首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The first step in the activation of the anti-retroviral nucleoside analogue azidothymidine (AZT) involves its conversion to a 5′-monophosphate. In this study, we have evaluated the role of cytosolic thymidine kinase (Tk), the major enzyme involved in phosphorylating thymidine and its analogues, in the nuclear DNA damage produced by AZT in neonatal mice. Tk+/+, Tk+/− and Tk−/− mice were treated intraperitoneally with 200 mg/kg/day of AZT on postnatal days 1 through 8, and micronuclei were measured in peripheral blood 24 h after the last dose. AZT treatment increased the micronucleus (MN) frequencies to similar extents in both the reticulocytes (RETs) and normochromatic erythrocytes (NCEs) of Tk+/+ and Tk+/− mice; AZT did not increase the frequency of micronucleated RETs (MN-RETs) or micronucleated NCEs (MN-NCEs) in Tk−/− mice. Unexpectedly, neonatal Tk−/− mice treated with the vehicle had significantly elevated MN frequencies for both RETs and NCEs relative to Tk+/+ and Tk+/− mice (e.g., 3.4% MN-RETs and 4.8% MN-NCEs in Tk−/− mice versus 0.7 and 0.6% MN-RETs and MN-NCEs in neonatal Tk+/+ mice). Additional assays performed on untreated Tk−/− mice showed that elevated spontaneous MN frequencies persisted until at least 20 weeks of age, which approaches the average lifespan of Tk−/− mice. These results indicate that metabolism by Tk is necessary for the genotoxicity of AZT in neonatal mice; however, the genotoxicity of AZT is not altered by reducing the Tk gene dose by half. The elevated spontaneous MN frequencies in Tk−/− mice suggest the presence of an endogenous genotoxic activity in these mice.  相似文献   

2.
High-pressure liquid-chromatography and microcalorimetry have been used to determine equilibrium constants and enthalpies of reaction for the disproportionation reaction of adenosine 5′-diphosphate (ADP) to adenosine 5′-triphosphate (ATP) andadenosine 5′-monophosphate (AMP). Adenylate kinase was used to catalyze this reaction. The measurements were carried out over the temperature range 286 to 311 K, at ionic strengths varying from 0.06 to 0.33 mol kg−1, over the pH range 6.04 to 8.87, and over the pMg range 2.22 to 7.16, where pMg = -log a(Mg2+). The equilibrium model developed by Goldberg and Tewari (see the previous paper in this issue) was used for the analysis of the measurements. Thus, for the reference reaction: 2 ADp3− (ao) AMp2− (ao)+ ATp (ao), K° = 0.225 ± 0.010, ΔG° = 3.70 +- 0.11 kJ mol −1, ΔH° = −1.5 ± 1. 5 kJ mol −1, °S ° = −17 ± 5 J mol−1 K−1, and ACPp°≈ = −46 J mo1l−1 K−1 at 298.15 K and 0.1 MPa. These results and the thermodynamic parameters for the auxiliary equilibria in solution have been used to model the thermodynamics of the disproportionation reaction over a wide range of temperature, pH, ionic strength, and magnesium ion morality. Under approximately physiological conditions (311.15 K, pH 6.94, [Mg2+] = 1.35 × 10−3 mol kg−1, and I = 0.23 mol kg−1) the apparent equilibrium constant (KA′ = m(ΣAMP)m(ΣATP)/[ m(ΣADP)]2) for the overall disproportionation reaction is equal to 0.93 ± 0.02. Thermodynamic data on the disproportionation reaction and literature values for this apparent equilibrium constant in human red blood cells are used to calculate a morality of 1.94 × 10−4 mol kg−1 for free magnesium ion in human red blood cells. The results are also discussed in relation to thermochemical cycles and compared with data on the hydrolysis of the guanosine phosphates.  相似文献   

