首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We studied 24 wetlands along a 296‐km portion of the lower Missouri River floodplain, USA during 1996–1998. Our goal was to examine relationships between wetland characters and freshwater turtle diversity. We collected data on a total of 2201 individual captures of six freshwater turtle species. Ten species variables (richness, evenness, proportion of lentic species combined, proportion of lotic species combined, and proportions of six individual species) described the turtle assemblage structure and were associated with six broad wetland categories (remnant oxbow, remnant slough, connected scour, isolated scour, temporary farmed, and temporary not farmed) as well as with six abiotic (water depth, distance from the river, duration dry, duration flooded, size, and turbidity) and two biotic (primary and secondary productivity) wetland characters. Repeated‐measures MANOVA and ANOVA revealed highest diversity in remnant sloughs and oxbows as well as in newly created scour wetlands and lowest diversity in temporary wetlands. Multiple regressions and correlations indicated that the single most important wetland characteristic for high turtle diversity was a low annual duration of drying. Oxbows supported the highest proportions of lentic turtles; while connected scours supported the highest proportions of lentic turtles. Lentic species proportions were highest in wetlands that were frequently flooded, relatively distant from the Missouri River, and insect rich, while lotic species proportions were highest in wetlands that were turbid, close to the river, and relatively insect poor. The cohabitation patterns of several turtle species suggest that direct or indirect interactions between species may affect assemblage structure. Based on our broad array of wetlands, we identified crucial wetland types and characteristics that were associated with maximum diversity for freshwater turtles. Empirical studies similar to ours across broad landscapes are needed for a variety of wetland floral and faunal groups before sound conservation and management recommendations can be formulated.  相似文献   

2.
Freshwater turtles are important consumers in Australian freshwater ecosystems. They serve as scavengers, nutrient regulators, and as food sources and Totems for Traditional Owners throughout Australia. Despite their importance, most Australian freshwater turtle species are declining. The impact of winter wetland drying on turtle populations remains unknown, and winter exposure of hibernating turtles may be an important additional source of mortality. We aimed to examine turtle responses to seasonal and episodic wetland drying in wetlands using acoustic telemetry and active trapping. Wetlands were chosen that spanned a range of hydrological connectivity to the adjacent Edward/Kolety-Wakool River. We found that tagged Emydura macquarii typically exit wetlands disconnected from the adjacent permanent river prior to winter, and overwinter in the river. Female E. macquarii rapidly re-entered ‘home’ wetlands (wetlands in which they were initially tagged) the following spring, whereas males tended to leave the study area, returning occasionally. Although we were not able to evaluate a winter drying event, one of the wetlands experienced partial summer drying. All three local turtle species (E. macquarii, Chelodina expansa, C. longicollis) exited the wetland long before winter drying would have become a potential threat. Our results suggest that turtles in this system may be protected from winter wetland drying because they move to the adjacent permanent river prior to winter. Spending the winter in the river channel reduces the risks of being trapped in a drying wetland as temperatures drop in winter.  相似文献   

3.
1.  Invasive zebra ( Dreissena polymorpha ) and quagga mussels ( Dreissena bugensis ) have become widespread throughout the Great Lakes basin. However, some types of Great Lakes coastal wetlands may be unsuitable for Dreissena invasion.
2.  To test this observation, artificial substrata were placed in wetlands (with emergent vegetation) and in adjacent open water (without emergent vegetation) habitats in two types of Great Lakes coastal ecosystems: drowned river mouth (DRM) and coastal fringing systems. Wetlands in DRM systems generally have deep organic sediment and limited water movement, whereas coastal fringing wetlands generally have low to moderate amounts of organic sediment and intense wind and wave action.
3.  We did not find a significant difference in Dreissena colonisation between wetlands and adjacent open water habitat in fringing systems. However, Dreissena colonisation was significantly lower in DRM wetlands than in the adjacent open water. We also found significantly lower survival in DRM wetlands than adjacent open water habitats, whereas survival did not differ significantly in coastal fringing wetlands and the adjacent open water.
4.  Our results suggest that vulnerability to Dreissena invasion varied among wetland types with DRM wetlands being less suitable than fringing wetlands. We suggest that colonisation and survival of Dreissena is lower in wetlands with deep organic sediment and less turbulent water.  相似文献   

