首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the roles of endogenous prostaglandins (PGs) and nitric oxide (NO) in the gastroduodenal ulcerogenic responses to hypothermic stress (28 approximately 30 degrees C) in anesthetized rats. Lowering body temperature provoked damage in the gastroduodenal mucosa, with an increase of gastric acid secretion and motility. These responses were completely abolished by bilateral vagotomy or atropine, while 16,16-dimethyl PGE2 decreased the mucosal ulcerogenic response with no effect on acid secretion. The non-selective COX inhibitors, indomethacin or aspirin, worsened these lesions with enhancement of gastric motility and no effect on acid secretion, while the selective COX-2 inhibitor NS-398 did not affect any of these responses. On the other hand, the non-selective NOS inhibitor L-NAME but not aminoguanidine (a relatively selective inhibitor of iNOS), significantly potentiated the acid secretory and mucosal ulcerogenic responses in the stomach but reduced the duodenal damage in response to hypothermia, the effects being antagonized by co-administration of L-arginine. Hypothermia itself decreased duodenal HCO3- secretion under both basal and mucosal acidification-stimulated conditions. Both indomethacin and aspirin further decreased the HCO3- response to the mucosal acidification, while L-NAME significantly increased the HCO3- secretion even under hypothermic conditions, similar to 16,16-dimethyl PGE2. These results suggest that 1) hypothermic stress caused an increase of acid secretion and motility as well as a decrease of duodenal HCO3-secretion, resulting in damage in both the stomach and duodenum, 2) the COX-1 but not COX-2 inhibition worsened these lesions by enhancing gastric motility and further decreasing duodenal HCO3- response, 3) the cNOS but not iNOS inhibition worsened gastric lesions by increasing acid secretion but decreased duodenal damage by increasing HCO3- secretion. Thus, it is assumed that the gastroduodenal ulcerogenic and functional responses to hypothermic stress are modified by cNOS/NO as well as COX-1/PGs.  相似文献   

2.
We investigated the regulatory mechanism of acid-induced HCO(3)(-) secretion in the slightly permeable rat stomach after an exposure to hyperosmolar NaCl. Under urethane anesthesia, a rat stomach was mounted on a chamber and perfused with saline, and the secretion of HCO(3)(-) was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. Acidification of the normal stomach with 100 mM HCl increased HCO(3)(-) secretion, and this response was totally inhibited by pretreatment with indomethacin but not N(G)-nitro-l-arginine methyl ester (l-NAME) or chemical ablation of capsaicin-sensitive afferent neurons. Exposure of the stomach to 0.5 M NaCl deranged the unstirred mucus gel layer without damaging the surface epithelial cells. The stomach responded to 0.5 M NaCl by secreting slightly more HCO(3)(-), in an indomethacin-inhibitable manner, and responded to even 10 mM HCl with a marked rise in HCO(3)(-) secretion, although 10 mM HCl did not have an effect in the normal stomach. The acid-induced HCO(3)(-) response in the NaCl-treated stomach was significantly but partially attenuated by indomethacin, l-NAME, or sensory deafferentation and was totally abolished when these treatments were combined. These results suggest that gastric HCO(3)(-) secretion in response to acid is regulated by two independent mechanisms, one mediated by prostaglandins (PGs) and the other by sensory neurons and nitric oxide (NO). The acid-induced HCO(3)(-) secretion in the normal stomach is totally mediated by endogenous PGs, but, when the stomach is made slightly permeable to acid, the response is markedly facilitated by sensory neurons and NO.  相似文献   

