首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Shai  T K Brunck  I M Chaiken 《Biochemistry》1989,28(22):8804-8811
Structural principles were studied which underlie the recognition of sense peptides (sense DNA encoded) by synthetic peptides encoded in the corresponding antisense strand of DNA. The direct-readout antisense peptides corresponding to ribonuclease S-peptide bind to an affinity matrix containing immobilized S-peptide with significant selectivity and with dissociation constants in the range of 10(-6) M as judged by analytical affinity chromatography. Synthetic, sequence-modified forms of antisense peptides also exhibit substantial binding affinity, including a "scrambled" peptide in which the order of residue positions is changed while the overall residue composition is retained. The antisense mutants, as the original antisense peptides, bind at saturation with greater than 1:1 stoichiometry to immobilized S-peptide. The data suggest significant sequence degeneracy in the interaction of antisense with sense peptide. In contrast, selectivity was confirmed by the inability of several control peptides to bind to immobilized S-peptide. The idea was tested that the hydropathic pattern of the amino acid sequence serves to induce antisense peptide recognition. A hydropathically sequence-simplified mutant of antisense peptide was made in which all strongly hydrophilic (charged) residues were replaced by Lys, all strongly hydrophobic residues by Leu, and all weakly hydrophilic and hydrophobic residues by Ala, except Gly which was unchanged. This "KLAG" mutant also binds to immobilized S-peptide, with an affinity only an order of magnitude less than that with the original antisense peptide and with multiple stoichiometry. Mutants of the KLAG model, in which the hydropathic pattern was changed substantially, exhibited a lower binding affinity for S-peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We studied the interaction properties of synthetic antisense (AS) peptides encoded in the antisense strand of DNA corresponding to the N-terminal 20-residue sequence of the biosynthetic precursor of Arg8-vasopressin (AVP) and its binding protein bovine neurophysin II (BNPII). Binding affinities of sense polypeptides AVP and BNPII with AS peptides were measured by analytical affinity chromatography, in each case by the extent of chromatographic retardation of a soluble polypeptide interactor on an affinity matrix containing the other interactor as the immobilized species. Chromatographically calculated dissociation constants ranged from 10(-3) to 10(-6) M. Experiments were carried out to define the selectivity and underlying forces involved in the AS peptide interactions. For AS peptide elutions on sense peptide affinity supports, reduced binding affinity with increasing 1-propanol concentration and ionic strength suggested the presence of both ionic and hydrophobic contributions to AS peptide/immobilized sense peptide recognition. This same conclusion was reached with the antisense peptides as the immobilized species and measurement of elution of sequence-simplified, truncated, and charge-depleted forms of sense peptides. Immobilized AS 20-mer affinity matrix differentially retarded AVP versus oxytocin (OT) and BNPII versus BNPI (the neurophysin related biosynthetically to OT) and was used to separate these polypeptides from acid extracts of bovine posterior pituitaries. In addition, immobilized AS 12-mer corresponding to AVP-Gly-Lys-Arg could be used to separate AVP from OT. The results confirm that antisense peptides recognize sense peptides with significant selectivity in the AVP/BNPII precursor case.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Quantitative affinity chromatography on uridine-5'-(Sepharose-4-aminophenylphosphoryl)-2'(3')-phosphate was developed for the study of binding of ribonuclease species to nucleotide ligands. Elution of the native species ribonuclease-A and -S on the afffinity matrix in 0.4 M ammonium acetate, pH 5.2, containing various amounts of the soluble competing ligand 2'-cytidine monophosphate, reveals an inverse response of elution volume to concentration of soluble ligand. This response conforms to behavior expected for the competing binding equilibria enzyme-soluble ligand and enzyme-insoluble ligand. A-NALYSIS OF ELUTION DATA ALLOWS CALCULATION OF KI and KIM, the dissociation constants, respectively, for the soluble and insoluble protein-ligand complexes. The values of these chromatographically derived constants are similar to values of dissocation constants determined in solution by kinetics of inhibition by 2'-cytidine monophosphate and uridine-5'-(j-aminophenylphosphoryl)-2'(3')-phosphate. Successful competitive elution experiments with [p-F-Phe8]semisynthetic ribonuclease-S' and individual elution trials for [4-F-His12]semisynthetic ribonuclease-S' indicate the utility of the quantitative affinity chromatographic technique for determination of ligand binding properties of ribonuclease derivatives, including inactive species. Nonbiospecific aspects of the interaction of ribonuclease with the affinity matrix in ammonium acetate buffers of concentrations 0.1 M and below were noted, delinating limits of conditions allowing the biospecificity needed for ligand-binding analyses by competitive elution. The dependence of ribonuclease competitive elution behavior on the amount of protein eluted also was examined and related to theoretical considerations in the quantitative application of affinity chromatography.  相似文献   