4.
《Ecological Indicators》2007,7(3):610-635
Developing effective indicators of ecological condition requires calibration to determine the geographic range and ecosystem type appropriate for each indicator. Here, we demonstrate an approach for evaluating the relative influence of geography, geomorphology and human disturbance on patterns of variation in biotic indicators derived from multiple assemblages for ecosystems that span broad spatial scales. To accomplish this, we collected abundance information on six biotic assemblages (birds, fish, amphibians, aquatic macroinvertebrates, wetland vegetation, and diatoms) from over 450 locations along U.S. shorelines throughout each of the Great Lakes during 2002–2004. Sixty-six candidate taxon- and function-based indicators analyzed using hierarchical variance partitioning revealed that geographic (lake) rather than geomorphic factors (wetland type) had the greatest influence on the proportion of variance explained across all indicators, and that a significant portion of the variance was also related to response to human disturbance. Wetland vegetation, fish and bird indicators were the most, and macroinvertebrates the least, responsive to human disturbance. Proportion of rock bass, Carex lasiocarpa, and stephanodiscoid diatoms, as well as the presence of spring peepers and the number of insectivorous birds were among the indicators that responded most strongly to a human disturbance index, suggesting they have good potential as indicators of Great Lakes coastal wetland condition. Ecoprovince, wetland type, and indicator type (taxa vs function based) explained relatively little variance. Variance patterns for macroinvertebrates and birds were least concordant with those of other assemblages, while diatoms and amphibians, and fish and wetland vegetation were the most concordant assemblage pairs. Our results strongly suggest it will not be possible to develop effective indicators of Great Lakes coastal wetland condition without accounting for differences among lakes and their important interactions. This is one of the first attempts to show how ecological indicators of human disturbance vary over a broad spatial scale in wetlands.  相似文献   

5.
Aquatic macrophytes provide essential spawning and nursery habitat for fish, valuable food source for waterfowl, migratory birds and mammals, and contribute greatly to overall biodiversity of coastal marshes of the Laurentian Great Lakes. Two approaches have been used to survey the plant community in coastal wetlands, and these include the grid (GR) and transect (TR) methods. These methods have been used to identify the average species richness at different sites, but their suitability for determining total species richness of a site has not been tested. In this paper, we compare the performance of these two established methods with that of the Stratified method (ST), which uses the sampler’s judgment to guide them to different habitat zones within the wetland. We used the three protocols to compare species richness of six coastal wetlands of the Great Lakes, three pristine marshes in eastern Georgian Bay (Lake Huron) and three degraded wetlands in Lake Ontario, Canada. The greatest species richness was associated with the ST method, irrespective of wetland quality. The ST method was also more efficient (fewer quadrats sampled), and revealed the most number of unique (those found with only one method) and uncommon species (those found in <5% of the quadrats). Despite these statistical differences, we found that sampling method did not significantly affect the performance of a recently developed index of wetland quality, the Wetland Macrophyte Index. These results have important implications for designing macrophyte surveys to track changes in biodiversity and wetland quality.  相似文献   

6.
Great Lakes coastal wetlands provide important spawning and nursery habitat as well as abundant food resources for yellow perch (Perca flavescens). We examined multiple years of fyke-net data from wetlands along Lakes Huron and Michigan to describe yellow perch distribution in drowned river mouth (DRM) and coastal fringing systems. Principal components analysis and multi-response permutation procedures indicated that DRM wetlands (yellow perch CPUE = 0.2) were eutrophic systems that often exhibit high temperatures and periods of hypoxia, whereas coastal fringing wetlands (yellow perch CPUE = 32.1) were less productive. Among the coastal fringing systems, Saginaw Bay (Lake Huron), displayed characteristics of being more productive and had more yellow perch. Most yellow perch captured in Saginaw Bay were age-0, suggesting that it was an important nursery habitat. Among DRM ecosystems, we found that the downstream lake macrohabitats contained more yellow perch than upstream wetlands; however, there was no significant difference in abiotic characteristics to explain the higher catches in lakes. We hypothesize that yellow perch were more prevalent in wetlands with intermediate productivity during summer because these systems provide abundant food resources without the harsh conditions associated with highly eutrophic wetlands.  相似文献   

