首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Coyotes (Canis latrans) are a highly adaptable canid species whose behavioral plasticity has allowed them to persist in a wide array of habitats throughout North America. As generalists, coyotes can alter movement patterns and change territorial strategies between residency (high site fidelity) and transiency (low site fidelity) to maximize fitness. Uncertainty remains about resident and transient coyote movement patterns and habitat use because research has reached conflicting conclusions regarding patterns of habitat use by both groups. We quantified effects of habitat on resident and transient coyote movement behavior using first passage time (FPT) analysis, which assesses recursive movement along an individual''s movement path to delineate where they exhibit area‐restricted search (ARS) behaviors relative to habitat attributes. We quantified monthly movement rates for 171 coyotes (76 residents and 53 transients) and then used estimated FPT values in generalized linear mixed models to quantify monthly habitat use for resident and transient coyotes. Transients had greater movement rates than residents across all months except January. Resident FPT values were positively correlated with agricultural land cover during fall and winter, but negatively correlated with agriculture during spring. Resident FPT values were also negatively correlated with developed habitats during May–August, deciduous land cover during June–August, and wetlands during September–January except November. FPT values of transient coyotes were positively correlated with developed areas throughout much of the year and near wetlands during July–September. Transient FPT values were negatively correlated with agriculture during all months except June and July. High FPT values (ARS behavior) of residents and transients were generally correlated with greater densities of edge habitat. Although we observed high individual variation in space use, our study found substantive differences in habitat use between residents and transients, providing further evidence that complexity and plasticity of coyote habitat use is influenced by territorial strategy.  相似文献   

2.
In Australian waters during the austral summer, pygmy blue whales (Balaenoptera musculus brevicauda) occur predictably in two distinct feeding areas off western and southern Australia. As with other blue whale subspecies, outside the austral summer their distribution and movements are poorly understood. In order to describe the migratory movements of these whales, we present the satellite telemetry derived movements of eleven individuals tagged off western Australia over two years. Whales were tracked from between 8 and 308 days covering an average distance of 3,009±892 km (mean ± se; range: 832 km–14,101 km) at a rate of 21.94±0.74 km per day (0.09 km–455.80 km/day). Whales were tagged during March and April and ultimately migrated northwards post tag deployment with the exception of a single animal which remained in the vicinity of the Perth Canyon/Naturaliste Plateau for its eight day tracking period. The tagged whales travelled relatively near to the Australian coastline (100.0±1.7 km) until reaching a prominent peninsula in the north-west of the state of Western Australia (North West Cape) after which they travelled offshore (238.0±13.9 km). Whales reached the northern terminus of their migration and potential breeding grounds in Indonesian waters by June. One satellite tag relayed intermittent information to describe aspects of the southern migration from Indonesia with the animal departing around September to arrive in the subtropical frontal zone, south of western Australia in December. Throughout their migratory range, these whales are exposed to impacts associated with industry, fishing and vessel traffic. These movements therefore provide a valuable tool to industry when assessing potential interactions with pygmy blue whales and should be considered by conservation managers and regulators when mitigating impacts of development. This is particularly relevant for this species as it continues to recover from past exploitation.  相似文献   

3.
Interference competition occurs when two species have similar resource requirements and one species is dominant and can suppress or exclude the subordinate species. Wolves (Canis lupus) and coyotes (C. latrans) are sympatric across much of their range in North America where white‐tailed deer (Odocoileus virginianus) can be an important prey species. We assessed the extent of niche overlap between wolves and coyotes using activity, diet, and space use as evidence for interference competition during three periods related to the availability of white‐tailed deer fawns in the Upper Great Lakes region of the USA. We assessed activity overlap (Δ) with data from accelerometers onboard global positioning system (GPS) collars worn by wolves (n = 11) and coyotes (n = 13). We analyzed wolf and coyote scat to estimate dietary breadth (B) and food niche overlap (α). We used resource utilization functions (RUFs) with canid GPS location data, white‐tailed deer RUFs, ruffed grouse (Bonasa umbellus) and snowshoe hare (Lepus americanus) densities, and landscape covariates to compare population‐level space use. Wolves and coyotes exhibited considerable overlap in activity (Δ = 0.86–0.92), diet (B = 3.1–4.9; α = 0.76–1.0), and space use of active and inactive RUFs across time periods. Coyotes relied less on deer as prey compared to wolves and consumed greater amounts of smaller prey items. Coyotes exhibited greater population‐level variation in space use compared to wolves. Additionally, while active and inactive, coyotes exhibited greater selection of some land covers as compared to wolves. Our findings lend support for interference competition between wolves and coyotes with significant overlap across resource attributes examined. The mechanisms through which wolves and coyotes coexist appear to be driven largely by how coyotes, a generalist species, exploit narrow differences in resource availability and display greater population‐level plasticity in resource use.  相似文献   