3.
We investigated the cyclooxygenase (COX) isoforms as well as prostaglandin E receptor EP subtypes responsible for acid-induced gastric HCO(3)(-) secretion in rats and EP receptor-knockout (-/-) mice. Under urethane anesthesia, a chambered stomach (in the presence of omeprazole) was perfused with saline, and HCO(3)(-) secretion was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. Mucosal acidification was achieved by exposing the stomach for 10 min to 50 or 100 mM HCl. Acidification of the mucosa increased the secretion of HCO(3)(-) in the stomach of both rats and WT mice, in an indomethacin-inhibitable manner. The acid-induced gastric HCO(3)(-) secretion was inhibited by prior administration of indomethacin and SC-560 but not rofecoxib in rats and mice. Acidification increased the PGE(2) content of the rat stomach, and this response was significantly attenuated by indomethacin and SC-560 but not rofecoxib. This response was also attenuated by ONO-8711 (EP1 antagonist) but not AE3-208 (EP4 antagonist) in rats and disappeared in EP1 (-/-) but not EP3 (-/-) mice. PGE(2) increased gastric HCO(3)(-) secretion in both rats and WT mice, and this action was inhibited by ONO-8711 and disappeared in EP1 (-/-) but not EP3 (-/-) mice. These results support a mediator role for endogenous PGs in the gastric response induced by mucosal acidification and clearly indicate that the enzyme responsible for production of PGs in this process is COX-1. They further show that the presence of EP1 receptors is essential for the increase in the secretion of HCO(3)(-) in response to mucosal acidification in the stomach.  相似文献   

4.
Nizatidine, a histamine H(2)-antagonist, is known to inhibit acetylcholinesterase (AChE) activity and is used clinically as a gastroprokinetic agent as well as the anti-ulcer agent. We examined whether or not nizatidine stimulates duodenal HCO(3)(-) secretion in rats through vagal-cholinergic mechanisms by inhibiting AChE activity. Under pentobarbital anesthesia, a proximal duodenal loop was perfused with saline, and the HCO(3)(-) secretion was measured at pH 7.0 using a pH-stat method and by adding 10 mM HCl. Nizatidine, neostigmine, carbachol, famotidine or ranitidine was administered i.v. as a single injection. Intravenous administration of nizatidine (3-30 mg/kg) dose-dependently increased the HCO(3)(-) secretion, and the effect at 10 mg/kg was equivalent to that obtained by carbachol at 0.01 mg/kg. The HCO(3)(-) stimulatory action of nizatidine was observed at the doses that inhibited the histamine-induced acid secretion and enhanced gastric motility. This effect was mimicked by neostigmine (0.03 mg/kg) and significantly attenuated by bilateral vagotomy and pretreatment with atropine but not indomethacin. The IC(50) of nizatidine for AChE of rat erythrocytes was 1.4 x 10(-6) M, about 12 times higher than that of neostigmine. Ranitidine showed the anti-AchE activity and increased duodenal HCO(3)(-) secretion, similar to nizatidine, whereas famotidine had any influence on neither AChE activity nor the HCO(3)(-) secretion. On the other hand, duodenal damage induced by acid perfusion (100 mM HCl for 4 h) in the presence of indomethacin was significantly prevented by nizatidine and neostigmine, at the doses that increased the HCO(3)(-) secretion. These results suggest that nizatidine increases HCO(3)(-) secretion in the rat duodenum, mediated by vagal-cholinergic mechanism, the action being associated with the anti-AChE activity of this agent.  相似文献   

5.
The interaction between angiotensin [Ang-(1-7)] and bradykinin (BK) was determined in the mesentery of anesthetized Wistar rats using intravital microscopy. Topical application of BK and Ang-(1-7) induced vasodilation that was abolished by the BK B2 receptor antagonist HOE-140 and the Ang-(1-7) antagonist A-779, respectively. BK (1 pmol)-induced vasodilation, but not SNP and ACh responses, was potentiated by Ang-(1-7) 10 pmol and 100 pmols. The effect of 100 pmol of Ang-(1-7) on BK-induced vasodilation was abolished by A-779, indomethacin, and L-nitroarginine methyl esther, whereas losartan was without effect. Enalaprilat treatment enhanced the BK- and Ang-(1-7)-induced vasodilation and the potentiating effect of Ang-(1-7) on BK vasodilation. The potentiation of BK-induced vasodilation by Ang-(1-7) is a receptor-mediated phenomenon dependent on cyclooxygenase-related products and NO release.  相似文献   

