首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional coupling between mu-opioid receptors and GTP-binding regulatory proteins (G proteins) was investigated in reconstituted membranes of the guinea pig striatum. Selective mu-opioid agonists stimulated low-Km GTPase in striatal membranes, in a Na(+)-dependent manner. The same mu-opioid agonist [( D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAGO)] caused no stimulation when the membranes were exposed to islet-activating protein (IAP; pertussis toxin). There was also no DAGO stimulation in preparations pretreated with a lower concentration (5 microM) of N-ethylmaleimide (NEM), which abolished the ADP-ribosylation of purified Gi (the G protein that mediates inhibition of adenylate cyclase) and Go (a G protein of unknown function purified from bovine brain) by IAP. In addition, as the NEM treatment caused no change in the mu-agonist binding, NEM could probably substitute for IAP in inactivating native G proteins, without exhibiting effects on the receptor binding in membranes. The mu-agonist stimulation of low-Km GTPase activity in NEM-treated membranes was recovered by reconstitution with purified Gi or Go. The mu-agonist stimulation of low-Km GTPase was additive when Gi and Go were simultaneously reconstituted in NEM-treated membranes in amounts of 0.5 pmol/assay, which was required for maximal recovery, in either reconstitution experiment. The present findings provide the first evidence that the mu-opioid receptor may exist in at least two different forms, separately coupled to Gi or Go.  相似文献   

2.
A possible role for G proteins in contributing to the chronic actions of cocaine was investigated in three rat brain regions known to exhibit electrophysiological responses to chronic cocaine: the ventral tegmental area, nucleus accumbens, and locus coeruleus. It was found that chronic, but not acute, treatment of rats with cocaine produced a small (approximately 15%), but statistically significant, decrease in levels of pertussis toxin-mediated ADP-ribosylation of Gi alpha and Go alpha in each of these three brain regions. The decreased ADP-ribosylation levels of the G protein subunits were shown to be associated with 20-30% decreases in levels of their immunoreactivity. In contrast, chronic cocaine had no effect on levels of G protein ADP-ribosylation or immunoreactivity in other brain regions studied for comparison. Chronic cocaine also had no effect on levels of Gs alpha or G beta immunoreactivity in the ventral tegmental area and nucleus accumbens. Specific decreases in Gi alpha and Go alpha levels observed in response to chronic cocaine in the ventral tegmental area, nucleus accumbens, and locus coeruleus are consistent with the known electrophysiological actions of chronic cocaine on these neurons, raising the possibility that regulation of G proteins represents part of the biochemical changes that underlie chronic cocaine action in these brain regions.  相似文献   

3.
B Eide  P Gierschik  A Spiegel 《Biochemistry》1986,25(21):6711-6715
Rabbits immunized with ADP-ribose chemically conjugated to carrier proteins developed antibodies reactive against guanine nucleotide binding proteins (G proteins) that had been mono-ADP-ribosylated by bacterial toxins. Antibody reactivity on immunoblots was strictly dependent on incubation of substrate proteins with both toxin and NAD and was quantitatively related to the extent of ADP-ribosylation. Gi, Go, and transducin (ADP-ribosylated by pertussis toxin) and elongation factor II (EF-II) (ADP-ribosylated by pseudomonas exotoxin) all reacted with ADP-ribose antibodies. ADP-ribose antibodies detected the ADP-ribosylation of an approximately 40-kilodalton (kDa) membrane protein related to Gi in intact human neutrophils incubated with pertussis toxin and the ADP-ribosylation of an approximately 90-kDa cytosolic protein, presumably EF-II, in intact HUT-102 cells incubated with pseudomonas exotoxin. ADP-ribose antibodies represent a novel tool for the identification and study of G proteins and other substrates for bacterial toxin ADP-ribosylation.  相似文献   