7.
Over 2000 coastal wetland complexes have been identified in the Laurentian Great Lakes watershed, each providing critical habitat for numerous aquatic and terrestrial species. Research has shown there is a direct link between anthropogenic activities (urbanization and agricultural development) and deterioration in wetland health in terms of water quality and biotic integrity. In this study, we evaluate coastal marshes throughout the Great Lakes basin using a suite of published ecological indices developed specifically for coastal wetlands of the Great Lakes (Water Quality Index (WQI), Wetland Macrophyte Index (WMI), and the Wetland Fish Index (WFIBasin)). We surveyed 181 wetlands, including 19 in Lake Superior (11%), 11 in Lake Michigan (6%), 13 in Lake Huron (7%), 92 in Georgian Bay and the North Channel (51%), 18 in Lake Erie (10%), and 28 in Lake Ontario (15%), over a 13 year period (1995–2008). Water quality parameters were measured at every site, while paired fyke nets were used to assess the fish community (132 sites) and macrophytes were surveyed and identified to species (174 sites); all of this information was used to calculate the associated index scores. One-way ANOVA results showed that there were significant differences in wetland quality among lakes. According to the WQI, we found that over 50% of marshes in Lakes Michigan, Erie, and Ontario were in degraded condition, while over 70% of marshes in Lakes Superior, Huron, and Georgian Bay were minimally impacted. Georgian Bay had the highest proportion of wetlands in very good and excellent condition and least number of wetlands in a degraded state. The WMI and WFI showed similar results. This is the largest bi-national database of coastal wetlands and the first study to provide a snapshot of the quality of coastal habitats within the Great Lakes basin. We recommend this information be used to guide conservation and restoration efforts within the Laurentian Great Lakes.  相似文献   

8.
Breeding colonies of black terns (Chlidonias niger) have become increasingly rare in U.S. Great Lakes coastal wetlands since the mid-twentieth century, with an almost 90% decline in the number of active colony sites since 1991. Although the specific causes of this wetland species’ decline are unknown, habitat loss and degradation are thought to be a major barrier to conservation. Using data from the Great Lakes Colonial Waterbird Survey, we took a unique regional and historical approach to investigate the relationship between black tern colony site abandonment and a suite of local and landscape-scale habitat features in U.S. Great Lakes coastal wetlands. We employed logistic regression models and a combination of stepwise selection procedures to identify the best predictive model for black tern colony abandonment. According to the selected model, breeding colonies with fewer nests were more likely to be abandoned over the following decadal observation period than breeding colonies with more nests. Colony sites were also more likely to be abandoned when vegetation within the wetland shifted towards larger, denser clusters. We performed a simulation study that showed that failing to account for association between observations from the same site affected model selection results, but that cross-validation error for the selected model remained low unless site effects were very strong. Results of this study suggest that focus on protection of sites harboring large numbers of black terns and vegetation management will help limit further colony abandonments.  相似文献   

9.
Great Lakes coastal wetlands are widely recognized as areas of concentrated biodiversity and productivity, but the factors that influence diversity and productivity within these systems are largely unknown. Several recent studies have suggested that the abundance and diversity of flora and fauna in coastal wetlands may be related to distance from the open water/macrophyte edge. We examined this possibility for three faunal groups inhabiting a coastal wetland in Saginaw Bay, Lake Huron. We sampled crustacean zooplankton and benthic macro-invertebrates at five distances from open water in the summer 1994, and fish at three distances from open water in 1994 and 1995. We found significant spatial trends in the total abundance and diversity of zooplankton and fish, as well as the diversity of benthic macro-invertebrates. Zooplankton abundance and taxa richness were highest at intermediate distances from open water in a transition zone between the well-mixed bayward portion of the wetland, and the non-circulating nearshore area. Benthic macro-invertebrate taxa richness increased linearly with distance from open water. In contrast, fish abundance and species richness declined linearly and substantially (abundance by 78%, species richness by 40%) with distance from open water. Of the 40 taxa examined in this study, 21 had significant horizontal trends in abundance. This led to notable differences in community composition throughout the wetland. Our results suggest that distance from open water may be a primary determinant of the spatial distributions of numerous organismal groups inhabiting this coastal wetland. Several possible reasons for these distributions are discussed.  相似文献   