6.
In the present study, we investigated a protective role of constitutively occurred nitric oxide (NO) against indomethacin-induced intestinal lesions in rats. Indomethacin (10 mg/kg) was given s.c. to animals without fasting, and the intestinal mucosa was examined for lesions 24 h later. The NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) was given s.c. 0.5 h before or 6 hr after indomethacin, while the NO donor (+/-)-(E)-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexnamine (NOR-3) was given s.c. 0.5 h before indomethacin. Indomethacin caused hemorrhagic lesions in the small intestine, accompanied with an increase in intestinal motility and bacterial translocation. These lesions were markedly prevented or worsened, respectively, by later or prior administration of L-NAME (20 mg/kg), in a L-arginine-sensitive manner. The worsening effect of L-NAME (5-20 mg/kg) on these lesions was dose-dependently observed in association with further enhancement of the bacterial translocation and intestinal hypermotility following indomethacin. By contrast, prior administration of NOR-3 (1-6 mg/kg) dose-dependently prevented the development of intestinal lesions, together with suppression of the bacterial translocation and intestinal hypermotility in response to indomethacin. On the other hand, both indomethacin and L-NAME decreased intestinal mucus and fluid (water) secretion in the small intestine, while NOR-3 increased these secretions. These results suggest that (1) NO occurred constitutively exerts a protective action against indomethacin-induced intestinal ulceration, and (2) this effect is related with prevention of bacterial translocation, the process functionally associated with increase of mucus and fluid secretions as well as inhibition of intestinal hypermotility.  相似文献   

7.
Chronic treatment of rats with N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension mediated partly by enhanced angiotensin-I-converting enzyme (ACE) activity. We examined the influence of L-NAME on rat liver morphology, on hepatic glycogen, cholesterol, and triglyceride content, and on the activities of the cytochrome P450 isoforms CYP1A1/2, CYP2B1/2, CYP2C11, and CYP2E1. Male Wistar rats were treated with L-NAME (20 mg/rat per day via drinking water) for 2, 4, and 8 weeks, and their livers were then removed for analysis. Enzymatic induction was produced by treating rats with phenobarbital (to induce CYP2B1/2), beta-naphthoflavone (to induce CYP1A1/2), or pyrazole (to induce CYP2E1). L-NAME significantly elevated blood pressure; this was reversed by concomitant treatment with enalapril (ACE inhibitor) or losartan (angiotensin II AT(1) receptor antagonist). L-NAME caused vascular hypertrophy in hepatic arteries, with perivascular and interstitial fibrosis involving collagen deposition. Hepatic glycogen content also significantly increased. L-NAME did not affect fasting glucose levels but significantly reduced insulin levels and increased the insulin sensitivity of rats, based on an intraperitoneal glucose tolerance test. Immunoblotting experiments indicated enhanced phosphorylation of protein kinase B and of glycogen synthase kinase 3. All these changes were reversed by concomitant treatment with enalapril or losartan. L-NAME had no effect on hepatic cholesterol or triglyceride content or on the basal or drug-induced activities and protein expression of the cytochrome P450 isoforms. Thus, the chronic inhibition of NO biosynthesis produced hepatic morphological alterations and changes in glycogen metabolism mediated by the renin-angiotensin system. The increase in hepatic glycogen content probably resulted from enhanced glycogen synthase activity following the inhibition of glycogen synthase kinase 3 by phosphorylation.  相似文献   