4.
Using primary cultures of striatal neurones from the mouse embryo, we showed that treatment of intact cells with cholera toxin (5 micrograms/ml, 22 h) decreases the subsequent ADP-ribosylation of the alpha subunit of the guanine-nucleotide-binding regulatory protein Go (Go alpha) and the alpha subunit of the inhibitory guanine-nucleotide-binding regulatory protein (Gi alpha) of adenylate cyclase, which is catalyzed in vitro on neuronal membranes by pertussis toxin. The inhibitory effect of cholera toxin could not only be attributed to an increased production of cAMP in neurones. Treatment of cells with 0.1 microM 8-bromoadenosine 3',5'-(cyclic)phosphate (BrcAMP) for 16 h, or with 0.1 mM BrcAMP for 5 min, mimicked the effect of cholera toxin on the ADP-ribosylation of Go alpha and Gi alpha in vitro. However, the two agents seem to act through distinct mechanisms. The protein kinase inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine prevented the action of Br8cAMP but not that of cholera toxin. In addition, measurements of the pI of the Go alpha deduced from immunoblots of two-dimensional gels performed using a specific antibody directed against Go alpha suggest that treatment of neurones with cholera toxin induces ADP-ribosylation of Go alpha in intact cells, while BrcAMP does not.  相似文献   

5.
The regulation of GTP-binding proteins (G proteins) was examined during the course of differentiation of neuroblastoma N1E-115 cells. N1E-115 cell membranes possess three Bordetella pertussis toxin (PTX) substrates assigned to alpha-subunits (G alpha) of Go (a G protein of unknown function) and "Gi (a G protein inhibitory to adenylate cyclase)-like" proteins and one substrate of Vibrio cholerae toxin corresponding to an alpha-subunit of Gs (a G protein stimulatory to adenylate cyclase). In undifferentiated cells, only one form of Go alpha was found, having a pI of 5.8 Go alpha content increased by approximately twofold from the undifferentiated state to 96 h of cell differentiation. This is mainly due to the appearance of another Go alpha form having a pI of 5.55. Both Go alpha isoforms have similar sizes on sodium dodecyl sulfate-polyacrylamide gels, are recognized by polyclonal antibodies to bovine brain Go alpha, are ADP-ribosylated by PTX, and are covalently myristylated in whole N1E-115 cells. In addition, immunofluorescent staining of N1E-115 cells with Go alpha antibodies revealed that association of Go alpha with the plasma membrane appears to coincide with the expression of the most acidic isoform and morphological cell differentiation. In contrast, the levels of both Gi alpha and Gs alpha did not significantly change, whereas that of the common beta-subunit increased by approximately 30% over the same period. These results demonstrate specific regulation of the expression of Go alpha during neuronal differentiation.  相似文献   

6.
The alpha subunits of Gi (Gi alpha) and Gs (guanine-nucleotide-binding proteins involved in adenylate cyclase inhibition and stimulation, respectively) was ADP-ribosylated by cholera toxin in differentiated HL-60 cell membranes upon stimulation of chemotactic receptors by fMLF (fM, N-formylmethionine). The ADP-ribosylation site of Gi alpha modified by cholera toxin appeared to be different from that modified by pertussis toxin [Iiri, T., Tohkin, M., Morishima, N., Ohoka, Y., Ui, M. & Katada, T. (1989) J. Biol. Chem. 264, 21,394-21,400]. This allowed us to investigate how the two types of ADP-ribosylation influence the function of the signal-coupling protein. The major findings observed in HL-60 cell membranes, where the same Gi alpha molecule was ADP-ribosylated by treatment of the membranes with either toxin, are summarized as follows. (a) More fMLF bound with a high affinity to cholera-toxin-treated membranes than to the control membranes. The high-affinity binding was, however, not observed in pertussis-toxin-treated membranes. (b) Although fMLF stimulated guanine nucleotide binding and GTPase activity in control membranes, stimulation was almost completely abolished in pertussis-toxin-treated membranes. In contrast, fMLF-dependent stimulation of GTPase activity, but not that of guanine nucleotide binding was attenuated in cholera-toxin-treated membranes. (c) Gi alpha, once modified by cholera toxin, still served as a substrate of pertussis-toxin-catalyzed ADP-ribosylation; however, the ADP-ribosylation rate of modified Gi was much lower than that of intact Gi. These results suggested that Gi ADP-ribosylated by cholera toxin was effectively capable of coupling with fMLF receptors, resulting in formation of high-affinity fMLF receptors, and that hydrolysis of GTP bound to the alpha subunit was selectively impaired by its ADP-ribosylation by cholera toxin. Thus, unlike the ADP-ribosylation of Gi by pertussis toxin, cholera-toxin-induced modification would be of great advantage to the interaction of Gi with receptors and effectors that are regulated by the signal-coupling protein. This type of modification might also be a candidate for unidentified G proteins which were less sensitive to pertussis toxin and appeared to be involved in some signal-transduction systems.  相似文献   

