首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The performance of Helicoverpa armigera (Hübner) on 15-wk-old cotton plants was compared for a susceptible strain, a near-isogenic laboratory-selected strain, and F1 progeny of the two strains. Glasshouse experiments were conducted to test the three insect types on conventional plants and transgenic plants that produced the Bacillus thuringiensis (Bt) toxin Cry1Ac. At the time of testing (15 wk), the Cry1Ac concentration in cotton leaves was 75% lower than at 4 wk. On these plants, < 10% of susceptible larvae reached the fifth instar, and none survived to pupation. In contrast, survival to adulthood on Cry1Ac cotton was 62% for resistant larvae and 39% for F1 larvae. These results show that inheritance of resistance to 15-wk-old Cry1Ac cotton is partially dominant, in contrast to results previously obtained on 4-wk-old Cry1Ac cotton. Growth and survival of resistant insects were similar on Cry1Ac cotton and on non-Bt cotton, but F1 insects developed more slowly on Cry1Ac cotton than on non-Bt cotton. Survival was lower and development was slower for resistant larvae than for susceptible and F1 larvae on non-Bt cotton. These results show recessive fitness costs are associated with resistance to Cry1Ac.  相似文献   

2.
We evaluated the effects of Bacillus thuringiensis (Bt) toxin CrylAc on survival and development of a susceptible strain and laboratory-selected resistant strains of pink bollworm, Pectinophora gossypiella (Saunders). For susceptible and resistant strains tested on artificial diet, increases in CrylAc concentration reduced developmental rate and pupal weight. In greenhouse tests, survival of resistant larvae on transgenic cotton that produces CrylAc (Bt cotton) was 46% relative to their survival on non-Bt cotton. In contrast, Bt cotton killed all susceptible larvae tested. F1 hybrid progeny of resistant and susceptible adults did not survive on Bt cotton, which indicates recessive inheritance of resistance. Compared with resistant or susceptible larvae reared on non-Bt cotton, resistant larvae reared on Bt cotton had lower survival and slower development, and achieved lower pupal weight and fecundity. Recessive resistance to Bt cotton is consistent with one of the basic assumptions of the refuge strategy for delaying resistance to Bt cotton. Whereas slower development of resistant insects on Bt cotton could increase the probability of mating between resistant adults and accelerate resistance, negative effects of Bt cotton on the survival and development of resistant larvae could delay evolution of resistance.  相似文献   

3.
Transgenic cotton producing a Bacillus thuringiensis (Bt) toxin is widely used for controlling the pink bollworm, Perctinophora gossypiella (Saunders). We compared performance of pink bollworm strains resistant to Bt cotton with performance of their susceptible counterparts on non-Bt cotton. We found fitness costs that reduced survival on non-Bt cotton by an average of 51.5% in two resistant strains relative to the susceptible strains. The survival cost was recessive in one set of crosses between a resistant strain and the susceptible strain from which it was derived. However, crosses involving an unrelated resistant and susceptible strain indicated that the survival cost could be dominant. Development time on non-Bt cotton did not differ between the two related resistant and susceptible strains. A slight recessive cost affecting development time was suggested by comparison of the unrelated resistant and susceptible strains. Maternal effects transmitted by parents that had eaten Bt-treated artificial diet as larvae had negative effects on embryogenesis, adult fertility, or both, and reduced the ability of neonates to enter cotton bolls. These results provide further evidence that fitness costs associated with the evolution of resistance to Bt cotton are substantial in the pink bollworm.  相似文献   

4.
The changes of inheritance mode and fitness of resistance in Helicoverpa armigera (Hübner) along with its resistance evolution to Cry1Ac toxin were evaluated in the laboratory. The resistance levels reached 170.0-, 209.6- and 2893.3-fold, on selection of the field population in the 16th (BtR-F(16)), 34th (BtR-F(34)) and 87th (BtR-F(87)) generation with artificial diet containing Cry1Ac toxin, respectively. As the resistance levels increased, more larvae feeding on the Bt cotton expressing Cry1Ac toxin survived. Most larvae of BtR-F(87) could develop to the 5th instar and about 3% individuals reached the adult stage. The inheritance of Cry1Ac resistance trait at three resistant levels was autosomal and incompletely recessive, but the degree of dominance decreased as the resistance increased. The resistance was primarily monogenic in BtR-F(16) strain, but polygenic as resistance increased. The relative fitness of H. armigera, measured as a ratio of R(0) (the net replacement rate) of resistant strain divided by R(0) of the susceptible strain, decreased with an increase of the resistance levels, with ratios of 0.79, 0.64 and 0.59 in their respective BtR-F(16), BtR-F(34) and BtR-F(87) strains.  相似文献   

