首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-transfusion autologous platelet concentrate (PC), also known as platelet-rich plasma (PRP), has become a widely used blood-based product in the field of sports medicine, rehabilitation medicine, and clinical medicine. Currently, autologous PC or PRP operation procedures (personnel qualification, equipment, methods, environment and tracking, protocols, preparations, techniques and product quality control) lack unified specifications and standards, which lead to inconsistencies in the quality of PC or PRP products made by medical institutions, affecting treatment efficiency. In blood collection and supply organizations, the collection of blood components has a series of standard operating procedures (SOP) and quality assurance which can be referenced by medical institutions to standardize the preparation and usage of patient autologous PC or PRP products. According to Technical Standards for Preparation of Platelet Concentrate for Blood Stations, we compiled this guideline for medical staff to prepare high quality and reliable PC or PRP products in order to promote the standardization of PC or PRP in clinical application.  相似文献   

2.
The study described in this article presents the first‐ever physical supply and use tables (PSUTs) based on the recently published methodological standard for the System of Environmental‐Economic Accounting (SEEA). The tables were compiled for the Czech Republic for 2014. The compilation procedure followed was described in detail so that it can serve as a source of inspiration and a benchmark for other researchers and/or statisticians. The major shortcoming of the PSUTs is that not all needed data were readily available in physical units and required estimations based on proxies. Some parts of the tables are therefore burdened with a degree of uncertainty. In order to address the price inhomogeneity of sectoral prices for commodity outputs, imports, and exports, which tends to be typical for monetary supply and use tables (MSUTs), the PSUTs and MSUTs were further used for the calculation of raw material equivalents of import, exports, and raw material input (RMI) and raw material consumption (RMC) indicators. A comparison of results showed that the total indicators do not differ that much: the largest difference of 5% was recorded for raw material equivalents of exports, while RMC, for instance, remained nearly the same. However, we still argue for the use of PSUTs for the calculation of raw material equivalents, as changes in total volume of the indicators were accompanied with changes in their material structure. This can have significant consequences for the assessment of environmental impacts related to material consumption, as environmental impacts are very material specific.  相似文献   

3.
The use of information and communication technology (ICT) is growing throughout society, and new products and solutions are developed at an increasing rate. To enable environmental assessment of specific ICT products and other products that rely on ICT in some way, a more complete, detailed, and up‐to‐date study based on real measurements is needed. To date, similar studies have not been readily available or fully comprehensive. This study assessed the overall operational electricity use and life‐cycle–based carbon footprint (CF) relating to ICT in Sweden, including activities not commonly addressed previously, such as shared data transport networks and data centers and manufacturing of network infrastructure. Specific, detailed inventory data are presented and used for assessment of the Internet Protocol core network, data transmission, operator activities, and access network. These specific data, in combination with secondary, more generic data for end‐user equipment, allow a comprehensive overall assessment. The majority of the ICT network CF is the result of end‐user equipment, mainly personal computers, followed by third‐party enterprise networks and data centers and then access networks. The parts closest to the user proved to be clearly responsible for the majority of the impact. The results are presented for Swedish ICT networks and for ICT networks in general based on a global average electricity mix.  相似文献   

4.
The economic advantages of continuous processing of biopharmaceuticals, which include smaller equipment and faster, efficient processes, have increased interest in this technology over the past decade. Continuous processes can also improve quality assurance and enable greater controllability, consistent with the quality initiatives of the FDA. Here, we discuss different continuous multi‐column chromatography processes. Differences in the capture and polishing steps result in two different types of continuous processes that employ counter‐current column movement. Continuous‐capture processes are associated with increased productivity per cycle and decreased buffer consumption, whereas the typical purity‐yield trade‐off of classical batch chromatography can be surmounted by continuous processes for polishing applications. In the context of continuous manufacturing, different but complementary chromatographic columns or devices are typically combined to improve overall process performance and avoid unnecessary product storage. In the following, these various processes, their performances compared with batch processing and resulting product quality are discussed based on a review of the literature. Based on various examples of applications, primarily monoclonal antibody production processes, conclusions are drawn about the future of these continuous‐manufacturing technologies.  相似文献   