4.
反义肽及其在生化分离中的应用   总被引:1,自引:0,他引:1  
反义肽是由反义RNA编码和翻译的肽.它可与其正义肽分子发生专一性相互作用.近年反义肽的这种特异性结合实例研究,已为其在生化分离领域应用奠定了基础,尤其是在色谱亲和配基的选择方面,可以预见不久以反义肽为配基的亲和色谱将是生物工程产品分离的一种有效手段.  相似文献   

5.
The expression of multivalency in the interaction of antibody with immobilized antigen was evaluated by quantitative affinity chromatography. Zones of radioisotopically labeled bivalent immunoglobulin A monomer derived from the myeloma protein TEPC 15 were eluted from columns of phosphorylcholine-Sepharose both in the absence and presence of competing soluble phosphorylcholine. At sufficient immobilized phosphorylcholine concentration, the variation of elution volume of bivalent monomer with soluble ligand was found to deviate from that observed for the univalent binding of the corresponding Fab fragment. In addition, the apparent binding affinity of the bivalent monomer increased with immobilized antigen density. Use of equations relating the variation of elution volume with free ligand concentration for a bivalent binding protein allowed calculation of microscopic single-site binding parameters for the bivalent monomeric antibody to both immobilized and soluble phosphorylcholine. The chromatographic data not only demonstrate the effect of multivalency on apparent binding affinity but also offer a relatively simple means to measure microscopic dissociation constants for proteins participating in bivalent interactions with their ligands.  相似文献   

6.
Peptides encoded in the antisense strand of DNA have been predicted and found experimentally to bind to sense peptides and proteins with significant selectivity and affinity. Such sense--antisense peptide recognition has been observed in many systems, most often by detecting binding between immobilized and soluble interaction partners. Data obtained so far on sequence and solvent dependence of interaction support a hydrophobic-hydrophilic (amphipathic) model of peptide recognition. Nonetheless, the mechanistic understanding of this type of molecular recognition remains incomplete. Improving this understanding likely will require expanding the types of characteristics measured for sense--antisense peptide complexes and hence the types of analytical methods applied to such interactions. Understanding the mechanism of sense--antisense peptide recognition also may provide insights into mechanisms of native (sense) peptide and protein interactions and protein folding. Such insight may be helpful to learn how to design macromolecular recognition agents in technology for separation, diagnostics and therapeutics.  相似文献   

7.
Methionyl-tyrosyl-phenylalanyl-ω-aminohexyl-agarose was synthesized and shown to be suitable for both the affinity chromatographic purification of neurophysins and the measurement of the ligand binding parameters of these proteins by quantitative affinity chromatography. Bovine neurophysin I binds to the tripeptidyl matrix in 0.4 m ammonium acetate, pH 5.7, conditions under which no binding occurs with the parent ω-aminohexyl-agarose. Subsequent elution can be effected with 0.2 m acetic acid. The affinity matrices obtained have capacities for neurophysin of up to 4 mg/ml gel bed volume and therein provide for the convenient purification of the neurophysins by a two-step buffer-acid elution. [Carbamoyl-14C]neurophysin I also binds to the ligand-agarose matrix. Using this labeled protein, competitive elution analysis was performed by one-step elution of zones of protein with the binding buffer in the presence of varying amounts of soluble competitive ligand, lysine vasopressin. The characteristic decrease of elution volume of labeled protein with increasing soluble, competing ligand concentration indicates that the affinity matrix interacts biospecifically with neurophysin. This analysis allows the binding affinities for both soluble vasopressin and immobilized tripeptide ligand to be quantitated.  相似文献   

8.
Recent work has shown that, with synthetic analogues of C-peptide (residues 1-13 of ribonuclease A), the stability of the peptide helix in H2O depends strongly on the charge on the N-terminal residue. We have asked whether, in semisynthetic ribonuclease S reconstituted from S-protein plus an analogue of S-peptide (1-15), the stability of the peptide helix is correlated with the Tm of the reconstituted ribonuclease S. Six peptides have been made, which contain Glu9----Leu, a blocked alpha-COO- group (-CONH2), and either Gln11 or Glu11. The N-terminal residue has been varied; its charge varies from +2 (Lys) to -1 (succinyl-Ala). We have measured the stability of the peptide helix, the affinity of the peptide for S-protein (by C.D. titration), and the thermal stability of the reconstituted ribonuclease S. All six peptide analogues show strongly enhanced helix formation compared to either S-peptide (1-15) or (1-19), and the helix content increases as the charge on the N-terminal residue changes from +2 to -1. All six peptides show increased affinity for S-protein compared to S-peptide (1-19), and all six reconstituted ribonucleases S show an increase in Tm compared to the protein with S-peptide (1-19). The Tm increases as the charge on residue 1 changes from +2 to -1. The largest increment in Tm is 6 degrees. The results suggest that the stability of a protein can be increased by enhancing the stability of its secondary structure.  相似文献   