3.
To examine the effect of compound deficiencies in antioxidant defense, we have generated mice (Sod2+/−/Gpx1−/−) that are deficient in Mn superoxide dismutase (MnSOD) and glutathione peroxidase 1 (Gpx1) by breeding Sod2+/− and Gpx1−/− mice together. Although Sod2+/−/Gpx1−/− mice showed a 50% reduction in MnSOD and no detectable Gpx1 activity in either mitochondria or cytosol in all tissues, they were viable and appeared normal. Fibroblasts isolated from Sod2+/−/Gpx1−/− mice were more sensitive (4- to 6-fold) to oxidative stress (t-butyl hydroperoxide or γ irradiation) than fibroblasts from wild-type mice, and were twice as sensitive as cells from Sod2+/− or Gpx1−/− mice. Whole-animal studies demonstrated that survival of the Sod2+/−/Gpx1−/− mice in response to whole body γ irradiation or paraquat administration was also reduced compared with that of wild-type, Sod2+/−, or Gpx1−/− mice. Similarly, endogenous oxidative stress induced by cardiac ischemia/reperfusion injury led to greater apoptosis in heart tissue from the Sod2+/−/Gpx1−/− mice than in that from mice deficient in either MnSOD or Gpx1 alone. These data show that Sod2+/−/Gpx1−/− mice, deficient in two mitochondrial antioxidant enzymes, have significantly enhanced sensitivity to oxidative stress induced by exogenous insults and to endogenous oxidative stress compared with either wild-type mice or mice deficient in either MnSOD or Gpx1 alone.  相似文献   

4.
Oxygenation of [CuII(fla)(idpa)]ClO4 (fla=flavonolate; IDPA=3,3′-iminobis(N,N-dimethylpropylamine)) in dimethylformamide gives [CuII(idpa)(O-bs)]ClO4 (O-bs=O-benzoylsalicylate) and CO. The oxygenolysis of [CuII(fla)(idpa)]ClO4 in DMF was followed by electronic spectroscopy and the rate law −d[{CuII(fla)(idpa)}ClO4]/dt=kobs[{CuII(fla)(idpa)}ClO4][O2] was obtained. The rate constant, activation enthalpy and entropy at 373 K are kobs=6.13±0.16×10−3 M−1 s−1, ΔH=64±5 kJ mol−1, ΔS=−120±13 J mol−1 K−1, respectively. The reaction fits a Hammett linear free energy relationship and a higher electron density on copper gives faster oxygenation rates. The complex [CuII(fla)(idpa)]ClO4 has also been found to be a selective catalyst for the oxygenation of flavonol to the corresponding O-benzoylsalicylic acid and CO. The kinetics of the oxygenolysis in DMF was followed by electronic spectroscopy and the following rate law was obtained: −d[flaH]/dt=kobs[{CuII(fla)(idpa)}ClO4][O2]. The rate constant, activation enthalpy and entropy at 403 K are kobs=4.22±0.15×10−2 M−1 s−1, ΔH=71±6 kJ mol−1, ΔS=−97±15 J mol−1 K−1, respectively.  相似文献   

5.
6.
Mutants of Escherichia coli defective in coupling electron transport to synthesis of ATP (unc) were isolated and screened for Mg2+-ATPase activity using a rapid and sensitive Millipore filtration assay. An episome (F′16) carrying ATPase genes was used to map the unc mutations near the ilv (isoleucine-valine) operon. Mutants missing membrane ATPase activity do not multiply anaerobically on glucose as energy source unless supplied with exogenous electron acceptors such as NO3. Likewise, in the absence of exogenous electron acceptors anaerobic active transport of proline is blocked. These observations suggest that membrane ATPase has an essential role in membrane functions linked to glycolysis and thus may play an important role in energy conversion in the anaerobic membrane.  相似文献   

7.
We have characterized 202 lacI mutations, and 158 dominant lacId mutations following treatment of Escherichia coli strains NR6112 and EE125 with 1-nitroso-6-nitropyrene (1,6-NONP), an activated metabolite of the carcinogen 1,6-dinitropyrene. In all, 91% of the induced point mutations occurred at G:C residues. The −(G:C) frameshifts were the dominant mutational class in the lacI collections of both NR6112 and EE125, and in the lacId collection of NR6112. Frameshift mutations occurred preferentially in runs of guanine residues, and their frequency increased with the length of the reiterated sequence. In strain EE125, which contained the plasmid pKM101, there was a marked stimulation in the frequency of base substitution mutations that was particularly apparent in the lacId collection. This study completes a comprehensive analysis of 1194 lacI and 348 lacId mutations induced by either 1,6-NONP or its positional isomer 1-nitroso-8-nitropyrene (1,8-NONP) in strains of E. coli that differ with regard to their ability to carry out nucleotide excision repair and/or their ability to express the translesion synthesis DNA polymerase RI (MucAB) encoded by plasmid pKM101. Among the mutations are 763 frameshift mutations, 367 base substitutions and 47 deletions; these mutations have been characterized at more than 300 distinct sites in the lacI gene. Our studies provide detailed insight into the DNA sequence alterations and mutational mechanisms associated with dinitropyrene mutagenesis. We review the mutational spectra, and discuss cellular lesion repair or tolerance mechanisms that modulate the observed mutational specificity.  相似文献   