10.
Plant invasions result in biodiversity losses and altered ecological functions, though quantifying loss of multiple ecosystem functions presents a research challenge. Plant phylogenetic diversity correlates with a range of ecosystem functions and can be used as a proxy for ecosystem multifunctionality. Laurentian Great Lakes coastal wetlands are ideal systems for testing invasive species management effects because they support diverse biological communities, provide numerous ecosystem services, and are increasingly dominated by invasive macrophytes. Invasive cattails are among the most widespread and abundant of these taxa. We conducted a three‐year study in two Great Lakes wetlands, testing the effects of a gradient of cattail removal intensities (mowing, harvest, complete biomass removal) within two vegetation zones (emergent marsh and wet meadow) on plant taxonomic and phylogenetic diversity. To evaluate native plant recovery potential, we paired this with a seed bank emergence study that quantified diversity metrics in each zone under experimentally manipulated hydroperiods. Pretreatment, we found that wetland zones had distinct plant community composition. Wet meadow seed banks had greater taxonomic and phylogenetic diversity than emergent marsh seed banks, and high‐water treatments tended to inhibit diversity by reducing germination. Aboveground harvesting of cattails and their litter increased phylogenetic diversity and species richness in both zones, more than doubling richness compared to unmanipulated controls. In the wet meadow, harvesting shifted the community toward an early successional state, favoring seed bank germination from early seral species, whereas emergent marsh complete removal treatments shifted the community toward an aquatic condition, favoring floating‐leaved plants. Removing cattails and their litter increased taxonomic and phylogenetic diversity across water levels, a key environmental gradient, thereby potentially increasing the multifunctionality of these ecosystems. Killing invasive wetland macrophytes but leaving their biomass in situ does not address their underlying mechanism of dominance and is less effective than more intensive treatments that also remove their litter.  相似文献   

11.
We examined how geographic distribution of birds and their affinities to three geomorphic wetland types would affect the scale at which we developed indicators based on breeding bird communities for Great Lakes coastal wetlands. We completed 385 breeding bird surveys on 222 wetlands in the US portion of the basin in 2002 and 2003. Analyses showed that wetlands within two ecoprovinces (Laurentian Mixed Forest and Eastern Broadleaf Forest) had different bird communities. Bird communities were also significantly different among five lakes (Superior, Michigan, Huron, Erie, and Ontario) and among three wetland types (lacustrine, riverine, barrier-protected). Indicator values illustrated bird species with high affinities for each group (ecoprovince, lake, wetland type). Species with restricted geographic ranges, such as Alder and Willow Flycatchers (Empidonax alnorum and E. traillii), had significant affinities for ecoprovince. Ten bird species had significant affinities for lacustrine wetlands. Analyses on avian guild metrics showed that Lake Ontario wetlands had fewer long-distant migrants and warblers than other lakes. Numbers of short-distant migrants and total individuals in wetlands were higher in the Eastern Broadleaf Forest ecoprovince. Number of flycatchers and wetland obligate birds were not different among provinces, lakes, or wetland type. One potential indicator for wetland condition in Great Lakes wetlands, proportion of obligate wetland birds, responded negatively to proportion of developed land within 1 km of the wetland. We conclude that, although a guild approach to indicator development ameliorates species-specific geographic differences in distribution, individual species responses to disturbance scale will need to be considered in future indicator development with this approach.  相似文献   