5.
Recessive resistance to Bacillus thuringiensis (Bt) cotton, Gossypium hirsutum L., in laboratory-selected strains of pink bollworm, Pectinophora gossypiella (Saunders), is associated with three resistance alleles (r1, r2, and r3) of a cadherin gene. Previous experiments based on measurement of fitness components in Bt-resistant and Bt-susceptible strains revealed that fitness costs and incomplete resistance are associated with resistance. Here, we used two hybrid strains of pink bollworm, each containing a mixture of susceptible and resistant individuals, and polymerase chain reaction (PCR) amplifications to test the association between cadherin genotype and fitness components for individuals sharing a common genetic background. All survivors on Bt cotton had two r alleles, confirming that recessive cadherin alleles are tightly linked with resistance to Bt cotton. On non-Bt cotton, significantly greater developmental time for rr than ss larvae indicated a recessive fitness cost, but costs did not affect survival or pupal weight. Incomplete resistance was manifested as longer developmental time, lower survival, and smaller pupal weight in rr individuals developing on Bt cotton compared with non-Bt cotton. As in previous experiments, no significant variation in performance on Bt cotton was detected among rr genotypes. However, a meta-analysis of data from seven experiments revealed that survival on Bt cotton relative to non-Bt cotton was lower in r2r3 and higher in r1r2 compared with the other rr genotypes. Assessment of fitness components associated with cadherin genotypes in hybrid strains of pink bollworm confirms that recessive resistance to Bt cotton is associated with recessive fitness costs and incomplete resistance.  相似文献   

6.
Three laboratory strains of Helicoverpa armigera (Hübner) were established by mating of field-collected insects with an existing insecticide-susceptible laboratory strain. These strains were cultured on artificial diet containing the Cry1Ac protoxin of Bacillus thuringiensis using three different protocols. When no response to selection was detected after 7-11 generations of selection, the three strains were combined by controlled mating to preserve genetic diversity. The composite strain (BX) was selected on the basis of growth rate on artificial diet containing Cry1Ac crystals. Resistance to Cry1Ac was first detected after 16 generations of continuous selection. The resistance ratio (RR) peaked approximately 300-fold at generation 21, after which it declined to oscillate between 57- and 111-fold. First-instar H. armigera from generation 25 (RR = 63) were able to complete their larval development on transgenic cotton expressing Cry1Ac and produce fertile adults. There appeared to be a fitness cost associated with resistance on cotton and on artificial diet. The BX strain was not resistant to the commercial Bt spray formulations DiPel and XenTari, which contain multiple insecticidal crystal proteins, but was resistant to the MVP formulation, which only contains Cry1Ac. The strain was also resistant to Cry1Ab but not to Cry2Aa or Cry2Ab. Toxin binding assays showed that the resistant insects lacked the high affinity binding site that was detected in early generations of the strain. Genetic analysis confirmed that resistance in the BX strain of H. armigera is incompletely recessive.  相似文献   

7.
Fitness costs of resistance to Bacillus thuringiensis (Bt) crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella), resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.  相似文献   