8.
We hypothesized that duodenal HCO(3)(-) secretion alkalinizes the microclimate surrounding intestinal alkaline phosphatase (IAP), increasing its activity. We measured AP activity in rat duodenum in situ in frozen sections with the fluorogenic substrate ELF-97 phosphate and measured duodenal HCO(3)(-) secretion with a pH-stat in perfused duodenal loops. We examined the effects of the IAP inhibitors L-cysteine or L-phenylalanine (0.1-10 mM) or the tissue nonspecific AP inhibitor levamisole (0.1-10 mM) on AP activity in vitro and on acid-induced duodenal HCO(3)(-) secretion in vivo. AP activity was the highest in the duodenal brush border, decreasing longitudinally to the large intestine with no activity in stomach. Villous surface AP activity measured in vivo was enhanced by PGE(2) intravenously and inhibited by luminal L-cysteine. Furthermore, incubation with a pH 2.2 solution reduced AP activity in vivo, whereas pretreatment with the cystic fibrosis transmembrane regulator (CFTR) inhibitor CFTR(inh)-172 abolished AP activity at pH 2.2. L-Cysteine and L-phenylalanine enhanced acid-augmented duodenal HCO(3)(-) secretion. The nonselective P2 receptor antagonist suramin (1 mM) reduced acid-induced HCO(3)(-) secretion. Moreover, L-cysteine or the competitive AP inhibitor glycerol phosphate (10 mM) increased HCO(3)(-) secretion, inhibited by suramin. In conclusion, enhancement of the duodenal HCO(3)(-) secretory rate increased AP activity, whereas inhibition of AP activity increased the HCO(3)(-) secretory rate. These data support our hypothesis that HCO(3)(-) secretion increases AP activity by increasing local pH at its catalytic site and that AP hydrolyzes endogenous luminal phosphates, presumably ATP, which increases HCO(3)(-) secretion via activation of P2 receptors.  相似文献   

9.
H Matsuda  Y Li  M Yoshikawa 《Life sciences》1999,65(2):PL27-PL32
The roles of capsaicin-sensitive sensory nerves (CPSN), endogenous nitric oxide (NO), sulfhydryls (SHs), prostaglandins (PGs) in the gastroprotection by momordin Ic, an oleanolic acid oligoglycoside isolated from the fruit of Kochia scoparia (L.) SCHRAD., on ethanol-induced gastric mucosal lesions were investigated in rats. Momordin Ic (10 mg/kg, p.o.) potentially inhibited ethanol-induced gastric mucosal lesions. The effect of momordin Ic was markedly attenuated by the pretreatment with capsaicin (125 mg/kg in total, s.c., an ablater of CPSN), N(G)-nitro-L-arginine methyl ester (L-NAME, 70 mg/kg, i.p., an inhibitor of NO synthase), N-ethylmaleimide (NEM, 10 mg/kg, s.c., a blocker of SHs), or indomethacin (10 mg/kg, s.c., an inhibitor of PGs biosynthesis). The attenuation of L-NAME was abolished by L-arginine (300 mg/kg, i.v., a substrate of NO synthase), but not by D-arginine (300 mg/kg, i.v., the enatiomer of L-arginine). The effect of the combination of capsaicin with indomethacin, NEM, or L-NAME was not more potent than that of capsaicin alone. The combination of indomethacin and NEM, indomethacin and L-NAME, or indomethacin and NEM and L-NAME increased the attenuation of each alone. These results suggest that CPSN play an important role in the gastroprotection by momordin Ic on ethanol-induced gastric mucosal lesions, and endogenous PGs, NO, and SHs interactively participate, in rats.  相似文献   

10.
Angiotensin-(1-5) [Ang-(1-5)], which is a metabolite of Angiotensin-(1-7) [Ang-(1-7)] catalyzed by angiotensin-converting enzyme (ACE), is a pentapeptide of the renin-angiotensin system (RAS). It has been reported that Ang-(1-7) and Ang-(1-9) stimulate the secretion of atrial natriuretic peptide (ANP) via Mas receptor (Mas R) and Ang II type 2 receptor (AT2R), respectively. However, it still remains unknown whether Ang-(1-5) has a similar function to Ang-(1-7). We investigated the effect of Ang-(1-5) on ANP secretion and to define its signaling pathway using isolated perfused beating rat atria. Ang-(1-5) (0.3, 3, 10 μM) stimulated high pacing frequency-induced ANP secretion in a dose-dependent manner. Ang-(1-5)-induced ANP secretion (3 μM) was attenuated by the pretreatment with an antagonist of Mas R (A-779) but not by an antagonist of AT1R (losartan) or AT2R (PD123,319). An inhibitor for phosphatidylinositol 3-kinase (PI3K; wortmannin), protein kinase B (Akt; API-2), or nitric oxide synthase (NOS; L-NAME) also attenuated the augmentation of ANP secretion induced by Ang-(1-5). Ang-(1-5)-induced ANP secretion was markedly attenuated in isoproterenol-treated hypertrophied atria. The secretagogue effect of Ang-(1-5) on ANP secretion was similar to those induced by Ang-(1-9) and Ang-(1-7). These results suggest that Ang-(1-5) is an active mediator of renin-angiotensin system to stimulate ANP secretion via Mas R and PI3K-Akt-NOS pathway.  相似文献   