12.
ABSTRACT We studied Blanding's turtle (Emydoidea blandingii) microhabitat in natural wetlands and wetlands constructed for the turtles in Dutchess County, New York, USA. Investigation of these topics can provide information on ways to increase the extent of Blanding's turtle habitat, improve its quality, and assure that conservation or restoration managers do not overlook key habitat characteristics. Microhabitat was determined by radiotracking individuals to their exact locations and recording habitat variables. Blanding's turtles were associated with shallow water depths (x̄ = 30 cm), muck substrates, and areas of abundant vegetation (total cover xM = 87%). Buttonbush (Cephalanthus occidentalis)had the greatest mean total cover (29%). In the constructed wetlands, Blanding's turtles were associated with significantly less cover and warmer water than in the natural wetlands. Blanding's turtles appeared to be using the constructed wetlands to bask and forage in the spring and early summer but moved to deeper wetlands in late summer when the constructed wetlands dried up or became too warm. For Blanding's turtles, new habitat should contain abundant emergent vegetation (including buttonbush in Dutchess County and other areas where the turtles are known to use buttonbush swamps), basking areas, muck, floating plant material, and submerged aquatic vegetation. Blanding's turtle's use of constructed wetlands highlights the value of a complex of connected wetland habitats in providing for the varied needs of the turtle.  相似文献   

13.
The Great Artesian Basin springs (Australia) are unique groundwater dependent wetland ecosystems of great significance, but are endangered by anthropogenic water extraction from the underlying aquifers. Relationships have been established between the wetland area associated with individual springs and their discharge, providing a potential means of monitoring groundwater flow using measurements of vegetated wetland area. Previous attempts to use this relationship to monitor GAB springs have used aerial photography or high resolution satellite images and gave sporadic temporal information. These “snapshot” studies need to be placed within a longer and more regular context to better assess changes in response to aquifer draw-downs. In this study we test the potential of 8 years of Moderate Resolution Imaging Spectroradiometer Normalised Difference Vegetation Index data as a long-term tracer of the temporal dynamics of wetland vegetation at the Dalhousie Springs Complex of the Great Artesian Basin. NDVI time series were extracted from MODIS images and phenologies of the main wetland vegetation species defined. Photosynthetic activity within wetlands could be discriminated from surrounding land responses in this medium resolution imagery. The study showed good correlation between wetland vegetated area and groundwater flow over the 2002–2010 period, but also the important influence of natural species phenologies, rainfall, and anthropogenic activity on the observed seasonal and inter-annual vegetation dynamics. Declining trends in the extent (km2) of vegetated wetland areas were observed between 2002 and 2009 followed by a return of wetland vegetation since 2010. This study underlines the need to continue long-term medium resolution satellite studies of the GAB to fully understand variability and trends in the spring-fed wetlands. The MODIS record allows a good understanding of variability within the wetlands, and gives a high temporal-frequency context for less frequent higher spatial resolution studies, therefore providing a strong baseline for assessment of future changes.  相似文献   

14.
Wetlands occur where biotic and abiotic conditions combine to create unique habitats and plant assemblages. These systems have anaerobic or hydric soil resulting from waterlogging and are found across all nine biomes in South Africa. Wetlands can thus be regarded as hosting azonal vegetation. On Platberg, the freshwater wetlands are embedded within the Grassland Biome forming distinct units. Platberg wetlands were surveyed and described to explain and document vegetation of this inselberg. Additional aims were to elucidate Afro-montane floristic links with the Drakensberg Alpine Centre, and provide data for conservation management. The study site is located in the Eastern Free State, South Africa, on edge of the Great Escarpment. It is one of an archipelago of more than 20 inselbergs stretching north from the Drakensberg. A total of 51 sample plots (30 m2) were located in a randomly stratified manner within the wetland units to include all variations in the vegetation. The data was analysed using the TWINSPAN classification algorithm, refined by Braun-Blanquet procedures. The analysis showed the wetlands divided into five communities, six sub-communities and six variants. The wetland communities had an average of 13.56 species per relevé, ranging from 7 to 29 species per sample plot. Numerous floristic links with the Drakensberg Alpine Centre, the Cape Floristic Region and the Grassland biome were found. Platberg shows vegetation and hydrogeological affinity with low altitude freshwater and the high altitude Lesotho Mires of the Drakensberg Alpine Centre. A list of high altitude wetland species was compiled.  相似文献   