4.
The oxygen cost of transport per unit distance (CoT; mL·kg-1·km-1) shows a U-shaped curve as a function of walking speed (v), which includes a particular walking speed minimizing the CoT, so called economical speed (ES). The CoT-v relationship in running is approximately linear. These distinctive walking and running CoT-v relationships give an intersection between U-shaped and linear CoT relationships, termed the energetically optimal transition speed (EOTS). This study investigated the effects of subtracting the standing oxygen cost for calculating the CoT and its relevant effects on the ES and EOTS at the level and gradient slopes (±5%) in eleven male trained athletes. The percent effects of subtracting the standing oxygen cost (4.8 ± 0.4 mL·kg-1·min-1) on the CoT were significantly greater as the walking speed was slower, but it was not significant at faster running speeds over 9.4 km·h-1. The percent effect was significantly dependent on the gradient (downhill > level > uphill, P < 0.001). The net ES (level 4.09 ± 0.31, uphill 4.22 ± 0.37, and downhill 4.16 ± 0.44 km·h-1) was approximately 20% slower than the gross ES (level 5.15 ± 0.18, uphill 5.27 ± 0.20, and downhill 5.37 ± 0.22 km·h-1, P < 0.001). Both net and gross ES were not significantly dependent on the gradient. In contrast, the gross EOTS was slower than the net EOTS at the level (7.49 ± 0.32 vs. 7.63 ± 0.36 km·h-1, P = 0.003) and downhill gradients (7.78 ± 0.33 vs. 8.01 ± 0.41 km·h-1, P < 0.001), but not at the uphill gradient (7.55 ± 0.37 vs. 7.63 ± 0.51 km·h-1, P = 0.080). Note that those percent differences were less than 2.9%. Given these results, a subtraction of the standing oxygen cost should be carefully considered depending on the purpose of each study.  相似文献   

5.
Daytime behavioural budgets of coyotes (Canis latrans) living in the Grand Teton National Park, Jackson, Wyoming, were analysed in order to determine how activity patterns were influenced by food resources and social organization. In winter, coyotes rested more and hunted less than in other seasons. Pack-living coyotes rested more and travelled less than resident pairs or solitary residents or transients during winter months when the major food resource was ungulate (predominantly elk, Cervus canadensis) carrion. A mated female living in a pack rested significantly more and travelled significantly less than a mated female living only with her mate (as a resident pair) during winter. We predict that in times of food shortage, pack-living coyotes, and particularly reproductive females, might be at an advantage when compared to resident pairs and solitary individuals.  相似文献   

6.
The Sundarban of India and Bangladesh (about 6000 km²) are the only mangrove forests inhabited by a sizeable population of tigers. The adjoining area also supports one of the highest human densities and experiences severe human-tiger conflicts. We used GPS-Satellite and VHF radio-collars on 6 (3 males and 3 female) tigers to study their ranging patterns and habitat preference. The average home range (95% Fixed Kernel) for resident females was 56.4 (SE 5.69) and for males it was 110 (SE 49) km². Tigers crossed an average of 5 water channels > 30 meters per day with a mean width of 54 meters, whereas channels larger than 400 meters were rarely crossed. Tigers spent over 58% of their time within Phoenix habitat but compositional analysis showed a habitat preference of the order Avicennia-Sonneratia > Phoenix > Ceriops > Barren > Water. Average daily distance moved was 4.6 km (range 0.1–23). Activity of tigers peaked between 05:00 hours and 10:00 hours showing some overlap with human activity. Territory boundaries were demarcated by large channels which tigers intensively patrolled. Extra caution should be taken while fishing or honey collection during early morning in Avicennia-Sonneratia and Phoenix habitat types along wide channels to reduce human-tiger conflict. Considering home-range core areas as exclusive, tiger density was estimated at 4.6 (SE range 3.6 to 6.7) tigers/100 km2 giving a total population of 76 (SE range 59–110) tigers in the Indian Sundarban. Reluctance of tigers to cross wide water channels combined with increasing commercial boat traffic and sea level rise due to climate change pose a real threat of fragmenting the Sundarban tiger population.  相似文献   