11.
Exposure to mercury at nanomolar level affects cardiac function but its effects on vascular reactivity have yet to be investigated. Pressor responses to phenylephrine (PHE) were investigated in perfused rat tail arteries before and after treatment with 6 nM HgCl2 during 1 h, in the presence (E+) and absence (E-) of endothelium, after L-NAME (10(-4) M), indomethacin (10(-5 )M), enalaprilate (1 microM), tempol (1 microM) and deferoxamine (300 microM) treatments. HgCl2 increased sensitivity (pD2) without modifying the maximum response (Emax) to PHE, but the pD2 increase was abolished after endothelial damage. L-NAME treatment increased pD2 and Emax. However, in the presence of HgCl2, this increase was smaller, and it did not modify Emax. After indomethacin treatment, the increase of pD2 induced by HgCl2 was maintained. Enalaprilate, tempol and deferoxamine reversed the increase of pD2 evoked by HgCl2. HgCl2 increased the angiotensin converting enzyme (ACE) activity explaining the result obtained with enalaprilate. Results suggest that at nanomolar concentrations HgCl2 increase the vascular reactivity to PHE. This response is endothelium mediated and involves the reduction of NO bioavailability and the action of reactive oxygen species. The local ACE participates in mercury actions and depends on the angiotensin II generation.  相似文献   

12.
We examined, by using a specific PGE receptor subtype EP4 agonist and antagonist, the involvement of EP4 receptors in duodenal HCO(3)(-) secretion induced by PGE(2) and mucosal acidification in rats. Mucosal acidification was achieved by exposing a duodenal loop to 10 mM HCl for 10 min, and various EP agonists were given intravenously 10 min before the acidification. Secretion of HCO(3)(-) was dose-dependently stimulated by AE1-329 (EP4 agonist), the maximal response being equivalent to that induced by sulprostone (EP1/EP3 agonist) or PGE(2). The stimulatory action of AE1-329 and PGE(2) but not sulprostone was attenuated by AE3-208, a specific EP4 antagonist. This antagonist also significantly mitigated the acid-induced HCO(3)(-) secretion. Coadministration of sulprostone and AE1-329 caused a greater secretory response than either agent alone. IBMX potentiated the stimulatory action of both sulprostone and AE1-329, whereas verapamil mitigated the effect of sulprostone but not AE1-329. Chemical ablation of capsaicin-sensitive afferent neurons did not affect the response to any of the EP agonists used. We conclude that EP4 receptors are involved in the duodenal HCO(3)(-) response induced by PGE(2) or acidification in addition to EP3 receptors. The process by which HCO(3)(-) is secreted through these receptors differs regarding second-messenger coupling. Stimulation through EP4 receptors is mediated by cAMP, whereas that through EP3 receptors is regulated by both cAMP and Ca(2+); yet there is cooperation between the actions mediated by these two receptors. The neuronal reflex pathway is not involved in stimulatory actions of these prostanoids.  相似文献   