7.
Treatment of NG108-15 neuroblastoma x glioma cells (24 h) with cholera toxin (0.1-10 micrograms/ml) resulted in a concentration-dependent reduction of the membrane levels of subunits of GTP-binding regulatory proteins (G proteins), as determined by quantitative immunoblot procedures. The extent of reduction differed for different types of subunits: the levels of Go alpha and G beta 1 were reduced by 40-50%, whereas those of G alpha common immunoreactivity and Gi2 alpha were only reduced by 10-20% following treatment with 10 micrograms/ml cholera toxin. This effect of the toxin could not be mimicked by incubation with the resolved B oligomer of cholera toxin, nor by exposure of cells to agents able to raise the intracellular levels of cAMP. Basal adenylate cyclase was stimulated in a biphasic manner by cholera toxin, being stimulated at low concentrations (0.01-10 ng/ml) and then decreased at high (0.1-10 micrograms/ml) concentrations. Thus, the down regulation of G-protein subunits produced by cholera toxin requires its (ADP-ribosyl)transferase activity but does not result from a cAMP-mediated mechanism. The toxin-mediated decrease of Go alpha in the membrane was correlated with a diminution of opioid-receptor-mediated stimulation of high-affinity GTPase activity, suggesting that opioid receptors interact with Go in native membranes of NG108-15 cells. Northern-blot analysis of cytoplasmic RNA prepared from cells treated with cholera toxin showed that the levels of mRNA coding for G beta 1 did not change. Thus, the cholera-toxin-induced decrease of G-protein subunits may not result from an alteration in mRNA levels, but may involve a direct effect of the toxin on the process of insertion and/or clearance of G proteins into and/or from the membrane. These data indicate that cholera toxin, besides catalyzing the ADP-ribosylation of Gs and Gi/Go types of G proteins, can also reduce the steady state levels of Go alpha and G beta 1 subunits in the membrane and thus alter by an additional mechanism the function of inhibitory receptor systems.  相似文献   