7.
Adult birds tend to show high fidelity to their breeding territory or disperse over relatively short distances. Gene flow among avian populations is thus expected to occur primarily through natal dispersal. Although natal dispersal is a critical demographic process reflecting the area over which population dynamics take place, low recapture rates of birds breeding for the first time have limited our ability to reliably estimate dispersal rates and distances. Stable isotope approaches can elucidate origins of unmarked birds and so we generated year- and age-specific δ2H and δ34S feather isoscapes (ca. 180 000 km2) of coastal-breeding Ovenbirds (Seiurus aurocapilla) and used bivariate probability density functions to assign the likely natal areas of 35 males recruited as first-year breeders into a population located in northwestern New Brunswick, Canada. Most individuals (80–94% depending on the magnitude of an age correction factor used; i.e. 28–33 out of 35) were classified as residents (i.e. fledged within our study area) and estimated minimum dispersal distances of immigrants were between 40 and 240 km. Even when considering maximum dispersal distances, the likely origin of most first-year breeders was<200 km from our study area. Our method identified recruitment into our population from large geographic areas with relatively few samples whereas previous mark-recapture based methods have required orders of magnitude more individuals to describe dispersal at such geographic scales. Natal dispersal movements revealed here suggest the spatial scale over which many population processes are taking place and we suggest that conservation plans aiming to maintain populations of Ovenbirds and ecologically-similar species should consider management units within 100 or at most 200 km of target breeding populations.  相似文献   

8.
This study investigates survival and abundance of killer whales (Orcinus orca) in Norway in 1988–2019 using capture–recapture models of photo‐identification data. We merged two datasets collected in a restricted fjord system in 1988–2008 (Period 1) with a third, collected after their preferred herring prey shifted its wintering grounds to more exposed coastal waters in 2012–2019 (Period 2), and investigated any differences between these two periods. The resulting dataset, spanning 32 years, comprised 3284 captures of 1236 whales, including 148 individuals seen in both periods. The best‐supported models of survival included the effects of sex and time period, and the presence of transients (whales seen only once). Period 2 had a much larger percentage of transients compared to Period 1 (mean = 30% vs. 5%) and the identification of two groups of whales with different residency patterns revealed heterogeneity in recapture probabilities. This caused estimates of survival rates to be biased downward (females: 0.955 ± 0.027 SE, males: 0.864 ± 0.038 SE) compared to Period 1 (females: 0.998 ± 0.002 SE, males: 0.985 ± 0.009 SE). Accounting for this heterogeneity resulted in estimates of apparent survival close to unity for regularly seen whales in Period 2. A robust design model for Period 2 further supported random temporary emigration at an estimated annual probability of 0.148 (± 0.095 SE). This same model estimated a peak in annual abundance in 2015 at 1061 individuals (95% CI 999–1127), compared to a maximum of 731 (95% CI 505–1059) previously estimated in Period 1, and dropped to 513 (95% CI 488–540) in 2018. Our results indicate variations in the proportion of killer whales present of an undefined population (or populations) in a larger geographical region. Killer whales have adjusted their distribution to shifts in key prey resources, indicating potential to adapt to rapidly changing marine ecosystems.  相似文献   

9.
The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg−1·min−1) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr−1), light running (7.2 km·hr−1), and moderate running (9.6 km·hr−1). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, ηp2=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr−1 (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr−1. At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar.  相似文献   