13.
Matsuda H  Li Y  Yoshikawa M 《Life sciences》2000,66(3):PL 41-PL 46
We reported previously that escins Ia, Ib, IIa, and IIb, isolated from horse chestnuts, inhibited the 30-min gastric emptying (GE) in mice. In this study, the effects of escins Ia-IIb on gastrointestinal transit (GIT), and the roles of endogenous prostaglandins (PGs) and nitric oxide (NO) in the effects of escins Ia--IIb on GE and GIT were investigated in fasted mice. Escins Ia-IIb (12.5-50 mg/kg, p.o.) dose-dependently accelerated GIT. Both GE inhibitions and GIT accelerations by escins Ia-IIb (25 mg/kg) were markedly attenuated by pretreatment with indomethacin (10 mg/kg, s.c., an inhibitor of PGs synthesis). Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.p., an inhibitor of constitutive and inducible NO synthase) attenuated the effects of escins Ia-IIb on GIT, but not on GE. The effect of L-NAME was reversed by L-arginine (600 mg/kg, i.p., a substrate of NO synthase), but not by D-arginine (900 mg/kg, i.p., the enantiomer of L-arginine). The GIT accelerations of escins Ia-IIb were not attenuated by pretreatment with D-NAME (10 mg/kg, i.p., the enantiomer of L-NAME) or dexamethasone (5 mg/kg, i.p., an inhibitor of inducible form of NO synthase). The results suggest that endogenous PGs play an important role in both GE inhibitions and GIT accelerations, and constitutive NO is involved in the GIT accelerations, by escins Ia--IIb in mice.  相似文献   

14.
Endothelin-1 (ET-1) produces potent renal effects that we have previously shown to be dependent on cytochrome P-450 (CYP450) metabolites of aracidonic acid (24) This study evaluated the role of these metabolites in the effects produced by ET-1 on renal blood flow (RBF), cortical blood flow (CBF), medullary blood flow (MBF), and mean arterial blood pressure (MBP). ET-1 (20-200 pmol/kg) increased MBP, renal vascular resistance (RVR), and MBF but reduced CBF and RBF in a dose-dependent manner. The decreases in CBF and RBF, and increases in MBP and RVR were blunted by BMS-182874, an ET(A) receptor antagonist or BQ-788, an ET(B) receptor antagonist. Similarly, indomethacin, an inhibitor of cyclooxygenase activity, or 12,12-dibromododecenoic acid (DBDD), a CYP450-dependent inhibitor of production of 20-hydroxyeicosatetraenoic acid (20-HETE), blunted these effects. ET-3 elicited dose-related reduction in CBF and increase in MBF. Indomethacin accentuated the reduction in CBF and attenuated the increase in MBF, as did DBDD. ET-1-induced increase in MBF was attenuated by BQ-788, N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, indomethacin, or DBDD. DBDD inhibited the hemodynamic effects of L-NAME. Miconazole, the inhibitor of CYP450-dependent epoxygenase activity, was without effect. These results indicate that hemodynamic changes produced by ET-1 are mediated by vasoconstrictor prostanoids and/or prostanoid-like substances, possibly, 20-HETE via activation of ET(A) and ET(B) receptors. However, the increase in MBF is mediated by vasodilator prostanoids or by NO via ET(B) receptor activation.  相似文献   

15.
Effects of endothelin-1 on gastric acid secretion, duodenal HCO3- secretion, and duodenal mucosal integrity were investigated in anesthetized rats, in comparison with those of TY-10957, a stable analogue of prostacyclin. A rat stomach mounted on an ex-vivo chamber or a proximal duodenal loop was perfused with saline, and gastric acid or duodenal HCO3- secretion was measured using a pH-stat method and by adding 100 mM NaOH or 10 mM HCl, respectively. Duodenal lesions were induced by mepirizole (200 mg/kg) given subcutaneously. Intravenous administration of endothelin-1 (0.6 and 1 nmol/kg) caused an increase of duodenal HCO3- secretion with concomitant elevation of blood pressure; this effect was antagonized by co-administrahon of BQ-123 (ET(A) antagonist; 3 mg/kg, i.v.) and significantly mitigated by vagotomy. Likewise, endothelin-1 caused a significant decrease in histamine-stimulated acid secretion, and this effect was also significantly antagonized by BQ-123. Although TY-10957 (10 and 30 mg/kg, i.v.) produced a temporal decrease of blood pressure, this agent caused not only an increase of duodenal HCO3- secretion, independent of vagal nerves, but also a decrease of acid secretion as well. In addition, both endothelin-1 and TY-10957 significantly prevented mepirizole-induced duodenal lesions at the doses that caused an increase of duodenal HCO3- secretion and a decrease of gastric acid secretion. These results suggest that endothelin-1 affects the duodenal mucosal integrity by modifying both gastric acid and duodenal HCO3- secretions, the effects being mediated by ET(A) receptors.  相似文献   