8.
S C Tsai  R Adamik  Y Kanaho  J L Halpern  J Moss 《Biochemistry》1987,26(15):4728-4733
Guanyl nucleotide binding proteins couple agonist interaction with cell-surface receptors to an intracellular enzymatic response. In the adenylate cyclase system, inhibitory and stimulatory effects are mediated through guanyl nucleotide binding proteins, Gi and Gs, respectively. In the visual excitation complex, the photon receptor rhodopsin is linked to its target, cGMP phosphodiesterase, through transducin (Gt). Bovine brain contains another guanyl nucleotide binding protein, Go. The proteins are heterotrimers of alpha, beta, and gamma subunits; the alpha subunits catalyze receptor-stimulated GTP hydrolysis. To examine the interaction of Go alpha with beta gamma subunits and rhodopsin, the proteins were reconstituted in phosphatidylcholine vesicles. The GTPase activity of Go alpha purified from bovine brain was stimulated by photolyzed, but not dark, rhodopsin and was enhanced by bovine retinal Gt beta gamma or by rabbit liver G beta gamma. Go alpha in the presence of G beta gamma is a substrate for pertussis toxin catalyzed ADP-ribosylation; the modification was inhibited by photolyzed rhodopsin and enhanced by guanosine 5'-O-(2-thiodiphosphate). ADP-Ribosylation of Go alpha by pertussis toxin inhibited photolyzed rhodopsin-stimulated, but not basal, GTPase activity. It would appear from this and prior studies that Go alpha is similar to Gt alpha and Gi alpha; all three proteins exhibit photolyzed rhodopsin-stimulated GTPase activity, are pertussis toxin substrates, and functionally couple to Gt beta gamma. Go alpha (39K) can be distinguished from Gi alpha (41K) but not from Gt alpha (39K) by molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
fMet-Leu-Phe (fMLP) stimulated the formation of inositol bis- and trisphosphate in the [3H]inositol-labeled plasma membranes from the human leukemic (HL-60) cells differentiated to neutrophil-like cells by dibutyryl cyclic AMP. The stimulatory effect of fMLP was completely dependent on the simultaneous presence of GTP and Ca2+. The fMLP-stimulated formation of the phosphorylated inositols was markedly reduced by the prior ADP-ribosylation of the membranes with pertussis toxin. This toxin ADP-ribosylated a Mr approximately 40,000 protein, presumably the alpha subunit of Gi and/or Go, in the membranes. Reconstitution of the membranes ADP-ribosylated by pertussis toxin with Gi or Go purified from rat brain restored the fMLP-stimulated formation of the phosphorylated inositols. The efficiency of the rat brain Gi and Go in this capacity was roughly equal. The rat brain Gi or Go ADP-ribosylated beforehand by pertussis toxin was inactive in this reconstitution. These results indicate that both rat brain Gi and Go have the potency to couple functionally the fMLP receptor to the phospholipase C-mediated polyphosphoinositide hydrolysis and suggest that Gi or Go may be involved in the mechanism of signal transduction from the fMLP receptor to this reaction in the differentiated HL-60 cells.  相似文献   

10.
Hormonal inhibition of adenylate cyclase is mediated by a guanyl nucleotide binding protein, Gi, which is composed of alpha, beta, and gamma subunits (Gi alpha, G beta gamma). Pertussis toxin blocks hormonal inhibition by catalyzing the ADP-ribosylation of Gi alpha. With purified Gi subunits, but without nucleotides, it was observed that toxin-catalyzed ADP-ribosylation of Gi alpha was negligible in the absence of G beta gamma; ATP, previously shown to increase ADP-ribosylation in membranes, enhanced the ADP-ribosylation of Gi alpha in the absence, more than in the presence, of G beta gamma. Prior studies (Kanaho, Y., Tsai, S.-C., Adamik, R., Hewlett, E.L., Moss, J., and Vaughan, M. (1984) J. Biol. Chem. 259, 7378-7381) had demonstrated that rhodopsin, the retinal photon receptor protein, can replace inhibitory hormone receptors, and stimulate the hydrolysis of GTP by Gi alpha in the presence of G beta gamma. Photolyzed rhodopsin, but not the inactive, dark protein, inhibited ADP-ribosylation of Gi alpha in the presence of G beta gamma. ADP-ribosylation of Gi alpha, in the presence of G beta gamma and photolyzed (but not dark) rhodopsin was increased by guanosine 5'-O-(2-thiodiphosphate) or GDP, but not by (beta, gamma-methylene)guanosine triphosphate or guanosine 5'-O-(3-thiotriphosphate). Presumably, photolyzed rhodopsin and nucleoside triphosphate analogues activate Gi, whereas with dark rhodopsin and nucleoside diphosphates Gi is in the inactive state. The latter appears to be the preferred substrate for pertussis toxin. These observations are consistent with other evidence that rhodopsin and inhibitory hormone receptors are functionally similar.  相似文献   