8.
The tumor suppressor protein p53 is a key regulatory element in the cell and is regarded as the “guardian of the genome”. Much of the present knowledge of p53 function has come from studies of transgenic mice in which the p53 gene has undergone a targeted deletion. In order to provide additional insight into the impact on the cellular regulatory networks associated with the loss of this gene, microarray technology was utilized to assess gene expression in tissues from both the p53−/− and p53+/− mice. Six male mice from each genotype (p53+/+, p53+/−, and p53−/−) were humanely killed and the tissues processed for microarray analysis. The initial studies have been performed in the liver for which the Dunnett test revealed 1406 genes to be differentially expressed between p53+/+ and p53+/− or between p53+/+ and p53−/− at the level of p ≤ 0.05. Both genes with increased expression and decreased expression were identified in p53+/− and in p53−/− mice. Most notable in the gene list derived from the p53+/− mice was the significant reduction in p53 mRNA. In the p53−/− mice, not only was there reduced expression of the p53 genes on the array, but genes associated with DNA repair, apoptosis, and cell proliferation were differentially expressed, as expected. However, altered expression was noted for many genes in the Cdc42-GTPase pathways that influence cell proliferation. This may indicate that alternate pathways are brought into play in the unperturbed liver when loss or reduction in p53 levels occurs.  相似文献   

9.
Density functional theory (DFT) computations at the B3LYP/Lanl2DZ level were used to elucidate the oxygen atom transfer (OAT) and coupled electron proton transfer (CEPT) reaction steps involved in the biomimetic catalytic cycle performed by polymer-supported MoVIO2(NN′)2 complexes [NN′ = phenyl-(pyrrolato-2-ylmethylene)-amine] with water as oxygen source, trimethyl-phosphane as oxygen acceptor and one-electron oxidising agents. The DFT method employed has been validated against experimental data [X-ray crystal structures of a NN′ ligand and a MoVIO2(NN′)2 complex as well as kinetic data]. The rate-limiting step in the forward-OAT from [MoVIO2] to PMe3 is the attack of PMe3 at an oxo ligand with ΔG (298 K) = 64.6 kJ mol−1. Dissociation of the product OPMe3 is facile with ΔG (298 K) = 26.3 kJ mol−1 giving a mono-oxo [MoIVO] complex which fills its coordination sphere with a further PMe3 substrate with ΔG (298 K) = 39.2 kJ mol−1. One-electron oxidation to a Mo(V) phosphane complex precedes the coordination of water/hydroxide. Additionally, the comproportionation of [MoVIO2] and [MoIVO] to dinuclear oxo-bridged [OMoV–O–MoVO] species has been calculated as the thermodynamic sink in this system and the back-OAT from dmso to mono-oxo [MoIVO] to give [MoVIO2] has been shown to involve an equilibrium between stereoisomeric [MoVIO2] complexes with an activation barrier of ΔG (298 K) = 113.1 kJ mol−1.  相似文献   

10.
11.
1. Rate constants for reduction of paraquat ion (1,1′-dimethyl-4,4′-bipyridy-lium, PQ2+) to paraquat radical (PQ+·) by eaq and CO2· have been measured by pulse radiolysis. Reduction by eaq is diffusion controlled (k = 8.4·1010 M−1·s−1) and reduction by CO2· is also very fast k = 1.5·1010 M−1·s−1).

2. The reaction of paraquat radical with oxygen has been analysed to give rate constants of 7.7·108 M−1·s−1 and 6.5·108 M−1·s−1 for the reactions of paraquat radical with O2 and O2·, respectively. The similarity in these rate constants is in marked contrast to the difference in redox potentials of O2 and O2· (− 0.59 V and + 1.12 V, respectively).

3. These rate constants, together with that for the self-reaction of O2·, have been used to calculate the steady-state concentration of O2· under conditions thought to apply at the site of reduction of paraquat in the plant cell. On the basis of these calculations the decay of O2· appears to be governed almost entirely by its self-reaction, and the concentration 5 μm away from the thylakoid is still 90% of that at the thylakoid itself. Thus, O2· persists long enough to diffuse as far as the chloroplast envelope and tonoplast, which are the first structures to be damaged by paraquat treatment. O2· is therefore sufficiently long-lived to be a candidate for the phytotoxic product formed by paraquat in plants.  相似文献   