8.
Genetically engineered cotton and corn plants producing insecticidal Bacillus thuringiensis (Bt) toxins kill some key insect pests. Yet, evolution of resistance by pests threatens long-term insect control by these transgenic Bt crops. We compared the genetic basis of resistance to Bt toxin Cry1Ac in two independently derived, laboratory-selected strains of a major cotton pest, the pink bollworm (Pectinophora gossypiella [Saunders]). The Arizona pooled resistant strain (AZP-R) was started with pink bollworm from 10 field populations and selected with Cry1Ac in diet. The Bt4R resistant strain was started with a long-term susceptible laboratory strain and selected first with Bt cotton bolls and later with Cry1Ac in diet. Previous work showed that AZP-R had three recessive mutations (r1, r2, and r3) in the pink bollworm cadherin gene (PgCad1) linked with resistance to Cry1Ac and Bt cotton producing Cry1Ac. Here we report that inheritance of resistance to a diagnostic concentration of Cry1Ac was recessive in Bt4R. In interstrain complementation tests for allelism, F(1) progeny from crosses between AZP-R and Bt4R were resistant to Cry1Ac, indicating a shared resistance locus in the two strains. Molecular analysis of the Bt4R cadherin gene identified a novel 15-bp deletion (r4) predicted to cause the loss of five amino acids upstream of the Cry1Ac-binding region of the cadherin protein. Four recessive mutations in PgCad1 are now implicated in resistance in five different strains, showing that mutations in cadherin are the primary mechanism of resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona.  相似文献   

9.
Transgenic cotton that produces insecticidal crystal protein Cry1Ac of Bacillus thuringiensis (Bt) has been effective in controlling pink bollworm, Pectinophora gossypiella (Saunders). We compared responses to bolls of Bt cotton and non-Bt cotton by adult females and neonates from susceptible and Cry1Ac-resistant strains of pink bollworm. In choice tests on caged cotton plants in the greenhouse, neither susceptible nor resistant females laid fewer eggs on Bt cotton bolls than on non-Bt cotton bolls, indicating that the Bt toxin did not deter oviposition. Multiple regression revealed that the number of eggs laid per boll was negatively associated with boll age and positively associated with boll diameter. Females also laid more eggs per boll on plants with more bolls. The distribution of eggs among bolls of Bt cotton and non-Bt cotton was clumped, indicating that boll quality rather than avoidance of previously laid eggs was a primary factor in oviposition preference. Parallel to the results from oviposition experiments, in laboratory no-choice tests with 10 neonates per boll, the number of entrance holes per boll did not differ between Bt cotton and non-Bt cotton for susceptible and resistant neonates. Also, like females, neonates preferred younger bolls and larger bolls. Thus, acceptance of bolls by females for oviposition and by neonates for mining was affected by boll age and diameter, but not by Bt toxin in bolls. The lack of discrimination between Bt and non-Bt cotton bolls by pink bollworm from susceptible and resistant strains indicates that oviposition and mining initiation are independent of susceptibility to Cry1Ac.  相似文献   

10.
Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China   总被引:4,自引:0,他引:4  
Wan P  Huang Y  Wu H  Huang M  Cong S  Tabashnik BE  Wu K 《PloS one》2012,7(1):e29975
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera), the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.  相似文献   

11.
Two strains of pink bollworm, Pectinophora gossypiella (Saunders), each derived in 1997 from a different field population, were selected for resistance to Bacillus thuringiensis (Bt) toxin Cry1Ac in the laboratory. One strain (MOV97-R) originated from Mohave Valley in western Arizona; the other strain (SAF97-R) was from Safford in eastern Arizona. Relative to a susceptible laboratory strain, Cry1Ac resistance ratios were 1700 for MOV97-R and 520 for SAF97-R. For the two resistant strains, larval survival did not differ between non-Bt cotton and transgenic cotton producing CrylAc. In contrast, larval survival on Bt cotton was 0% for the two unselected parent strains from which the resistant strains were derived. Previously identified resistance (r) alleles of a cadherin gene (BtR) occurred in both resistant strains: r1 and r3 in MOV97-R, and r1 and r2 in SAF97-R. The frequency of individuals carrying two r alleles (rr) was 1.0 in the two resistant strains and 0.02 in each of the two unselected parent strains. Furthermore, in two hybrid strains with a mixture of susceptible (s) and r alleles at the BtR locus, all survivors on Bt cotton had two r alleles. The results show that resistance to Cry1Ac-producing Bt cotton is associated with recessive r alleles at the BtR locus in the strains of pink bollworm tested here. In conjunction with previous results from two other Bt-resistant strains of pink bollworm (APHIS-98R and AZP-R), results reported here identify the cadherin locus as the leading candidate for molecular monitoring of pink bollworm resistance to Bt cotton.  相似文献   