5.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.  相似文献   

6.
Recent advances in high-throughput (HTP) automated mini-bioreactor systems have significantly improved development timelines for early-stage biologic programs. Automated platforms such as the ambr® 250 have demonstrated the ability, using appropriate scale-down approaches, to provide reliable estimates of process performance and product quality from bench to pilot scale, but data sets comparing to large-scale commercial processes (>10,000 L) are limited. As development moves toward late stages, specifically process characterization (PC), a qualified scale-down model (SDM) of the commercial process is a regulatory requirement as part of Biologics License Application (BLA)-enabling activities. This work demonstrates the qualification of the ambr® 250 as a representative SDM for two monoclonal antibody (mAb) commercial processes at scales >10,000 L. Representative process performance and product quality associated with each mAb were achieved using appropriate scale-down approaches, and special attention was paid to pCO2 to ensure consistent performance and product quality. Principal component analysis (PCA) and univariate equivalence testing were utilized in the qualification of the SDM, along with a statistical evaluation of process performance and product-quality attributes for comparability. The ambr® 250 can predict these two commercial-scale processes (at center-point condition) for cell-culture performance and product quality. The time savings and resource advantages to performing PC studies in a small-scale HTP system improves the potential for the biopharmaceutical industry to get products to patients more quickly.  相似文献   

7.
Management of hazards in biomedical research facilities requires the application of the traditional industrial hygiene responsibilities of anticipation, recognition, evaluation, and control to characterize the work environment, evaluate tasks and equipment, identify hazards, define exposure groups, and recommend controls. Generally, the diversity and unique characteristics of hazards faced by laboratory and animal facility employees and the short-term and low-level nature of the exposures factor into the selection of proper exposure control measures in the laboratory. The proper selection of control measures is based on a hierarchy of elimination and minimization by engineering controls, followed last by personal protective equipment when exposures cannot be eliminated. Once it is decided that personal protective equipment is needed, specific regulations and guidelines define safety standards for research facilities, including the elements of a sound respiratory protection program. These elements include respirator selection (including appropriate protection factors), medical evaluation, fit testing, training, inspection, maintenance and care, quality, quantity and flow of breathing air, and routine and emergency use procedures.  相似文献   

8.
Millions of dollars of limited state cleanup funds are spent each year in New Hampshire to identify, sample, excavate, and treat thousands of tons of contaminated soil. Cost analyses of numerous sites indicated that soil remediation costs alone reach upwards of $300,000.00 per site. The New Hampshire Department of Environmental Services “Interim Policy for Management of Soils Contaminated from Spills/Releases of Virgin Petroleum Products”; (DES, 1989, 1991) set conservative remediation goals based on total petroleum hydrocarbons in 1989 using the Leaching Potential Analysis method (California Luft Manual, 1989). A current review of available literature and several case histories indicated that chemical‐specific soil cleanup levels may be more appropriate for establishing remedial goals. New chemical‐specific soil cleanup guidelines using a risk‐based approach have been developed. These new guidelines are conservatively based using two principal considerations: (1) an assumed soil exposure scenario that estimated the human health risks associated with potential long‐term exposure to site soils via ingestion, inhalation and dermal contact and (2) the estimated fate and transport of chemicals of concern in the soil unsaturated zone. The first consideration assumed a total cancer risk that did not exceed 1 × 10‐6. The second consideration employed the use of the SEasonal SOIL Compartment (SESOIL) model which simultaneously models water transport, sediment transport, and pollutant fate (US EPA, 1981). Several state soil standards from Oregon, Wisconsin, Massachusetts, and other states were extensively reviewed in order to develop a level of confidence that use of the SESOIL model was appropriate. A series of “sensitivity”; analyses was also performed in order to evaluate the response of the model to changes in various input parameters unique to New Hampshire's hydrogeologic conditions. Generic soil cleanup guidelines were developed for 24 petroleum‐based volatile and semivolatile chemicals of concern to be applied statewide. Site‐specific soil cleanup guidelines will be allowed if it can be demonstrated that insertion of site‐specific data into the model will not adversely affect groundwater quality. As a result of the above processes, timely and much more cost‐effective remediation will be achieved while still maintaining a high degree of protection of the groundwater quality and human health.  相似文献   