11.
The ontogenesis of alpha 2-adrenoceptors and GTP-binding proteins and their coupling activity were investigated in telencephalon membranes of developing rats. The manganese-induced elevation of [3H]clonidine binding was increased in an age-dependent manner but the guanosine 5'-O-(3-thio)triphosphate-induced decrease in binding did not change. The extent of the binding of [3H]clonidine at 15 nM (saturable concentration) increased in an age-dependent manner and reached the adult level at 4 days after birth. Cholera toxin and pertussis toxin catalyzed ADP-ribosylation of proteins of 46 and 41/39 kilodaltons (kDa) in solubilized cholate extracts of the membranes. The 41/39-kDa proteins ADP-ribosylated by pertussis toxin (Gi alpha + Go alpha) were increased with age and reached the adult level at day 12, whereas the 46-kDa protein (Gs alpha) reached its peak on day 12 and then decreased to the fetal level at the adult stage. The immunoblot experiments of the homogenates with antiserum (specific antibody against alpha- and beta-subunit of GTP-binding proteins) demonstrated that the 39-kDa alpha-subunit of (Go alpha) and the 36-kDa beta-subunit of GTP-binding protein (beta 36) increased with postnatal age. In contrast, 35-kDa beta-subunit (beta 35) did not change. From these results, it is suggested that the coupling activity of alpha 2-adrenoceptor with GTP-binding protein gradually develops in a manner parallel with the increase of alpha 2-adrenoceptor and pertussis toxin sensitive GTP-binding proteins, Gi, and that alpha 39 beta 36 gamma may be related to the differentiation and/or growth of nerve cells in rat telencephalon.  相似文献   

12.
The abundance of the alpha and beta subunits of the GTP-binding proteins (G-proteins) that transduce hormonal messages to adenylate cyclase was assessed in adipocyte membranes from lean (+/+) and obese (ob/ob) mice, using ADP-ribosylation with bacterial toxin and immunodetection. Both methods revealed two Gs alpha species (48 and 42 kDa) in the membranes. Compared with those of lean mice, the membranes from obese mice contained substantially less of the 48 kDa species of Gs alpha, as assessed by both methods. ADP-ribosylation by pertussis toxin showed that only half as much ADP-ribose was incorporated into Gi alpha in the membranes from obese as compared with lean mice. Immunodetection revealed two separate Gi alpha peptides (39 and 40 kDa) and showed that the 40 kDa species was less abundant in the membranes from obese mice, whereas the amount of the 39 kDa species was similar in membranes from both lean and obese animals. Based on ADP-ribosylation assays, in membranes from lean mice the ratio Gs alpha/Gi alpha was 1:16, whereas in the membranes from obese mice it was 1:10. Similar amounts of immunodetectable beta peptide were found in both types of membranes. On the basis of the currently accepted dissociation model of adenylate cyclase activation, the decrease in the abundance of the Gi alpha subunit in adipocyte membranes from obese mice could account for the abnormal kinetics of the enzyme in these membranes.  相似文献   