9.
Carboxypeptidase A and derivatives obtained by chemical modification of various active center components were subjected to affinity chromatography on a p-aminobenzylsuccinic acid-Sepharose 4B conjugate. Tetardation of the enzyme on the column was dependent on the residue modified when elution was carried out with 0.3 m NaCl at pH 7.0. Both the functional zinc atom and the active site residue Glu-270 are essential for effective adsorption while alteration of residues involved in hydrophobic interaction with substrate or in recognition of its terminal carboxyl group decreased retention on the affinity matrix. Elution of native carboxypeptidase with competing soluble benzylsuccinic acid indicated that only active center binding of the immobilized inhibitor accounts for retardation of the enzyme on the column. Hence, affinity chromatography on this biospecific adsorbent using mild elution conditions (which do not distort protein structure) provides an excellent tool for the rapid isolation and purification of active center modified enzyme even from a complex mixture of reaction products.  相似文献   

10.
Analytical affinity chromatography (AAC) was used to detect and quantitate the self-association of p24gag, the major structural capsid protein of human immunodeficiency virus (HIV-1). p24gag was immobilized on a hydrophilic polymer (methacrylate) chromatographic support. The resulting affinity column was able to interact with soluble p24, as judged by the chromatographic retardation of the soluble protein upon isocratic elution under nonchaotropic binding conditions. The variation of elution volume with soluble protein concentration fit to a monomer-dimer model for self-association. The soluble p24-immobilized p24 association process was observed using both frontal and zonal elution AAC at varying pH values; the dissociation constant was 3-4 x 10(-5) M at pH 7. That p24 monomer associates to dimers was determined in solution using analytical ultracentrifugation. The solution Kd was 1.3 x 10(-5) M at pH 7. AAC in the zonal elution mode provides a simple and rapid means to screen for other HIV-1 macromolecules that may interact with p24 as well as for modulators, including antagonists, of HIV p24 protein assembly.  相似文献   

11.
Metal affinity-immobilized liposome chromatography (MA-ILC) was newly developed as a chromatographic technique to separate and analyze peptides. The MA-ILC matrix gel was first prepared by immobilizing liposomes modified with functional ligands. The functional ligand used to adsorb metal ions was N-hexadecyl iminodiacetic acid (HIDA), which is obtained by attaching a long alkyl chain to an iminodiacetic acid (IDA). Cu(II) ion was first adsorbed on the gel matrix through its complex formation with the HIDA on the surface of the immobilized liposome. Synthetic peptides of various types ranging in size from 5 to 40 residues were then used, and their retention properties on the MA-ILC were evaluated. The retention property of peptides on the MA-ILC by using a usual imidazole elution was compared with the retention property in the case of the immobilized metal affinity chromatography (IMAC) and an immobilized liposome chromatography (ILC). It was found that the retention property of peptides on the MA-ILC has the features of both the IMAC and the ILC; the retention ability of peptides depends on both the number of histidine residues in peptides and the liposome membrane affinity of the peptides. Histidine and tryptophan residues among amino acid residues in peptides indicated a high contribution coefficient for the peptide retention on the MA-ILC, probably due to their metal ion and membrane interaction properties, respectively.  相似文献   

12.
Green fluorescent protein (GFP) is autofluorescent. This property has made GFP useful in monitoring in vivo activities such as gene expression and protein localization. We find that GFP can be used in vitro to reveal and characterize protein-protein interactions. The interaction between the S-peptide and S-protein fragments of ribonuclease A was chosen as a model system. GFP-tagged S-peptide was produced, and the interaction of this fusion protein with S-protein was analyzed by two distinct methods: fluorescence gel retardation and fluorescence polarization. The fluorescence gel retardation assay is a rapid method to demonstrate the existence of a protein-protein interaction and to estimate the dissociation constant (Kd) of the resulting complex. The fluorescence polarization assay is an accurate method to evaluate Kd in a specified homogeneous solution and can be adapted for the high-throughput screening of protein or peptide libraries. These two methods are powerful new tools to probe protein-protein interactions.  相似文献   