10.
Interference competition with wolves Canis lupus is hypothesized to limit the distribution and abundance of coyotes Canis latrans, and the extirpation of wolves is often invoked to explain the expansion in coyote range throughout much of North America. We used spatial, seasonal and temporal heterogeneity in wolf distribution and abundance to test the hypothesis that interference competition with wolves limits the distribution and abundance of coyotes. From August 2001 to August 2004, we gathered data on cause-specific mortality and survival rates of coyotes captured at wolf-free and wolf-abundant sites in Grand Teton National Park (GTNP), Wyoming, USA, to determine whether mortality due to wolves is sufficient to reduce coyote densities. We examined whether spatial segregation limits the local distribution of coyotes by evaluating home-range overlap between resident coyotes and wolves, and by contrasting dispersal rates of transient coyotes captured in wolf-free and wolf-abundant areas. Finally, we analysed data on population densities of both species at three study areas across the Greater Yellowstone Ecosystem (GYE) to determine whether an inverse relationship exists between coyote and wolf densities. Although coyotes were the numerically dominant predator, across the GYE, densities varied spatially and temporally in accordance with wolf abundance. Mean coyote densities were 33% lower at wolf-abundant sites in GTNP, and densities declined 39% in Yellowstone National Park following wolf reintroduction. A strong negative relationship between coyote and wolf densities (beta = -3.988, P < 0.005, r(2) = 0.54, n = 16), both within and across study sites, supports the hypothesis that competition with wolves limits coyote populations. Overall mortality of coyotes resulting from wolf predation was low, but wolves were responsible for 56% of transient coyote deaths (n = 5). In addition, dispersal rates of transient coyotes captured at wolf-abundant sites were 117% higher than for transients captured in wolf-free areas. Our results support the hypothesis that coyote abundance is limited by competition with wolves, and suggest that differential effects on survival and dispersal rates of transient coyotes are important mechanisms by which wolves reduce coyote densities.  相似文献   

11.
Despite the key roles that dispersal plays in individual animal fitness and meta‐population gene flow, it remains one of the least understood behaviors in many species. In large mammalian herbivores, dispersals might span long distances and thereby influence landscape‐level ecological processes, such as infectious disease spread. Here, we describe and analyze an exceptional long‐distance dispersal by an adult white‐tailed deer (Odocoileus virginianus) in the central United States. We also conducted a literature survey to compare the dispersal to previous studies. This dispersal was remarkable for its length, duration, and the life history stage of the dispersing individual. Dispersal is typical of juvenile deer seeking to establish postnatal home ranges, but this dispersal was undertaken by an adult male (age = 3.5). This individual dispersed ~300 km over a 22‐day period by moving, on average, 13.6 km/day and achieving a straight‐line distance of ~215 km, which was ~174 km longer than any other distance recorded for an adult male deer in our literature survey. During the dispersal, which occurred during the hunting season, the individual crossed a major river seven times, an interstate highway, a railroad, and eight state highways. Movements during the dispersal were faster (mean = 568.1 m/h) and more directional than those during stationary home range periods before and after the dispersal (mean = 56.9 m/h). Likewise, movements during the dispersal were faster (mean = 847.8 m/h) and more directional at night than during the day (mean = 166.4 m/h), when the individual frequently sheltered in forest cover. This natural history event highlights the unpredictable nature of dispersal and has important implications for landscape‐level processes such as chronic wasting disease transmission in cervids. More broadly, our study underscores how integrating natural history observations with modern technology holds promise for understanding potentially high impact but rarely recorded ecological events.  相似文献   

12.
The unprecedented rate of change in the Arctic climate is expected to have major impacts on the emergence of infectious diseases and host susceptibility to these diseases. It is predicted that malaria parasites will spread to both higher altitudes and latitudes with global warming. Here we show for the first time that avian Plasmodium transmission occurs in the North American Arctic. Over a latitudinal gradient in Alaska, from 61°N to 67°N, we collected blood samples of resident and migratory bird species. We found both residents and hatch year birds infected with Plasmodium as far north as 64°N, providing clear evidence that malaria transmission occurs in these climates. Based on our empirical data, we make the first projections of the habitat suitability for Plasmodium under a future-warming scenario in Alaska. These findings raise new concerns about the spread of malaria to naïve host populations.  相似文献   

13.

