficient to support full growth, and containing lactose, is diauxic. A mutation in the gene, CR, which determines catabolite repression specific to the lac operon, was found to relieve glucose-lactose but not glucose-maltose diauxie. Furthermore, a high concentration of lactose was shown to overcome diauxie in a CR(+) strain. Studies on the induction of beta-galactosidase by lactose suggested that glucose inhibits induction by 10(-2)m lactose. Preinduction of the lac operon was found to overcome this effect. The ability of glucose to prevent expression of the lac operon by reducing the internal concentration of inducer as well as by catabolite repression is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号