12.
13.
Rates of stepwise anation of cis-Cr(ox)2(H2O2) with SCN/N3, Cr(acac)2(H2O)2+ with SCN and Cr(atda)(H2O)2 with SCN have been investigated in weakly acidic aqueous solutions. Rate constants, kI and kII for the two steps in each system, are composite as kx = kx0+kxX[X] (x = I, II; X = SCN, N3). These rate constants have been evaluated also as the corresponding ΔH and ΔS values. The results obtained and the plausible Id mechanism seem to suggest Cr---OOC bond dissociation (hence a strongly negative ΔS) generating the transition state in each system with outer-sphere association forming the precursor complex in the X dependent paths.  相似文献   

14.
1H NMR line broadening is found to be an effective complimentary method to chemical trapping for determining the rates and activation parameters for organo-metal bond homolysis events that produce freely diffusing radicals. Application of this method is illustrated by measurement of bond homolysis activation parameters for a series of organo-cobalt porphyrin complexes ((TPP)Co-C(CH3)2CN (ΔH = 19.5±0.9 kcal mol−1, ΔS = 12±3 cal°K−1 mol−1), (TMP)Co-C(CH3)2CN (ΔH = 20±1 kcal mol−1S = 13±2 cal°K−1 mol−1), (TAP)Co-C(CH3)2CO2CH3H = 18.2±0.5 kcal mol−1, ΔS = 12±2 cal °K−1 mol−1), (TAP)Co-CH(CH3)C6H5H = 22.5±0.5, ΔS = 17±2 cal °K−1 mol−1)). The line broadening method is particularly useful in determining activation parameters for dissociation of weakly bonded organometallics where the rate of homolysis can exceed the range measurable by conventional chemical trapping methods.  相似文献   

15.
We have cloned and sequenced the displacement-loop (D-loop) region of the mitochondrial DNA (mtDNA) from the European seabass Dicentrarchus labrax (Dl). This sequencing revealed the presence of four tandemly repeated elements (R1, R2, R3 and R4); the individual variation in mtDNA total length is entirely accounted for by their variable number. The individuals examined also possessed an imperfect copy of one of the tandem repeats (ΨR2). At least one termination-associated sequence (TAS) is present in each of the repeats and in two copies 5′ upstream from the tandem array as well. The alignment of the Dl D-loop region with D-loop sequences from four other Teleosts and one Chondrosteus showed the Dl sequence to be larger than that of other fish. The extraordinary length of the D1 D-loop sequence is also due to the 5′ and 3′ regions that are flanking the tandem array, the largest ones to date analyzed in fish. In this study, we also report the unique organization and localization of putative TAS and conserved-sequence block (CSB) elements, and the presence of a conserved 218-bp sequence in the D1 D-loop region.  相似文献   

16.
P.Muir Wood 《BBA》1974,357(3):370-379
The rate of electron transfer between reduced cytochrome ƒ and plastocyanin (both purified from parsley) has been measured as k = 3.6 · 107 M−1 · s−1, at 298 °K and pH 7.0, with activation parameters ΔH = 44 kJ · mole−1 and ΔS = +46 J · mole−1 · °K−1. Replacement of cytochrome ƒ with red algal cytochrome c-553, Pseudomonas cytochrome c-551 and mammalian cytochrome c gave rates at least 30 times slower: k = 5 · 105, 7.5 · 105 and 1.0 · 106 M−1 · s−1, respectively.

Similar measurements made with azurin instead of plastocyanin gave k = 6 · 106 and approx. 2 · 107 M−1 · s−1 for reaction of reduced azurin with cytochrome ƒ and algal cytochrome respectively.

Rate constants of 115 and 80 M−1 · s−1 were found for reduction of plastocyanin by ascorbate and hydroquinone at 298 °K and pH 7.0. The rate constants for the oxidation of plastocyanin, cytochrome ƒ, Pseudomonas cytochrome c-551 and red algal cytochrome c-553 by ferricyanide were found to be between 3 · 104 and 8 · 104 M−1 · s−1.