12.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some major insect pests, but pests can evolve resistance and thereby reduce the effectiveness of such Bt crops. The main approach for slowing pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to cotton producing Bt toxin Cry1Ac, several countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. This strategy is designed for cotton bollworm (Helicoverpa armigera), which attacks many crops and is the primary target of Bt cotton in China, but it does not apply to pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we review evidence of field-evolved resistance to Cry1Ac by cotton bollworm in northern China and by pink bollworm in the Yangtze River Valley of China. For both pests, results of laboratory diet bioassays reveal significantly decreased susceptibility of field populations to Cry1Ac, yet field control failures of Bt cotton have not been reported. The early detection of resistance summarized here may spur countermeasures such as planting Bt cotton that produces two or more distinct toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.  相似文献   

13.
Zhang H  Yin W  Zhao J  Jin L  Yang Y  Wu S  Tabashnik BE  Wu Y 《PloS one》2011,6(8):e22874
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera), in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.  相似文献   

14.
One susceptible and three Cry1Ac-resistant strains of tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae), were used in laboratory studies to determine the level of cross-resistance between the Bacillus thuringiensis (Berliner) toxins Cry1Ac and Vip3A by using concentration-mortality and leaf tissue experiments. Concentration-mortality data demonstrated that the three Cry1Ac-resistant H. virescens strains, YHD2, KCBhyb, and CxC, were at least 215- to 316-fold resistant to Cry1Ac compared with the susceptible strain, YDK. Results from Vip3A concentration-mortality tests indicated that mortality was similar among all four H. virescens strains. Relative larval growth on Cry1Ac reflected concentration-mortality test results, because YHD2 larval growth was mostly unaffected by the Cry1Ac concentrations tested. Growth ratios for KCBhyb and CXC indicated that they had a more moderate level of resistance to Cry1Ac than did YHD2. Relative larval growth on Vip3A was highly variable at lower concentrations, but it was more consistent on concentrations of Vip3A above 25 microg/ml. Differences in larval growth among strains on Vip3A were not as pronounced as seen in Cry1Ac experiments. Mortality and larval growth also was assessed in leaf tissue bioassays in which YDK, CxC, and KCBhyb neonates were placed onto leaf disks from non-Bt and Bt cotton, Gossypium hirsutum L., for 5 d. Three Bt lines were used in an initial bioassay and consisted of two Vip3A-containing lines, COT203 and COT102, and a Cry1Ac-producing line. Mortality of KCBhyb and CXC was lower than that of YDK larvae in the presence of leaf tissue from the Cry1Ac-producing line. Additionally, increased larval growth and leaf tissue consumption on Cry1Ac-containing leaf disks was observed for KCBhyb and CXC. Mortality and larval weights were similar among strains when larvae were fed leaf tissue of either non-Bt, COT203, or COT102. A subsequent leaf tissue bioassay was conducted that evaluated four cotton lines: non-Bt, Cry1Ab-expressing, Vip3A-expressing, and pyramided-toxin plants that produced both Cry1Ab and Vip3A. Mortality levels were similar among strains when fed non-Bt, Vip3A-expressing, or pyramided-toxin leaf tissues. Mortality was higher for YDK than for KCBhyb or CXC on Cry1Ab-expressing leaf tissues. No differences in larval weights were observed among strains for any genotype tested. Results of these experiments demonstrate that cross-resistance is nonexistent between CrylAc and Vip3A in H. virescens. Thus, the introduction of Vip3A-producing lines could delay Cry1Ac-resistance evolution in H. virescens, if these lines gain a significant share of the market.  相似文献   