13.
Noradrenaline (NA) stimulated the release of arachidonic acid (AA) from the [3H]AA-labelled rabbit platelets via alpha 2-adrenergic receptors, since the effect of NA was inhibited by yohimbine. The stimulatory effect of NA in digitonin-permeabilized platelets was completely dependent on the simultaneous presence of GTP and Ca2+. The NA- and thrombin-stimulated releases of AA were markedly decreased by the prior ADP-ribosylation of the permeabilized platelets with pertussis toxin. Antiserum directed against the pig brain Go (a GTP-binding protein of unknown function), recognizing both alpha 39 and beta 35,36 subunits, but not alpha 41, of pig brain, reacted with 41 kDa and 40 kDa bands, with not one of 39 kDa, in rabbit platelet membranes. Anti-Go antiserum inhibited guanosine 5'-[gamma-thio]triphosphate-, A1F4(-)-, NA- and thrombin-stimulated AA releases in the membranes. Although the effect of thrombin was inhibited by low concentrations of anti-Go antiserum, high concentrations of the antiserum was needed for inhibition of the NA effect. Antiserum directed against the pig brain G1 (inhibitory G-protein), recognizing both alpha 41 and beta 35,36 subunits, but not alpha 39, of pig brain, reacted with the 41 kDa band in platelets. Anti-G1 antiserum inhibited only the effect of NA. Reconstitution of the platelet membranes ADP-ribosylated by pertussis toxin with Go, not Gi, purified from pig brain restored the thrombin-stimulated release of AA. In contrast, reconstitution of those membranes with Gi, not Go, restored the NA-stimulated release of AA. These results indicate that different GTP-binding proteins, Gi- and Go-like proteins, may be involved in the mechanism of signal transduction from alpha 2-adrenergic receptors and thrombin receptors to phospholipase A2 in rabbit platelets.  相似文献   

14.
Bovine peripheral neutrophils contain high levels of a 40-kDa pertussis toxin substrate, which was found highly enriched in a light membrane fraction upon subcellular fractionation of neutrophil homogenates. The 40-kDa pertussis toxin substrate, referred to as alpha n, was purified to near homogeneity from this fraction by sequential ion-exchange, gel-filtration and hydrophobic chromatography. Purified alpha n was shown to interact with beta gamma subunits, undergo ADP-ribosylation by pertussis toxin, and bind guanine nucleotides with high affinity. The mobility of purified alpha n on SDS/polyacrylamide gels was intermediate between those of the alpha subunits of Gi and Go, purified from bovine brain, and slightly lower than the mobility of the alpha subunit of transducin (Gt). Several polyclonal antisera against the alpha subunits of bovine Gt and Go did not react with alpha n on immunoblots. CW 6, a polyclonal antiserum reactive against the bovine alpha i, reacted only minimally with alpha n. These results suggest that the major pertussis toxin substrate of bovine neutrophils, designated Gn, is structurally different from previously identified pertussis toxin substrates and may represent a novel guanine-nucleotide-binding protein.  相似文献   

15.
The effects of pertussis toxin on the steady-state levels of G-protein alpha- and beta-subunits were investigated both in vitro and in vivo. The steady-state level Go alpha, a major substrate for pertussis toxin-catalyzed ADP-ribosylation, was unaltered by pertussis toxin treatment for periods up to 100 h for 3T3-L1 cells in culture or up to 3 days in vivo. In 3T3-L1 cells pertussis toxin treatment did not alter levels of Gs alpha-subunits; in S49 cells the level of Gs alpha-subunits declined moderately following by pertussis toxin treatment. The steady-state levels of G beta-subunits, in contrast, were found to decline to less than 50% of the normal cellular complement following pertussis toxin treatment in vitro and in vivo. Inhibitory control of adenylate cyclase, pertussis toxin-catalyzed ADP-ribosylation of Gi alpha and Go alpha, and the GTP-dependent shift in agonist-specific binding to beta-adrenergic receptors were attenuated or abolished within 5 h of pertussis toxin treatment, representing "early" effects of the toxin. Stimulatory regulation of adenylate cyclase, in contrast, displayed a progressive enhancement that was first observed 4 h after pertussis toxin treatment, increasing thereafter up until 100 h, the last time point measured. This progressive enhancement of the stimulatory pathway of adenylate cyclase was not manifest at the level of stimulatory receptors, since the Kd and Bmax for one such receptor, the beta-adrenergic receptor, were shown to be unaltered in toxin-treated cells. Furthermore, the potentiation of stimulation of adenylate cyclase was observed in cells stimulated by the beta-adrenergic agonist isoproterenol and PGE1 alike. The progressive enhancement of the stimulatory pathway correlated best with the decline in G beta-subunit levels that occurs following pertussis intoxication. The changes in both of these parameters occur "late" (12-48 h), as compared to the early events that occur within 5 h. Pertussis toxin action appears to be composed of two, temporally distinct, groups of effects. Pertussis toxin-catalyzed ADP-ribosylation of G alpha-subunits, attenuation of the inhibitory regulation of adenylate cyclase, and attenuation of the ability of GTP to induce an agonist-specific shift in receptor affinity are members of the early group of effects. The second group of late effects includes the decline in G beta-subunit levels and the progressive enhancement of the stimulatory pathway of adenylate cyclase. This enhanced stimulatory control at these later times cannot be explained by the attenuation of the inhibitory pathway occurring early, but rather appears as G beta-subunit levels decline.  相似文献   