15.
We used landscape ecology concepts to test the importance of upland–wetland linkages on the distribution of two common wetland species, the northern watersnake Nerodia sipedon sipedon and midland painted turtle Chrysemys picta marginata , and two rare wetland species, the copper-bellied watersnake Nerodia erythrogaster neglecta and Blanding's turtle Emydoidea blandingii . We tested if connectivity (proximity to other wetlands), connectivity quality (wetland distance to roads and forest area within 30, 125, 250, 500 and 1000 m of the wetland), and patch size (wetland size and shoreline length) affected the distribution of these four species. Our results show that both common species were more likely to occur in larger, less isolated wetlands, but their distribution were not influenced by proximity to roads or the amount of adjacent forest area surrounding the wetland. Both rare species were more likely to occur in wetlands that were farther away from roads and that had more surrounding forest. Proximity to other wetlands was not a significant predictor of either rare species' distribution. Our results suggest that management practices should focus on protecting wetland complexes and maintaining upland–wetland linkages by improving landscape connectivity, increasing forest area surrounding wetlands and reducing road effects.  相似文献   

16.
1. Reduction in diversity of both freshwater aquatic and terrestrial ecosystems has been attributed to salinity increase and such increases are a symptom of changes to land use. Hydrological alteration to ground and surface water are likely to be associated with salinity increase and its influence on biodiversity. However the combined effects of salinity and hydrology on aquatic biodiversity have not been elucidated fully in either field or experimental situations. 2. The effect of salinity and water regime on the biota in sediments from seven wetlands from inland south‐eastern Australia was tested experimentally using germination of aquatic plant seeds (five salinity and two water levels) and emergence of zooplankton eggs (five salinity levels). Salinity levels were <300, 1000, 2000, 3000, 5000 mg L?1 and water regimes were damp (waterlogged) and submerged. 3. Aquatic plant germination and zooplankton hatching was not consistent for all seven wetland sediments. Four of the wetland sediments, Narran Lakes, Gwydir Wetlands, Macquarie Marshes and Billybung Lagoon showed similar responses to salinity and water regime but the other three wetland sediments from Lake Cowal, Great Cumbung Swamp and Darling Anabranch did not. 4. As salinity increased above 1000 mg L?1 there was a decrease in the species richness and the abundance of biota germinating or hatching from sediment from four of the wetlands. 5. Salinity had a particularly strong effect in reducing germination from sediments in damp conditions when compared to the flooded conditions. In parallel, salts accumulated in the sediment in damp conditions but did not in flooded conditions. 6. There is potential for increasing salinity in freshwater rivers and wetlands to decrease the species richness of aquatic communities and thus of the wetland community as a whole, resulting in loss of wetland biodiversity. This reduction in diversity varies between wetlands and is at least partly related to hydrology. For aquatic plants the reduction in diversity will be more marked for plants germinating from seed banks at the edges of wetlands where plants are not completely submerged than for the same seed bank germinating in submerged conditions.  相似文献   

17.
The Darwin coastal wetlands provide suitable breeding conditions for Culex annulirostris, which is abundant between December and August each year. This species is the principal vector for arboviruses, including Ross River virus and Murray Valley encephalitis, and is an appreciable pest species. Aerial control is conducted when routine larval surveys for this species predict high numbers of emergent adults. We sought to determine the most productive vegetation categories and seasonal aspects associated with Cx. annulirostris breeding and control operations in these wetlands. By applying a generalized linear model to compare larval densities and aerial control efforts for each vegetation category, we found that Schoenoplectus reeds were the most productive vegetation type in May and June and were associated with the greatest amount of control required. Other vegetation categories associated with tidal mangroves and lower topographic elevation were also productive during these months for extended periods, while rain‐affected reticulate areas and grassland floodplains were most productive in January and April. In addition, areas associated with nutrient rich organic matter appeared to initiate Cx. annulirostris breeding and were highly productive seasonally. This study has highlighted the vegetation categories most significantly associated with Cx. annulirostris breeding in a Darwin wetland. This knowledge can be applied to current control efforts to improve aerial control efficiency for this species and could be applicable in other areas of northern Australia.  相似文献   