Background

Globally, coral bleaching has been responsible for a significant decline in both coral cover and diversity over the past two decades. During the summer of 2010–11, anomalous large-scale ocean warming induced unprecedented levels of coral bleaching accompanied by substantial storminess across more than 12° of latitude and 1200 kilometers of coastline in Western Australia (WA).

Methodology/Principal Findings

Extreme La-Niña conditions caused extensive warming of waters and drove considerable storminess and cyclonic activity across WA from October 2010 to May 2011. Satellite-derived sea surface temperature measurements recorded anomalies of up to 5°C above long-term averages. Benthic surveys quantified the extent of bleaching at 10 locations across four regions from tropical to temperate waters. Bleaching was recorded in all locations across regions and ranged between 17% (±5.5) in the temperate Perth region, to 95% (±3.5) in the Exmouth Gulf of the tropical Ningaloo region. Coincident with high levels of bleaching, three cyclones passed in close proximity to study locations around the time of peak temperatures. Follow-up surveys revealed spatial heterogeneity in coral cover change with four of ten locations recording significant loss of coral cover. Relative decreases ranged between 22%–83.9% of total coral cover, with the greatest losses in the Exmouth Gulf.

Conclusions/Significance

The anomalous thermal stress of 2010–11 induced mass bleaching of corals along central and southern WA coral reefs. Significant coral bleaching was observed at multiple locations across the tropical-temperate divide spanning more than 1200 km of coastline. Resultant spatially patchy loss of coral cover under widespread and high levels of bleaching and cyclonic activity, suggests a degree of resilience for WA coral communities. However, the spatial extent of bleaching casts some doubt over hypotheses suggesting that future impacts to coral reefs under forecast warming regimes may in part be mitigated by southern thermal refugia.  相似文献   

14.
In the last century, coyotes (Canis latrans) have expanded their range geographically, but have also expanded their use of habitats within currently occupied regions. Because coyotes are not morphologically adapted for travel in deep snow, we studied coyote space use patterns in a deep-snow landscape to examine behavioral adaptations enabling them to use high elevations during winter. We examined the influence of snow depth, snow penetrability, canopy cover, and habitat type, as well as the rates of prey and predator track encounters, on coyote travel distance in high-elevation terrain in northwestern Wyoming, USA. We backtracked 13 radio-collared coyotes for 265.41 km during the winters of 2006–2007 and 2007–2008, and compared habitat use and movement patterns of the actual coyotes with 259.11 km of random travel paths. Coyotes used specific habitats differently than were available on the landscape. Open woodlands were used for the majority of coyote travel distance, followed by mixed conifer, and closed-stand spruce–fir. Prey track encounters peaked in closed-stand, mature Douglas fir, followed by 50- to 150-year-old lodgepole pine stands, and 0- to 40-year-old regeneration lodgepole pine stands. Snowmobile trails had the most variation between use and availability on the landscape (12.0 % use vs. 0.6 % available). Coyotes increased use of habitats with dense canopy cover as snow penetration increased and rates of rodent and red squirrel track encounters increased. Additionally, coyotes spent more time in habitats containing more tracks of ungulates. Conversely, use of habitats with less canopy cover decreased as snow depth increased, and coyotes traveled more directly in habitats with less canopy cover and lower snow penetration, suggesting coyotes used these habitats to travel. Coyotes persisted throughout the winter and effectively used resources despite deep snow conditions in a high-elevation environment.  相似文献   

15.
Steady and transient behaviors of protoplasmic streaming in Nitella internodal cell have been investigated for various temperatures from 30°C to near 0°C. It has been found that steady velocity of the streaming linearly decreases with increasing inverse temperature but its proportionality coefficient changes at ~ 10°C. Velocity distribution, which reflects temporal fluctuations of the protoplasmic streaming, is nonGaussian and its half width becomes larger at higher temperatures. On the other hand, recovery of the protoplasmic streaming, which is observed after stopping the streaming with a current stimulus to the internodal cell, has been found to show more clear sigmoidal time courses at higher temperatures.  相似文献   