15.
Refuges of non-Bacillus thuringiensis (Bt) cotton, Gossypium hirsutum L., are used to delay Bt resistance in pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), a pest that eats cotton seeds. Contamination of refuges by Bt transgenes could reduce the efficacy of this strategy. Previously, three types of contamination were identified in refuges: 1) homozygous Bt cotton plants, with 100% of their seeds producing the Bt toxin Cry1Ac; 2) hemizygous Bt plants with 70-80% of their seeds producing Cry1Ac; and 3) non-Bt plants that outcrossed with Bt plants, resulting in bolls with Cry1Ac in 12-17% of their seeds. Here, we used laboratory bioassays to examine the effects of Bt contamination on feeding behavior and survival of pink bollworm that were resistant (rr), susceptible (ss), or heterozygous for resistance (rs) to Cry1Ac. In choice tests, rr and rs larvae did not differ from ss in preference for non-Bt versus Bt seeds. Survival of rr and rs also did not differ from ss on artificial outcrossed bolls (a mixture of 20% Bt and 80% non-Bt cotton seeds). On artificial hemizygous Bt bolls (70% Bt seeds) and homozygous Bt bolls (100% Bt seeds), rr had higher survival than ss, although rs and ss did not differ. In a simulation model, levels of refuge contamination observed in the field had negligible effects on resistance evolution in pink bollworm. However, in hypothetical simulations where contamination conferred a selective advantage to rs over ss individuals in refuges, resistance evolution was accelerated.  相似文献   

16.
Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a key insect pest of cotton in Xinjiang cotton-planting region of northwest China. In this region, cotton is grown on average ≈ 1.65 million ha (1.53 ≈ 1.80 million ha) annually in largely monoculture agricultural landscapes, similarly to cropping systems in the United States or Australia. Under such cropping regimes, naturally occurring refuges (with non-Bt crops) may be insufficient to prevent H. armigera resistance development to Bt toxins. Therefore, we assessed frequency of alleles conferring resistance to Cry1Ac toxin of F(1) and F(2) offspring of H. armigera isofemale lines from two distinct localities in the region during 2005-2009. More specifically, a total of 224 isofemale lines was collected from Korla County (≈ 70% Bt cotton adoption) and 402 lines from Shache County (≈ 5% Bt cotton planting). Subsequent offspring was screened on Cry1Ac artificial diet. From 2005 to 2009, resistance gene frequency in Korla fluctuated between 0.0000 and 0.0040, while being 0.0000-0.0008 in individuals collected from Shache, and there were no significant increases in both counties from 2005 to 2009. Relative average development rates (RADRs) of larvae in F(1) tests showed significant increases from Korla, but not in Shache. RADR of F(1) larvae is significantly correlated with RADR of F(2) offspring, indicating genetic variation in response to toxin in field H. armigera population. Although the occurrence of Cry1Ac resistance alleles was low in Xinjiang cotton-planting region of China, particular attention should be given to H. armigera resistance development in Korla County.  相似文献   

17.
Evolution of resistance by pests can reduce the efficacy oftransgenic crops that produce insecticidal toxins from the bacterium Bacillus thuringiensis Berliner (Bt). In conjunction with refuges of non-Bt host plants, fitness costs can delay the evolution of resistance. Furthermore, fitness costs often vary with ecological conditions, suggesting that agricultural landscapes can be manipulated to magnify fitness costs and thereby prolong the efficacy of Bt crops. In the current study, we tested the effects of four species of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) on the magnitude and dominance of fitness costs of resistance to Bt toxin CrylAc in pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae). For more than a decade, field populations of pink bollworm in the United States have remained susceptible to Bt cotton Gossypium hirsutum L. producing CrylAc; however, we used laboratory strains that had a mixture of susceptible and resistant individuals. In laboratory experiments, dominant fitness costs were imposed by the nematode Steinernema riobrave Cabanillas, Poinar, and Raulston but no fitness costs were imposed by Steinernema carpocapsae Weiser, Steinernema sp. (ML18 strain), or Heterorhabditis sonorensis Stock, Rivera-Ordu?o, and Flores-Lara. In computer simulations, evolution of resistance to Cry1Ac by pink bollworm was substantially delayed by treating some non-Bt cotton refuge fields with nematodes that imposed a dominant fitness cost, similar to the cost observed in laboratory experiments with S. riobrave. Based on the results here and in related studies, we conclude that entomopathogenic nematodes could bolster insect resistance management, but the success of this approach will depend on selecting the appropriate species of nematode and environment, as fitness costs were magnified by only two of five species evaluated and also depended on environmental factors.  相似文献   