9.
Cell‐, tissue‐ or organ‐specific inducible expression systems are powerful tools for functional analysis of changes to the pattern, level or timing of gene expression. However, plant researchers lack standardised reagents that promote reproducibility across the community. Here, we report the development and functional testing of a Gateway‐based system for quantitatively, spatially and temporally controlling inducible gene expression in Arabidopsis that overcomes several drawbacks of the legacy systems. We used this modular driver/effector system with intrinsic reporting of spatio‐temporal promoter activity to generate 18 well‐characterised homozygous transformed lines showing the expected expression patterns specific for the major cell types of the Arabidopsis root; seed and plasmid vectors are available through the Arabidopsis stock centre. The system's tight regulation was validated by assessing the effects of diphtheria toxin A chain expression. We assessed the utility of Production of Anthocyanin Pigment 1 (PAP1) as an encoded effector mediating cell‐autonomous marks. With this shared resource of characterised reference driver lines, which can be expanded with additional promoters and the use of other fluorescent proteins, we aim to contribute towards enhancing reproducibility of qualitative and quantitative analyses.  相似文献   

10.
Residual DNA (rDNA) is comprised of deoxyribonucleic acid (DNA) fragments and longer length molecules originating from the host organism that may be present in samples from recombinant biological processes. Although similar in basic structural base pair units, rDNA may exist in different sizes and physical forms. Interest in measuring rDNA in recombinant products is based primarily on demonstration of effective purification during manufacturing, but also on some hypothetical concerns that, in rare cases, depending on the host expression system, some DNA sequences may be potentially infectious or oncogenic (e.g., HIV virus and the Ras oncogene, respectively). Recent studies suggest that a sequence known as long interspersed nucleotide element-1 (LINE-1), widely distributed in the mammalian genome, is active as a retrotransposon that can be transcribed to RNA, reverse-transcribed into DNA and inserts into a new site in genome. This integration process could potentially disrupt critical gene functions or induce tumorigenesis in mammals. Genomic DNA from microbial sources, on the other hand, could add to risk of immunogenicity to the target recombinant protein being expressed, due to the high CpG content and unmethylated DNA sequence. For these and other reasons, it is necessary for manufacturers to show clearance of DNA throughout production processes and to confirm low levels in the final drug substance using an appropriately specific and quantitative analytical method. The heterogeneity of potential rDNA sequences that might be makes the testing of all potential analytes challenging. The most common methodology for rDNA quantitation used currently is real-time polymerase chain reaction (RT-PCR), a robust and proven technology. Like most rDNA quantitation methods, the specificity of RT-PCR is limited by the sequences to which the primers are directed. To address this, primase-based whole genome amplification is introduced herein. This paper will review the recent advancement in rDNA quantitation and recent findings regarding potential risks of immunogenicity, infectivity, and oncogenicity of rDNA.  相似文献   

11.
This article describes the simultaneous Biacore analysis of human anti-human antibodies (HAHAs) with respect to the binding region and the isotype by a combination of 11 single measurements per sample. The multiplexing single assay setup made efficient use of the four parallel flow cells on one biosensor chip by immobilization of full-length antibody and its constant (Fc) and antigen binding (Fab) fragments for differential binding analysis of anti-drug antibodies (ADAs). Thereby, a complete time-specific immunogenicity profile (intensity, isotype, specificity, and kinetics) of a patient could be obtained by assessing the response patterns of serially collected samples analyzed in a single measurement run. The use of functionally active standard conjugates allowed control of the assay performance throughout the whole procedure. The positive control standard conjugates mimicking polyclonal human ADAs of different isotypes were obtained by conjugating polyclonal rabbit antibodies against the therapeutic antibody to human immunoglobulin (Ig) M, IgG, or IgE. In this article, the qualification of the assay is demonstrated and the application of the methodology to six representative rheumatoid arthritis patients treated with the therapeutic humanized IgG1 antibody tocilizumab (anti-IL-6R) is shown to illustrate the versatility of the assay. The presented method allows one to differentiate specific ADAs from drug-unspecific responses (e.g., rheumatoid factors). In addition, the method can be used to discriminate between isotype responses of the IgG, IgM, and IgE types and, thereby, allows one to describe the time course of specific ADA formation and its disappearance on the single patient level.  相似文献   