16.
Adenosine is a neuroprotective agent that inhibits neuronal activity and modulates neurotransmission. Previous research has shown adenosine gradually accumulates during pathologies such as stroke and regulates neurotransmission on the minute-to-hour time scale. Our lab developed a method using carbon-fiber microelectrodes to directly measure adenosine changes on a sub-second time scale with fast-scan cyclic voltammetry (FSCV). Recently, adenosine release lasting a couple of seconds has been found in murine spinal cord slices. In this study, we characterized spontaneous, transient adenosine release in vivo, in the caudate-putamen and prefrontal cortex of anesthetized rats. The average concentration of adenosine release was 0.17±0.01 µM in the caudate and 0.19±0.01 µM in the prefrontal cortex, although the range was large, from 0.04 to 3.2 µM. The average duration of spontaneous adenosine release was 2.9±0.1 seconds and 2.8±0.1 seconds in the caudate and prefrontal cortex, respectively. The concentration and number of transients detected do not change over a four hour period, suggesting spontaneous events are not caused by electrode implantation. The frequency of adenosine transients was higher in the prefrontal cortex than the caudate-putamen and was modulated by A1 receptors. The A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 6 mg/kg i.p.) increased the frequency of spontaneous adenosine release, while the A1 agonist CPA (N6-cyclopentyladenosine, 1 mg/kg i.p.) decreased the frequency. These findings are a paradigm shift for understanding the time course of adenosine signaling, demonstrating that there is a rapid mode of adenosine signaling that could cause transient, local neuromodulation.  相似文献   

17.
A revision of the shore-fly genus Hydrochasma Hendel. The species of the genus Hydrochasma Hendel are revised, including 27 new species (type locality in parenthesis): H. andeum (Ecuador. Guayas: Boliche (02°07.7''S, 79°35.5''W)), H. annae (United States. Utah. Grand: Swasey Beach (15.3 km N Green River; 39°07''N, 110°06.6''W; Green River; 1255 m)), H. capsum (Ecuador. Orellana: RíoTiputini (0°38.2''S, 76°8.9''W)), H. castilloi (Ecuador. Loja: Catamayo (03°59''S, 79°21''W)), H. crenulum (Peru. Cuzco: Paucartambo, Atalaya (Río Alto Madre de Dios; 12°53.3''S, 71°21.6''W; 600 m)), H. denticum (Ecuador. Orellana: Río Tiputini (0°38.2''S, 76°8.9''W)), H. digitatum (Peru. Madre de Dios: Diamante (Río Alto Madre de Dios; 12°19.9''S, 70°57.5''W; 400 m)), H. distinctum (Costa Rica. Limón: Parque Nacional Barbilla, Sector Casas Negras, (10°0.8''N, 83°28.1''W; 300 m)), H. dolabrutum (Dominican Republic. Barahona: Barahona (18°12''N, 71°5.3''W)), H. edmistoni (Dominican Republic. Azua: near Pueblo Viejo (18°24.8''N, 70°44.7''W)), H. falcatum (Peru. Madre de Dios: Río Manu, Erika (near Salvación; 12°50.7''S, 71°23.3''W; 550 m)), H. glochium (Dominican Republic. Peravia: San José Ocoa (10 km NE; 18°35''N, 70°25.6''W)), H. kaieteur (Guyana. Kaieteur Falls (05°10.5''N, 59°26.9''W)), H. lineatum (Trinidad and Tobago. Trinidad. St. George: Filette (1 km SE; 10°47''N, 61°21''W)), H. miguelito (Honduras. Cortés: San Pedro Sula (8 km S; 15°25.7''N, 88°01.4''W)), H. octogonum (Ecuador. Manabí: Pichincha (01°02.7''S, 79°49.2''W)), H. parallelum (Trinidad and Tobago. Trinidad. St. Andrew: Lower Manzanilla (16 km S; 10°22''N, 61°01''W)), H. peniculum (Dominican Republic. Pedernales: Pedernales (18°01.8''N, 71°44.7''W)), H. rictum (Honduras. Cortés: San Pedro Sula (8 km S; 15°25.7''N, 88°01.4''W)), H. robustum (Brazil. São Paulo. Ubatuba, Praia Puruba (23°21''S, 44°55.6''W; beach)), H. sagittarium (Trinidad and Tobago. Tobago: St. John: Parlatuvier (creek; 11°17.9''N, 60°35''W)), H. simplicum (Costa Rica. Limón: Parque Nacional Barbilla, Sector Casas Negras, (10°01.2''N, 83°26.2''W; 300 m)), H. sinuatum (Belize. Stann Creek: Mullins Creek (17 km N Dangriga; 17°06.2''N, 88°17.8''W)), H. spinosum (Costa Rica. Limón: Westfalia (4 km S; 09°54.5''N, 82°59''W; beach)), H. urnulum (Dominican Republic. Puerto Plata: Río Camu (14 km E Puerto Plata; 19°41.9''N, 70°37.5''W)), H. viridum (Guyana. Karanambo, Rupununi River (ox bow; 03°45.1''N, 59°18.6''W)), H. williamsae (Belize. Stann Creek: Mullins River (17 km N Dangriga; 17°06.2''N, 88°17.8''W)). All known species are described with an emphasis on structures of the male terminalia, which are fully illustrated. Detailed locality data and distribution maps for all species are provided. A lectotype is designated for Discocerina incisum Coquillett and Hydrochasma zernyi Hendel. For perspective and to facilitate genus-group and species-group recognition, the tribe Discocerinini is diagnosed and a key to included genera in the New World is provided.  相似文献   