16.
We report a 39 kDa substrate for cholera and pertussis toxins is present in D. discoideum membranes. This protein did not co-migrate with alpha subunits of either Gs (45 kDa and 52 kDa) or Gi (41 kDa) from control mammalian cells. The presence of GTP or its non-hydrolyzable analogs enhanced the ADP-ribosylation in response to cholera toxin, but did not significantly alter ADP-ribosylation by pertussis toxin. Divalent cations inhibited the ADP-ribosylation by both toxins. The possible association of this novel G-protein with D. discoideum adenylate cyclase may underlie some of the unique regulatory features of this enzyme. Alternatively, this G-protein may regulate one of several other cellular responses mediated by the cAMP receptor.  相似文献   

17.
Pretreatment of striatal neurons from mouse embryos in primary culture with 17 beta-estradiol (10(-9) M, 24 h) enhanced the ADP-ribosylation of G alpha o,i proteins catalyzed by pertussis toxin (PTX). As estimated by quantitative ADP-ribosylation of G alpha s with cholera toxin and immunoblot experiments using anti-G alpha o and anti-G beta sera, 17 beta-estradiol pretreatment did not modify the levels of the major GTP-binding protein (G protein) constituent subunits G alpha s, G alpha o, and G beta. Thus, 17 beta-estradiol should induce a qualitative modification of these G proteins, perhaps by stabilizing the association of the heterotrimers G alpha o,i beta gamma, which are the targets of PTX. Such a hypothesis is in agreement with observations indicating that 17 beta-estradiol both suppressed the D2 dopamine- and opiate receptor-induced inhibitions of adenylate cyclase activity and enhanced the positive coupling between biogenic amine receptors (D1 dopamine, beta-adrenergic, and A2 adenosine) and adenylate cyclase. In addition, PTX pretreatment, which is known to uncouple receptors associated with Go,i proteins and thus to impair the dissociation of the heterotrimers G alpha o,i beta gamma, mimicks the effects of the steroid on the responses of adenylate cyclase to inhibitory and stimulatory agonists. Finally, the chemical specificity of the steroids was the same in the ADP-ribosylation as in the adenylate cyclase experiments: Testosterone (10(-9) M) mimicked the effects of 17 beta-estradiol, whereas 17 alpha-estradiol, progesterone, and dexamethasone did not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Pertussis toxin abolishes hormonal inhibition of adenylate cyclase, hormonal stimulation of inositol 1,4,5-trisphosphate accumulation in rat fat-cells, and catalyses the ADP-ribosylation of two peptides, of Mr 39,000 and 41,000 [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564]. The 41,000-Mr peptide is the alpha-subunit of the G-protein, referred to as Gi, that is believed to mediate inhibitory control of adenylate cyclase by hormones. The nature of the 39,000-Mr substrate for pertussis toxin was investigated. The fat-cell 39,000-Mr peptide was compared structurally and immunologically with the alpha-subunits of two other G-proteins, Gt isolated from the rod outer segments of bovine retina and Go isolated from bovine brain. After radiolabelling in the presence of pertussis toxin and [32P]NAD+, the electrophoretic mobilities of the fat-cell 39,000-Mr peptide and the alpha-subunits of Go and Gt were nearly identical. Partial proteolysis of these ADP-ribosylated proteins generates peptide patterns that suggest the existence of a high degree of homology between the fat-cell 39,000-Mr peptide and the alpha-subunit of Go. Antisera raised against purified G-proteins and their subunits were used to probe immunoblots of purified Gt, Gi, Go, and fat-cell membrane proteins. Although recognizing the 36,000-Mr beta-subunit band of Gt, Gi, Go and a 36,000-Mr fat-cell peptide, antisera raised against Gt failed to recognize either the 39,000- or the 41,000-Mr peptides of fat-cells or the alpha-subunits of Go and Gi. Antisera raised against the alpha-subunit of Go, in contrast, recognized the 39,000-Mr peptide of rat fat-cells, but not the alpha-subunit of either Gi or Gt. These data establish the identity of Go, in addition to Gi, in fat-cell membranes and suggest the possibility that either Go or Gi alone, or both, may mediate hormonal regulation of adenylate cyclase and phospholipase C.  相似文献   