13.
Peptide libraries can be used to identify ligands that bind specifically to a desired protein. These peptides may have significant advantages as specific ligands for affinity chromatography separations. This article describes the use of one of such peptide, Try-Asn-Phe-Glu-Val-Leu, as a ligand for the purification of S-protein using affinity chromatography. General strategies for peptide immobilization are discussed and the conditions for peptide immobilization to Emphazetrade mark gel are optimized. The effects of peptide orientation and peptide densities on protein binding are studied. Results indicate that the peptide affinity is not affected by the orientation of the peptide during immobilization, but association constants can be reduced by one order of magnitude when compared with the values in solution.With increased peptide density, the protein binding capacity of the gel increases, but both the percentage of peptide utilization and apparent binding constant between immobilized peptide and S-protein decrease. S-protein is separated from a mixture with BSA via affinity chromatography using specific elution with the peptide in solution.Finally, direct purification of S-protein from an enzymatic digestion mixture of ribonuclease A is demonstrated.(c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
Ribonuclease S-peptide as a carrier in fusion proteins.   总被引:16,自引:1,他引:15       下载免费PDF全文
S-peptide (residues 1-20) and S-protein (residues 21-124) are the enzymatically inactive products of the limited digestion of ribonuclease A by subtilisin. S-peptide binds S-protein with high affinity to form ribonuclease S, which has full enzymatic activity. Recombinant DNA technology was used to produce a fusion protein having three parts: carrier, spacer, and target. The two carriers used were the first 15 residues of S-peptide (S15) and a mutant S15 in which Asp 14 had been changed to Asn (D14N S15). The spacer consisted of three proline residues and a four-residue sequence recognized by factor Xa protease. The target was beta-galactosidase. The interaction between the S-peptide portion of the fusion protein and immobilized S-protein allowed for affinity purification of the fusion protein under denaturing (S15 as carrier) or nondenaturing (D14N S15 as carrier) conditions. A sensitive method was developed to detect the fusion protein after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by its ribonuclease activity following activation with S-protein. S-peptide has distinct advantages over existing carriers in fusion proteins in that it combines a small size (> or = 15 residues), a tunable affinity for ligand (Kd > or = 10(-9) M), and a high sensitivity of detection (> or = 10(-16) mol in a gel).  相似文献   

15.
Affinity tags have become highly popular tools for purifying recombinant proteins from crude extracts by affinity chromatography. Besides, short peptides are excellent ligands for affinity chromatography, as they are not likely to cause an immune response in case of leakage into the product, they are more stable than antibodies to elution and cleaning conditions and they usually have very acceptable selectivity. Hydropathically complementary peptides designed de novo show enough selectivity to be used successfully as peptide ligands for protein purification from crude extracts. Recognition specificity and selectivity in the interaction between the complementary peptide pair His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu and Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe have been demonstrated by other authors. In this work, we designed a recombinant protein purification method using a peptide affinity tag that binds to a peptide-binding partner immobilized on a chromatographic matrix. The enhanced green fluorescent protein expressed (EGFP) in Escherichia coli was used as the model. The peptide Gly-Gly-Gly-His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu was synthesized by solid phase using the Fmoc chemistry and immobilized in NHS-Sepharose (PC-Sepharose). Gly residues were added as a spacer arm at the N terminus. The EGFP was expressed either with the fusion tag Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe on the C terminus (EGFP-CPTag) or without any fusion tag. After cell disruption, the extract was directly applied to the PC-Sepharose column equilibrated with 20mM sodium phosphate buffer, pH 7.0. The adsorbed EGFP-CPTag was then eluted with 1M Tris. The yield was 98% and the purification factor 4.6. By contrast, EGFP without tag pass through without interacting with the PC-Sepharose column. The method designed can be applied for the purification of other recombinant proteins.  相似文献   

16.
Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol   总被引:24,自引:0,他引:24  
The effects of trifluoroethanol (TFE) on the stability of the alpha-helix formed by ribonuclease S-peptide, residues 1-19 of ribonuclease A, were studied by measuring circular dichroism as a function of TFE concentration, pH, and temperature. The S-peptide forms an unusually stable alpha-helix, which is known to be stabilized by TFE. The magnitude of the effect of charged groups on the peptide, manifested by the change in alpha-helix stability as a function of pH, was not altered significantly by either TFE concentration or temperature, indicating that the lower dielectric constant of TFE is not important in the stabilization of this alpha-helix. This suggests that the alpha-helix might be stabilized by many interactions in addition to the effects of charges. The titration curve of circular dichroism vs. TFE concentration appears to be cooperative at 0 degree C, but becomes progressively less cooperative at temperatures between 25 and 75 degrees C. The properties of the TFE stabilization indicate that TFE might be a useful probe with which to measure the stability of marginally stable peptides and small proteins.  相似文献   