18.
Ecological indicators have gained increasing attention within the scientific community over the past 40 years. Several taxonomic groups have been used successfully as indicators including most prominently fish, invertebrates, plants, and birds because of their ability to indicate environmental changes. In the Laurentian Great Lakes region, there has been recent concern over the applicability of using indicators on a basin-wide scale due to species range restrictions and lake-based differences. The objective of this study was to determine the ability of the Index of Marsh Bird Community Integrity (IMBCI) to indicate land use disturbance surrounding coastal marshes of Georgian Bay and Lake Ontario. To meet this objective, we surveyed birds and vegetation at 14 marshes in Georgian Bay (low land use disturbance) and Lake Ontario (high land use disturbance). Even though Lake Ontario marshes were surrounded by significantly more altered land than Georgian Bay marshes, and had poorer water quality, we found significantly fewer birds in Georgian Bay marshes (mean = 8.2) compared to Lake Ontario (mean = 13.7) and no significant difference in IMBCI scores. This inconsistency could be due to vegetation differences affecting the strength of the index, because Georgian Bay wetlands had significantly more bulrush (Schoenoplectus spp.) and floating vegetation, while Lake Ontario wetland vegetation was taller and cattail-dominated (Typha spp.). These findings suggest that the IMBCI may not be useful on a basin-wide scale in the Great Lakes region in detecting human disturbance surrounding wetlands.  相似文献   

19.
In northeastern North America, an important wetland invader is the cattail Typha × glauca, a hybrid of native Typha latifolia and introduced Typha angustifolia. Although intensively studied in localized wetlands around the Great Lakes, the distributions of the hybrid and its parental species across broad spatial scales are poorly known. We obtained genotypes from plants collected from 61 sites spanning two geographical regions. The first region, near the Great Lakes and St. Lawrence Seaway (GLSL), has experienced substantial Typha increases over the last century, whereas more modest increases have occurred in the second region across Nova Scotia, New Brunswick, and Maine (NSNB). We found that hybrids predominate in the GLSL region, thriving in both disturbed and undisturbed habitats, and are expanding at the expense of both parental species. In contrast, the native T. latifolia is by far the most common of the three taxa across all habitat types in the NSNB region. We found no evidence that the formation of backcrossed and advanced-generation hybrids is limited by the reproductive barriers that are evident in F1 hybrids. However, although backcrossed individuals arise in both regions, they are much less common than F1 hybrids, which may explain why the parental species boundary remains. We conclude that F1 hybrids are playing a key role in the invasion of wetlands in the GLSL region, whereas their low frequency in the NSNB region may explain why Typha appears to be much less invasive further east. An improved understanding of these contrasting patterns of distribution is necessary before we can accurately predict future wetland invasions.  相似文献   

20.
The economic and ecological importance of wetlands is well documented, but there are few studies that have assessed wetland condition and extent for the United States. Many states, including Kentucky, have had no statewide field evaluation of wetlands of any kind. The National Wetland Inventory (NWI) is the largest database for mapped wetlands in the United States and the most comprehensive source of wetland information for Kentucky, but its value for determining wetland condition is limited. Therefore, our objectives were to document wetland extent and condition and assess the agreement between the NWI and field-based wetland characteristics in Kentucky. We conducted field and remote-sensing based assessments of 352 wetlands across the state. NWI-mapped and field-assessed wetlands had similar large-scale patterns; however, for individual wetlands, classification often disagreed. Based on our wetland assessment method, wetlands appear to be of moderate condition, although we found differences among basins, dominant vegetation types, and landscape positions and much variation as many sites scored very low and high. Our findings support previous work showing that rapid assessments are valuable for determining wetland condition for ambient monitoring and other applications. Also, our results provide the foundation for future status and trends studies and suggest an urgent need to update the NWI in Kentucky and elsewhere. We suggest that the NWI could be improved by using newer technology that increases wetland mapping accuracy and including predictions of wetland condition using the enhanced NWI approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号