19.
G-protein mRNA levels during adipocyte differentiation   总被引:1,自引:0,他引:1  
G-protein-mediated transmembrane signaling in 3T3-L1 cells is modulated by differentiation. The regulation of G-protein expression in differentiating 3T3-L1 cells was probed at the level of mRNA by DNA-excess solution hybridization. Pertussis toxin-catalyzed ADP-ribosylation of G-protein alpha-subunits increased as fibroblasts differentiate to adipocytes. Steady-state levels of mRNA for Gi alpha 2 and Go alpha, in contrast, declined sharply. Immunoblotting with antipeptide antibodies specific for Gi alpha 2, too, revealed a decline in the steady-state expression of this pertussis toxin substrate. ADP-ribosylation of Gs alpha by cholera toxin was less in the adipocyte than fibroblast. Analysis by immunoblotting revealed only a modest decline in Gs alpha. Analysis of mRNA levels also demonstrated a decline for Gs alpha. mRNA levels for the G beta-subunits rose initially (25%) on day 1, declined from day 1 to day 3, and remained 25% lower in adipocytes than in fibroblasts. In 3T3-L1 adipocytes the molar amounts of subunit mRNAs were: 60.6 (Gs alpha); 2.1 (Gi alpha 2); and 1.5 (Go alpha) amol/microgram total cellular RNA. In rat fat cells these mRNA levels were 19.4 (Gs alpha); 7.0 (Gi alpha 2); and 2.3 (Go alpha). These data demonstrate that for Gi alpha 2 and Go alpha alike mRNA and protein expression decrease, not increase, in differentiation. A substrate for pertussis toxin other than Gi alpha 2 and Go alpha appears to be responsible for the increase in toxin-catalyzed labeling that accompanies differentiation of 3T3-L1 cells.  相似文献   

20.
Using high-resolution Mono-Q anion-exchange chromatography, we purified four distinct GTP-binding proteins from bovine brain. Each consists of alpha and associated beta/gamma subunits, and each is a substrate for pertussis toxin catalyzed ADP-ribosylation. We defined the relationship between the alpha subunits of the purified proteins and cloned cDNAs encoding putative alpha subunits (1) by performing immunoblots with peptide antisera with defined specificity and (2) by comparing the migration on two-dimensional gel electrophoresis of the purified proteins, and of the in vitro translated products of cDNAs encoding alpha subunits. Purified G proteins with alpha subunits of 39, 41, and 40 kDa (G39, G41, and G40 in order of abundance) correspond to the products of Go, Gi1, and Gi2 cDNAs. We purified a novel G protein with an alpha subunit slightly above 39 kDa (G39*). G39* is less abundant than G39, elutes earlier than G39 on Mono-Q chromatography, and has a more basic pI (6.0 vs 5.6) than G39. G39 and G39*, however, are indistinguishable on immunoblots with a large number of specific antisera. The data suggest that G39* may represent a novel form of Go, differing in posttranslational modification rather than primary sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号