12.
For the maxillofacial region, there are various indications that cannot be interpreted from 2D images and will benefit from multiplanar viewing. Dental cone beam CT (CBCT) utilises a cone- or pyramid-shaped X-ray beam using mostly flat-panel detectors for 3D image reconstruction with high spatial resolution. The vast increase in availability and amount of these CBCT devices offers many clinical benefits, and their ongoing development has potential to bring various new clinical applications for medical imaging. Additionally, there is also a need for high quality research and education. European guidelines promote the use of a medical physics expert for advice on radiation protection, patient dose optimisation, and equipment testing. In this review article, we perform a comparison of technical equipment based on manufacturer data, including scanner specific X-ray spectra, and describe issues concerning CBCT image reconstruction and image quality, and also address radiation dose issues, dosimetry, and optimisation. We also discuss clinical needs and what type of education users should have in order to operate CBCT systems safely. We will also take a look into the future and discuss the issues that still need to be solved.  相似文献   

13.
A TNO bacterial aerosol challenge (TBAC) filter test rig was developed for direct assessment of the effectiveness of bioreactor off-gas filters as an alternative to routinely applied indirect wet integrity testing (IT). This TBAC test rig is based on bacterial aerosol challenging with Pseudomonas diminuta and dual monitoring by laser particle counting (LPC) and Andersen microbial sampling (AMS) of viable cells. The TBAC filter test rig is able to reproduce the various conditions encountered in fermentation processes. In experiments with several filters from one class, it was demonstrated that some filters were actually penetrated by up to 3,000 viable cells per test, despite their approval by commercially available IT test equipment. Repetitive filter use, prolonged use, and autoclaving of filters resulted in an increase in pressure drop over the filter but improved the performance of leaking/deviant filters due to building up of a filter cake (this phenomenon was identified by electron microscopy). The integrity tests used were found inadequate for accurate assessment of filter quality. Certification of filter lots by random tests of commercially available off-gas filters using sensitive direct methods such as those presented here might be advisable, as not all filters purchased were of appropriate quality.  相似文献   

14.
An input‐output‐based life cycle inventory (IO‐based LCI) is grounded on economic environmental input‐output analysis (IO analysis). It is a fast and low‐budget method for generating LCI data sets, and is used to close data gaps in life cycle assessment (LCA). Due to the fact that its methodological basis differs from that of process‐based inventory, its application in LCA is a matter of controversy. We developed a German IO‐based approach to derive IO‐based LCI data sets that is based on the German IO accounts and on the German environmental accounts, which provide data for the sector‐specific direct emissions of seven airborne compounds. The method to calculate German IO‐based LCI data sets for building products is explained in detail. The appropriateness of employing IO‐based LCI for German buildings is analyzed by using process‐based LCI data from the Swiss Ecoinvent database to validate the calculated IO‐based LCI data. The extent of the deviations between process‐based LCI and IO‐based LCI varies considerably for the airborne emissions we investigated. We carried out a systematic evaluation of the possible reasons for this deviation. This analysis shows that the sector‐specific effects (aggregation of sectors) and the quality of primary data for emissions from national inventory reporting (NIR) are the main reasons for the deviations. As a rule, IO‐based LCI data sets seem to underestimate specific emissions while overestimating sector‐specific aspects.  相似文献   

15.
16.
Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification of these biomarkers has been based on the detection of either the protein or the O-glycan modifications. We therefore aimed to identify the combined mucin and O-glycan features, that is, specific glycoforms, in an attempt to increase specificity of these cancer biomarkers. Using in situ proximity ligation assays (PLA) based on existing monoclonal antibodies directed to MUC1, MUC2, MUC5AC and MUC6 mucins and to cancer-associated carbohydrate antigens Tn, Sialyl-Tn (STn), T, Sialyl-Le(a) (SLe(a)) and Sialyl-Le(x) (SLe(x)) we screened a series of 28 mucinous adenocarcinomas from different locations (stomach, ampulla of Vater, colon, lung, breast and ovary) to detect specific mucin glycoforms. We detected Tn/STn/SLe(a)/SLe(x)-MUC1 and STn/SLe(a)/SLe(x)-MUC2 glycoforms in ≥50% of the cases, with a variable distribution among organs. Some new glycoforms-T/SLe(a)-MUC2, STn/T/SLe(a) SLe(x)-MUC5AC and STn/T/SLe(a)/SLe(x)-MUC6-were identified for the first time in the present study in a variable percentage of cases from different organs. In conclusion, application of the PLA technique allowed sensitive detection of specific aberrant mucin glycoforms in cancer, increasing specificity to the use of antibodies either to the mucin protein backbone or to the O-glycan haptens alone.  相似文献   