18.
Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa “community” samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m−2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.  相似文献   

19.
Accurately mapping and monitoring glacier changes over decades is important for providing information to support sustainable use of water resource in arid regions of northwest China. Since 1970, glaciers in the Eastern Altun Mountains showed remarkable recession. Further study is indispensable to indicate the extent and amplitude of glacial change at basin and individual glacier scale. In this study, spatiotemporal glacier changes referring to the year 1972, 1990, 2000 and 2010 were studied for the Eastern Altun Mountains using Landsat MSS/TM/ETM+ images and glacier volume-area scaling. The results demonstrated that the total area and volume of glaciers in EAMs decreased significantly by 10.70±0.57 km² (19.56±10.41%) and 0.61±0.03 km³ (23.19±11.40%) during 1972–2010, respectively. More than half of the total receding area occurred during 1990–2000, primarily due to higher temperature increasing. However, varied response of individual glaciers indicated that glacier change was also affected by glacier dynamics, which was related to local topography. In addition, five glaciers unrecorded in the glacier inventory of China were reported in this study.  相似文献   

20.
  1. There is growing evidence that prey perceive the risk of predation and alter their behavior in response, resulting in changes in spatial distribution and potential fitness consequences. Previous approaches to mapping predation risk across a landscape quantify predator space use to estimate potential predator‐prey encounters, yet this approach does not account for successful predator attack resulting in prey mortality. An exception is a prey kill site that reflects an encounter resulting in mortality, but obtaining information on kill sites is expensive and requires time to accumulate adequate sample sizes.
  2. We illustrate an alternative approach using predator scat locations and their contents to quantify spatial predation risk for elk (Cervus canadensis) from multiple predators in the Rocky Mountains of Alberta, Canada. We surveyed over 1300 km to detect scats of bears (Ursus arctos/U. americanus), cougars (Puma concolor), coyotes (Canis latrans), and wolves (C. lupus). To derive spatial predation risk, we combined predictions of scat‐based resource selection functions (RSFs) weighted by predator abundance with predictions that a predator‐specific scat in a location contained elk. We evaluated the scat‐based predictions of predation risk by correlating them to predictions based on elk kill sites. We also compared scat‐based predation risk on summer ranges of elk following three migratory tactics for consistency with telemetry‐based metrics of predation risk and cause‐specific mortality of elk.
  3. We found a strong correlation between the scat‐based approach presented here and predation risk predicted by kill sites and (r = .98, p < .001). Elk migrating east of the Ya Ha Tinda winter range were exposed to the highest predation risk from cougars, resident elk summering on the Ya Ha Tinda winter range were exposed to the highest predation risk from wolves and coyotes, and elk migrating west to summer in Banff National Park were exposed to highest risk of encountering bears, but it was less likely to find elk in bear scats than in other areas. These patterns were consistent with previous estimates of spatial risk based on telemetry of collared predators and recent cause‐specific mortality patterns in elk.
  4. A scat‐based approach can provide a cost‐efficient alternative to kill sites of quantifying broad‐scale, spatial patterns in risk of predation for prey particularly in multiple predator species systems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号