17.
The potential of affinity chromatography for the characterization of strong solute-ligand interactions is explored by studying the NADH-dependent elution of rabbit muscle lactate dehydrogenase from a column of trinitrophenyl-Sepharose in 0.067 M phosphate, pH 7.2. An interesting development is the simplification of the general affinity chromatography theory that emanates from the use of affinity matrices with a high concentration of immobilized reactant groups. The resultant expression allows evaluation of the intrinsic association constant for solute-ligand interactions from a single series of either zonal or frontal affinity chromatographic experiments conducted in the presence of a range of free ligand concentrations. Thus, contrary to previous belief, an affinity matrix designed for solute purification work should prove to be an asset for, rather than an impediment to, the study of solute-ligand interactions by quantitative affinity chromatography.  相似文献   

18.
High-performance immobilized metal ion affinity chromatography was utilized to evaluate the adsorption properties of 67 synthetic, biologically active, peptides ranging in size from 5 to 42 residues. The metal ions, Cu(II), Ni(II) and Zn(II), were immobilized by iminodiacetic acid (IDA) coupled to TSK gel 5PW (10 microns). Two types of gradient elution (imidazole and pH) were used to evaluate peptide retention by the metal ions. A decreasing pH gradient and an increasing imidazole gradient eluted the peptides in similar order. IDA-Cu(II) and IDA-Zn(II) showed very similar selectivities for the peptides analyzed; however, IDA-Zn(II) displayed a weaker affinity for the peptides. IDA-Ni(II) showed a slightly different pattern of selectivity. Peptide adsorption effects contributed by the metal-free gel matrix were found to be relatively minor. The concentration and type of salt included in the mobile phase could affect the relative affinities of the peptides for the immobilized metal ions. Retention coefficients were assigned to individual amino acid residues by multiple linear regression analysis. Histidine showed the largest positive correlation with retention, followed by aromatic amino acid residues. Modified N-terminal residues resulted in negative contributions to retention. Analyses of peptide amino acid composition alone allowed prediction of peptide retention behavior on immobilized metal ion affinity columns.  相似文献   

19.
Unilamellar liposomes with entrapped fluorescent dye calcein were stably immobilized in gel beads by avidin–biotin-binding. The immobilized liposomes remained extremely stable upon storage and chromatographic runs. The immobilized calcein-entrapped liposomes were utilized for fluorescent analysis of solute–membrane interactions, which in some cases are too weak to be detected by chromatographic retardation. A liposome column was used as a sensitive probe to detect the interactions of membranes with pharmaceutical drugs, peptides and proteins. Retardation of the solutes was monitored using a UV detector. Perturbation of the membranes, reflected as leakage of the entrapped calcein by some of the solutes, can thus be detected on-line using a flow-fluorescent detector. For the amphiphilic drugs or synthetic peptides, perturbation of membranes became more pronounced when the retardation (hydrophobicity) of the molecules increased. On the other hand, in the case of positively-charged peptides, polylysine, or partially denatured bovine carbonic anhydrase, significant dye leakage from the liposomes was observed although the retardation was hardly to be measured. Weak protein–membrane interactions can thus be assumed from the large leakage of calcein from the liposomes. This provides additional useful information for solute–membrane interactions, as perturbation of the membranes was also indicated by avidin–biotin-immobilized liposome chromatography (ILC).  相似文献   

20.
Bovine lactoferricin (Lfcin B) belongs to the antimicrobial peptide family, which is the first line of defense against pathogens in many organisms. Lfcin B has important applications due to its antiviral, antifungal, antiparasitic, anticancer/tumor and antibacterial activity.In this work, we tested five triazine dyes for Lfcin B affinity interactions using surface plasmon resonance (SPR) technology. Recombinant Lfcin B was expressed as a fusion protein with GST (Lfcin B-GST) by using the baculovirus expression vector system and the dye-Sepharose matrices were assayed for Lfcin B-GST adsorption and subsequent elution.Red HE-3B and Yellow HE-4R dyes were selected and immobilized on a Sepharose-4B matrix for further purification studies. The Yellow HE-4R-Sepharose matrix was specific for Lfcin B and allowed adsorption of Lfcin B-GST directly from the culture medium even at high salt concentration.This novel application of SPR to screen possible dye–peptide interactions could be relevant to purify other peptides or proteins by using low-cost dye-affinity chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号