16.
The aims of this study were to elucidate the distribution of angiotensin receptors (AT(1) and AT(2)) in the duodenal wall and to investigate whether AT(2) receptors are involved in the regulation of duodenal mucosal alkaline secretion, which is of importance for the mucosal defense against gastric acid. Immunohistochemistry was used to locate AT(1) and AT(2) receptors in chloralose-anesthetized rats. Duodenal mucosal alkaline output was measured by use of in situ pH-stat titration. Immunohistochemistry demonstrated a distinct staining for both AT(1) and AT(2) receptors in the lamina propria of the villi and also for AT(1) receptors in the muscularis interna. When angiotensin II was infused in the presence of the AT(1) receptor antagonist losartan, mucosal alkaline secretion increased by ~50%. This response was inhibited by the AT(2) receptor antagonist PD-123319. The AT(2) receptor agonist CGP-42112A increased mucosal alkaline secretion by ~50%. This increase was absent in the presence of PD-123319 but not in the presence of losartan or the local anesthetic lidocaine. We conclude that angiotensin II stimulates duodenal mucosal alkaline secretion by activation of AT(2) receptors located in the duodenal mucosa/submucosa.  相似文献   

17.
The effect of angiotensin-(1-7) on jejunal water absorption in rats was investigated. The jejunal sac of anesthetized rats was filled with two ml of tyrode solution containing 3.7 MBq of tritiated water. A femoral vein was cannulated for administration of peptides and drugs. Infusion of Ang-(1-7) at the dose of 0.7 ng/kg.min produced a significant increase in jejunal water absorption compared to control (32% increase). The Ang-(1-7) antagonist A-779 abolished the effect of Ang-(1-7) on water absorption. A reduction of the Ang-(1-7) effect was also produced by treatment with the AT(1) receptor antagonist, losartan or the AT(2) receptor antagonist, PD123.177. The increase in jejunal water absorption produced by Ang-(1-7) was blocked by the nitric oxide synthase inhibitor, L-NAME and by indomethacin. These data suggest that the effect of Ang-(1-7) on the jejunal loop is mediated by activation of a multiple angiotensin receptors and/or by an atypical angiotensin receptor. Furthermore, the effect of Ang-(1-7) on jejunal water absorption is mediated by nitric oxide and by a cyclooxygenase-dependent mechanism.  相似文献   

18.
Reduced gastrointestinal HCO3- secretion contributes to malabsorption and obstructive syndromes in cystic fibrosis. The apical HCO3- transport pathways in these organs have not been defined. We therefore assessed the involvement of apical Cl-/HCO3- exchangers and anion conductances in basal and cAMP-stimulated duodenal HCO3- secretion. Muscle-stripped rat and rabbit proximal duodena were mounted in Ussing chambers, and electrical parameters, HCO3- secretion rates, and 36Cl-, 22Na+, and 3H+ mannitol fluxes were assessed. mRNA expression levels were measured by a quantitative PCR technique. Removal of Cl- from or addition of 1 mM DIDS to the luminal perfusate markedly decreased basal HCO3- secretion but did not influence the HCO3- secretory response to 8-bromo-cAMP, which was inhibited by luminal 5-nitro-2-(3-phenylpropylamino)-benzoate. Bidirectional 22Na+ and 36Cl- flux measurements demonstrated an inhibition rather than a stimulation of apical anion exchange during cAMP-stimulated HCO3- secretion. The ratio of Cl- to HCO3- in the anion secretory response was compatible with both Cl- and HCO3- being secreted via the CFTR anion channel. CFTR expression was very high in the duodenal mucosa of both species. We conclude that in rat and rabbit duodena, an apical Cl-/HCO3- exchanger mediates a significant part of basal HCO3- secretion but is not involved in the HCO3- secretory response to cAMP analogs. The inhibitor profile, the strong predominance of Cl- over HCO3- in the anion secretory response, and the high duodenal CFTR expression levels suggest that a major portion of cAMP-stimulated duodenal HCO3- secretion is directly mediated by CFTR.  相似文献   