18.
Crops producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely planted to manage insect pests. Bt crops can provide an effective tool for pest management; however, the evolution of Bt resistance can diminish this benefit. The European corn borer, Ostrinia nubilalis Hübner, is a significant pest of maize and is widely managed with Bt maize in the Midwest of the United States. When Bt crops are grown in conjunction with non‐Bt refuges, fitness costs of Bt resistance can delay the evolution of resistance. Importantly, fitness costs often vary with ecological factors, including host‐plant genotype and diapause. In this study, we examined fitness costs associated with Cry1F resistance in O. nubilalis when insects were reared on three maize lines. Fitness costs were tested in two experiments. One experiment assessed the fitness costs when Cry1F‐resistant and Cry1F‐susceptible insects were reared on plants as larvae and experienced diapause. The second experiment tested resistant, susceptible and F1 heterozygotes that were reared on plants but did not experience diapause. Despite some evidence of greater adult longevity for Cry1F‐resistant insects, these insects produced fewer fertile eggs than Cry1F‐susceptible insects, and this occurred independent of diapause. Reduced fecundity was not detected among heterozygous individuals, which indicated that this fitness cost was recessive. Additionally, maize lines did not affect the magnitude of this fitness cost. The lower fitness of Cry1F‐resistant O. nubilalis may contribute to the maintenance of Cry1F susceptibility in field populations more than a decade after Cry1F maize was commercialized.  相似文献   

19.
The biological control function provided by natural enemies is regarded as a protection goal that should not be harmed by the application of any new pest management tool. Plants producing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling pest Lepidoptera on cotton and maize and risk assessment studies are needed to ensure they do not harm important natural enemies. However, using Cry protein susceptible hosts as prey often compromises such studies. To avoid this problem we utilized pest Lepidoptera, cabbage looper (Trichoplusia ni) and fall armyworm (Spodoptera frugiperda), that were resistant to Cry1Ac produced in Bt broccoli (T. ni), Cry1Ac/Cry2Ab produced in Bt cotton (T. ni), and Cry1F produced in Bt maize (S. frugiperda). Larvae of these species were fed Bt plants or non-Bt plants and then exposed to predaceous larvae of the green lacewing Chrysoperla rufilabris. Fitness parameters (larval survival, development time, fecundity and egg hatch) of C. rufilabris were assessed over two generations. There were no differences in any of the fitness parameters regardless if C. rufilabris consumed prey (T. ni or S. frugiperda) that had consumed Bt or non-Bt plants. Additional studies confirmed that the prey contained bioactive Cry proteins when they were consumed by the predator. These studies confirm that Cry1Ac, Cry2Ab and Cry1F do not pose a hazard to the important predator C. rufilabris. This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non-target organisms.  相似文献   

20.
The evolution of resistance by pests can reduce the efficacy of transgenic crops that produce insecticidal toxins from Bacillus thuringiensis (Bt). However, fitness costs may act to delay pest resistance to Bt toxins. Meta-analysis of results from four previous studies revealed that the entomopathogenic nematode Steinernema riobrave (Rhabditida: Steinernematidae) imposed a 20% fitness cost for larvae of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), that were homozygous for resistance to Bt toxin Cry1Ac, but no significant fitness cost was detected for heterozygotes. We conducted greenhouse and laboratory selection experiments to determine whether S. riobrave would delay the evolution of pink bollworm resistance to Cry1Ac. We mimicked the high dose/refuge scenario in the greenhouse with Bt cotton (Gossypium hirsutum L.) plants and refuges of non-Bt cotton plants, and in the laboratory with diet containing Cry1Ac and refuges of untreated diet. In both experiments, half of the replicates were exposed to S. riobrave and half were not. In the greenhouse, S. riobrave did not delay resistance. In the laboratory, S. riobrave delayed resistance after two generations but not after four generations. Simulation modeling showed that an initial resistance allele frequency > 0.015 and population bottlenecks can diminish or eliminate the resistance-delaying effects of fitness costs. We hypothesize that these factors may have reduced the resistance-delaying effects of S. riobrave in the selection experiments. The experimental and modeling results suggest that entomopathogenic nematodes could slow the evolution of pest resistance to Bt crops, but only under some conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号