17.
AIMS: To determine the mechanism for both the removal and inactivation of 18-h biofilms of a thermophilic Bacillus species that optimally grows at 55 degrees C on stainless steel. METHODS AND RESULTS: The cleaning strategies tested were based on biofilm biochemistry and physiology, and focused on the chemistry of the cleaners, the duration and temperature of the cleaning process and a combination of various cleaners. The success of the cleaning regimes was determined based on the removal of cells and organic debris and the elimination of viable cells. The results confirmed that a caustic (75 degrees C for 30 min) and acid (75 degrees C for 30 min) wash, relied upon heavily in most food processing industries for cleaning-in-place systems, was successful in removing these biofilms. However, any changes in the concentrations of these cleaners or the temperature of cleaning drastically affected the overall outcome. Alternative cleaning agents based on enzymatic or nonenzymatic breakdown of cellular proteins or polysaccharides, surfactant action, use of oxidative attack and free radicals varied in degrees of their success. Combining proteolytic action with surfactants increased wetability and therefore enhanced the cleaning efficiency. CONCLUSIONS: Several procedures, including caustic/acid and enzyme based cleaners, will be satisfactory, provided that the correct process parameters are observed i.e. concentration, time, temperature and kinetic energy (flow). Confirmation of these results should be carried out in a pilot plant through several use/clean cycles. SIGNIFICANCE AND IMPACT OF THE STUDY: Confidence in standard and alternative cleaning procedures for food manufacturing plant to prevent contamination with thermophilic bacilli that threaten product quality.  相似文献   

18.
Summary Biological indicators (BIs) are used to monitor ethylene oxide (EO) gas sterilization processes for medical devices. Several European and United States BIs for EO sterilization were evaluated for resistance according to both United States Pharmacopeia (USP) XXI and United Kingdom's (UK) tests for D-values. US BIs areB. subtilis var. niger spores on paper strips or disc carriers while European BIs use aluminum strips, quartz sand, or cotton yarn. Numerous BIs per run and runs per lot, as well as 2–3 different lots of BIs from each manufacturer, were examined. Both British and US BIs met their respective label claims for rates of inactivation when tested against British and USP EO test parameters, respectively. However, Danish BIs, on cotton yarn or quartz sand, were not inactivated following USP specifications during the exposure dwell times tested (600 mg L–1 EO, 54°C, 60% RH, 0–110 min). The Danish BIs will require further testing in order for us to determine if theirB. subtilis spores are unusually resistant to EO or if the spore carrier substrates protect the spores from the sterilizing gas. In conclusion, the British and American BIs for EO sterilization are equivalent in resistance despite differences in carrier substrate, recovery conditions, calculation methods for D-values, and the labeled sterilization conditions for use.  相似文献   

19.
Multivariate statistical process monitoring (MSPM) is becoming increasingly utilized to further enhance process monitoring in the biopharmaceutical industry. MSPM can play a critical role when there are many measurements and these measurements are highly correlated, as is typical for many biopharmaceutical operations. Specifically, for processes such as cleaning‐in‐place (CIP) and steaming‐in‐place (SIP, also known as sterilization‐in‐place), control systems typically oversee the execution of the cycles, and verification of the outcome is based on offline assays. These offline assays add to delays and corrective actions may require additional setup times. Moreover, this conventional approach does not take interactive effects of process variables into account and cycle optimization opportunities as well as salient trends in the process may be missed. Therefore, more proactive and holistic online continued verification approaches are desirable. This article demonstrates the application of real‐time MSPM to processes such as CIP and SIP with industrial examples. The proposed approach has significant potential for facilitating enhanced continuous verification, improved process understanding, abnormal situation detection, and predictive monitoring, as applied to CIP and SIP operations. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:505–515, 2014  相似文献   

20.
Stroke is a major cause of disability in all age groups. Although the value of specific rehabilitative therapies is now acknowledged, the mechanisms of impairment and recovery are not well understood. There is growing interest in the role that central nervous system reorganisation might play in the recovery process, and in particular whether this reorganisation can be manipulated to provide clinical benefits for patients. The careful use of non-invasive techniques such as functional magnetic resonance imaging and transcranial magnetic stimulation allows the study of the working human brain, and studies in humans suggest that functionally relevant adaptive changes occur in cerebral networks following stroke. An understanding of how these changes influence the recovery process will facilitate the development of novel therapeutic techniques that are based on neurobiological principles and will allow the delivery of specific therapies to appropriately targeted patients suffering from stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号