The results are discussed in relation to photosynthetic electron transport.  相似文献   


17.
The cytotoxic and mutagenic specificity of two therapeutically employed psoralens was examined in several Ames Salmonella typhimurium strains with near ultraviolet light (UVA, 320–400 nm) activation. Photomutagenic activity of 8-methoxypsoralen (8MOP) and 4,5′,8-trimethylpsoralen (TMP) was found to be sequence-specific, and additionally was dependent on the level of DNA-repair proficiency. Base-pair substitution photomutagenesis in hisG46 appeared to require plasmid pKM101-mediated “error-prone” repair. Frameshift photomutagenesis was observed in all hisC3076 strains but not in hisD3052 strains. Frameshift mutagenic activity in hisC3076 was enhanced in the absence of uvrB excision repair and increased further by plasmid pKM101. Phototoxicity was essentially identical in hisC3076, hisD3052 and hisG46 strains; uvrB excision-repair-deficient bacteria were considerably more susceptible to lethal effects than wild-type parental strains, while the presence of pKM101 had no apparent effect on survival. Finally, the data show that psoralens are potent frameshift photomutagens in Salmonella hisC3076 strains and demonstrate the potential utility of these strains in evaluating photomutagenic and phototoxic activity of new furocoumarin derivatives.  相似文献   

18.
The aim of our study was to determine whether a meal modifies the antisecretory response induced by PYY and the structural requirements to elicit antisecretory effects of analogue PYY(22–36) for potential antidiarrhea therapy. The variations in short-circuit current (Isc) due to the modification of ionic transport across the rat intestine were assessed in vitro, using Ussing chambers. In fasted rats, PYY induced a dose- and time-dependent reduction in Isc, with a sensitivity threshold at 5 × 10−11 M (ΔIsc −2 ± 0.5 μA/cm2). The reduction was maximal at 10−7 M (Isc −23 ± 2 μA/cm2), and the concentration producing half-maximal inhibition was 10−9 M. At 10−7 M, reduction of Isc by PYY reached 90% of response to 5 × 10−5 M bumetanide. The PYY effect was partly reversed by 10−5 M forskolin (Isc +13.43 ± 2.91 μA/h·cm2, p < 0.05) or 10−3 M dibutyryl adenosine 3′,5′ cyclic monophosphate (Isc +12 ± 1.69 μA/cm2, p < 0.05). Naloxone and tetrodotoxin did not alter the effect of PYY. In addition, PYY and its analogue P915 reduced net chloride ion secretion to 2.85 and 2.29 μEq/cm2 (p < 0.05), respectively. The antisecretory effect of PYY was accompanied by dose- and time-dependent desensitization when jejunum was prestimulated by a lower dose of peptide. The antisecretory potencies exhibited by PYY analogues required both a C-terminal fragment (22–36) and an aromatic amino acid residue (Trp or Phe) at position 27. At 10−7 M the biological activity of PYY was lower in fed than fasted rats (p < 0.001). Our results confirm the antisecretory effect of PYY, but show that the fed period is accompanied by desensitization, similar to the transient desensitization observed in the fasted period with cumulative doses. This suggests that PYY may act as a physiological mediator that reduces intestinal secretion.  相似文献   

19.
The equilibria and dynamics of the disorder-to-order transition of the anionic polysaccharide iota-carrageenan have been studied in the presence of tetramethyl-ammonium salts. By the use of a stopped-flow polarimeter, the rate equation and temperature dependence of the observed forward rate-constant were found to accord with a co-operative dimerisation process. Activation parameters for helix nucleation were shown to be independent of the anion for solutions containing tetramethylammonium chloride and bromide, i.e., ΔH = 1 ±3 kJ.mol−1, ΔS = −178 ±10 J.mol−1.K−1, ΔG298K = 54 ±2 kJ.mol−1, and knuc,298K = 1880 ±80 dm3.mol−1.s−1. The temperature dependence of optical rotation was also shown to be independent of the anion present.  相似文献   

20.
Expression of recessive mutant phenotypes can occur by a number of different mechanisms. Inactivation of the wild-type allele by base-substitution mutations, frameshift mutations or small deletions occurs at both hemizygous and heterozygous cellular loci, while other events, such as chromosome level rearrangements, may not be detected at hemizygous loci because of inviabiltty of the resulting mutants. In order to assess the relative contribution of each type of mutational event, we isolated a human lymphoblastoid cell line that is heterozygous at the adenine phosphoribosyltransgerase (aprt) locus. The mutation rate for the expression of the mutant phenotype (aprt+/−aprt−/−) was 1.3 × 10−5/cell/ generation. Molecular analysis of the DNA from 26 mutant clones revealed that 19% had undergone deletion of the entire wild-type allele. The aprt heterozygote carries a mutation in the coding sequence of the gene that results in the loss of a restriction site. Analysis of aprt−/− mutants for this restriction fragment length difference reveales that 23% of the mutants contained point mutations or small ((< 100 bp) deletions. The remainder of the mutants (58%) resulted from reduction to homozygosity of the mutant allele. We suggest that, as in tumor cells in vivo, reduction to homozygosity is a major mechanism for the expression of recessive mutant phenotypes in cultured human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号