19.
The cause of lower prevalence of duodenal ulcer in young women compared with men is largely unknown. We recently found that sex difference in duodenal mucosal HCO?? secretion existed in humans and mice, but the mechanisms are not clear. Prostaglandin E? (PGE?) is an important endogenous mediator that plays an important role in the regulation of duodenal HCO?? secretion. Therefore, in the present study, we investigated the effect of estrogen on PGE?-stimulated duodenal HCO?? secretion and the underlying mechanisms. The results showed that 17β-estradiol at the physiological concentration (1 nM) had no significant effects on duodenal mucosal HCO?? secretion or short-circuit current (I(sc)) in mice. However, the pretreatment of 17β-estradiol (1 nM) markedly potentiated PGE?-stimulated duodenal HCO?? secretion and I(sc) (P < 0.01 and P < 0.05). Global estrogen receptor (ER) antagonist ICI-182,780 and ERα-specific antagonist MPP, but not the ERβ-specific antagonist PHTPP, abolished estrogen-potentiated PGE?-stimulated duodenal HCO?? secretion and I(sc). 17β-Estradiol and PGE? additively increased phosphatidylinositol 3-kinase (PI3K) activity and Akt phosphorylation. Wortmannin, a specific PI3K inhibitor, inhibited estrogen-potentiated PGE?-stimulated duodenal HCO?? secretion and I(sc). In conclusion, estrogen at the physiological concentration potentiates PGE?-stimulated duodenal mucosal HCO?? secretion through the activation of ERα and the PI3K-dependent mechanism, which may contribute to the sex difference in duodenal mucosal HCO?? secretion and the lower prevalence of duodenal ulcer in young women.  相似文献   

20.
Prostaglandin E(2) (PGE(2)) plays an important role in the regulation of duodenal bicarbonate (HCO(3)(-)) secretion, but its signaling pathway(s) are not fully understood. In the present study, we investigated the signaling pathways involved in PGE(2)-mediated duodenal HCO(3)(-) secretion. Murine duodenal mucosal HCO(3)(-) secretion was examined in vitro in Ussing chambers by pH-stat titration in the presence of a variety of signal transduction modulators. Phosphatidylinositol 3-kinase (PI3K) activity was measured by immunoprecipitation of PI3K and ELISA, and Akt phosphorylation was measured by Western analysis with anti-phospho-Akt and anti-Akt antibodies. PGE(2)-stimulated duodenal HCO(3)(-) secretion was reduced by the cAMP-dependent signaling pathway inhibitors MDL-12330A and KT-5720 by 23% and 20%, respectively; the Ca(2+)-influx inhibitor verapamil by 26%; and the calmodulin antagonist W-13 by 24%; whereas the PI3K inhibitors wortmannin and LY-294002 reduced PGE(2)-stimulated HCO(3)(-) secretion by 51% and 47%, respectively. Neither the MAPK inhibitor PD-98059 nor the tyrosine kinase inhibitor genistein altered PGE(2)-stimulated HCO(3)(-) secretion. PGE(2) application caused a rapid and concentration-dependent increase in duodenal mucosal PI3K activity and Akt phosphorylation. These results demonstrated that PGE(2) activates PI3K in duodenal mucosa and stimulates duodenal HCO(3)(-) secretion via cAMP-, Ca(2+)-, and PI3K-dependent signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号