首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY Multicellular development in the social amoeba Dictyostelium discoideum is triggered by starvation. It involves a series of morphogenetic movements, among them being the rising of the spore mass to the tip of the stalk. The process requires precise coordination between two distinct cell types—presumptive (pre-) spore cells and presumptive (pre-) stalk cells. Trishanku ( triA ) is a gene expressed in prespore cells that is required for normal morphogenesis. The triA mutant shows pleiotropic effects that include an inability of the spore mass to go all the way to the top. We have examined the cellular behavior required for the normal ascent of the spore mass. Grafting and mixing experiments carried out with tissue fragments and cells show that the upper cup, a tissue that derives from prestalk cells and anterior-like cells (ALCs), does not develop properly in a triA background. A mutant upper cup is unable to lift the spore mass to the top of the fruiting body, likely due to defective intercellular adhesion. If wild-type upper cup function is provided by prestalk and ALCs, trishanku spores ascend all the way. Conversely, Ax2 spores fail to do so in chimeras in which the upper cup is largely made up of mutant cells. Besides proving that under these conditions the wild-type phenotype of the upper cup is necessary and sufficient for terminal morphogenesis in D. discoideum , this study provides novel insights into developmental and evolutionary aspects of morphogenesis in general. Genes that are active exclusively in one cell type can elicit behavior in a second cell type that enhances the reproductive fitness of the first cell type, thereby showing that morphogenesis is a cooperative process.  相似文献   

2.
3.
Pre-starvation amoebae of Dictyostelium discoideum exhibit random movements. Starved cells aggregate by directed movements (chemotaxis) towards cyclic AMP and differentiate into live spores or dead stalk cells. Many differences between presumptive spore and stalk cells precede differentiation. We have examined whether cell motility-related factors are also among them. Cell speeds and localisation of motility-related signalling molecules were monitored by live cell imaging and immunostaining (a) in nutrient medium during growth, (b) immediately following transfer to starvation medium and (c) in nutrient medium that was re-introduced after a brief period of starvation. Cells moved randomly under all three conditions but mean speeds increased following transfer from nutrient medium to starvation medium; the transition occurred within 15 min. The distribution of speeds in starvation medium was bimodal: about 20% of the cells moved significantly faster than the remaining 80%. The motility-related molecules F-actin, PTEN and PI3 kinase were distributed differently in slow and fast cells. Among starved cells, the calcium content of slower cells was lower than that of the faster cells. All differences reverted within 15 min after restoration of the nutrient medium. The slow/fast distinction was missing in Polysphondylium pallidum, a cellular slime mould that lacks the presumptive stalk and spore cell classes, and in the trishanku (triA(-)) mutant of D. discoideum, in which the classes exist but are unstable. The transition from growth to starvation triggers a spontaneous and reversible switch in the distribution of D. discoideum cell speeds. Cells whose calcium content is relatively low (known to be presumptive spore cells) move slower than those whose calcium levels are higher (known to be presumptive stalk cells). Slow and fast cells show different distributions of motility-related proteins. The switch is indicative of a bistable mechanism underlying cell motility.  相似文献   

4.
The ecmA (pDd63) and ecmB (pDd56) genes encode extracellular matrix proteins of the slime sheath and stalk tube of Dictyostelium discoideum. Using fusion genes containing the promoter of one or other gene coupled to an immunologically detectable reporter, we previously identified two classes of prestalk cells in the tip of the migrating slug; a central core of pstB cells, which express the ecmB gene, surrounded by pstA cells, which express the ecmA gene. PstB cells lie at the position where stalk tube formation is initiated at culmination and we show that they act as its founders. As culmination proceeds, pstA cells transform into pstB cells by activating the ecmB gene as they enter the stalk tube. The prespore region of the slug contains a population of cells, termed anterior-like cells (ALC), which have the characteristics of prestalk cells. We show that the ecmA and ecmB genes are expressed at a low level in ALC during slug migration and that their expression in these cells is greatly elevated during culmination. Previous observations have shown that ALC sort to surround the prespore cells during culmination (Sternfeld and David, 1982 Devl Biol. 93, 111-118) and we find just such a distribution for pstB cells. We believe that the ecmB protein plays a structural role in the stalk tube and its presence, as a cradle around the spore head, suggests that it may play a further function, perhaps in ensuring integrity of the spore mass during elevation. If this interpretation is correct, then a primary role of anterior-like cells may be to form these structures at culmination. We previously identified a third class of prestalk cells, pstO cells, which lie behind pstA cells in the slug anterior and which appeared to express neither the ecmA nor the ecmB gene. Using B-galactosidase fusion constructs, which give more sensitive detection of gene expression, we now find that these cells express the ecmA gene but at a much lower level than pstA cells. We also show that expression of the ecmA gene becomes uniformly high throughout the prestalk zone when slugs are allowed to migrate in the light. Overhead light favours culmination and it may be that increased expression of the ecmA gene in the pst 'O' region is a preparatory step in the process.  相似文献   

5.
It has been previously demonstrated that the expression of an activated rasD gene in wild-type Dictyostelium cells results in formation of aggregates with multitips, instead of the normal single tips, and a block in further development. In an attempt to better understand the role of activated RasD development, we examined cell-type-specific gene expression in a strain stably expressing high levels of RasD[G12T]. We found that the expression of prestalk cell-specific genes ecmA and tagB was markedly enhanced, whereas the expression of the prespore cell-specific gene cotC was reduced to very low levels. When the fate of cells in the multitipped aggregate was monitored with an ecmA/lacZ fusion, it appeared that most of the cells eventually adopted prestalk gene expression characteristics. When mixtures of the [G12T]rasD cells and Ax3 cells were induced to differentiate, chimeric pseudoplasmodia were not formed. Thus, although the [G12T]rasD transformant had a marked propensity to form prestalk cells, it could not supply the prestalk cell population when mixed with wild-type cells. Both stalk and spore cell formation occurred in low cell density monolayers of the [G12T]rasD strain, suggesting that at least part of the inhibition of stalk and spore formation during multicellular development involved inhibitory cell interactions within the cell mass. Models for the possible role of rasD in development are discussed.  相似文献   

6.
We describe a method of separating prestalk and prespore cells of Dictyostelium discoideum slugs using a self-generating Percoll gradient. This method gives quantitative recovery of cells and good purity. Separated prestalk and prespore cells possess different levels of the enzymes UDP galactose :polysaccharide transferase, cAMP phosphodiesterase and glycogen phosphorylase. We have used this method, as well as mechanical dissection of slugs, to examine the fate of separated prestalk and prespore cells in Dictyostelium strains that are able to give rise to mature stalk and spore cells in cell monolayers. The results from such experiments provide direct evidence that prestalk and prespore cells from the migrating slug stage are programmed to differentiate into stalk and spore cells respectively.  相似文献   

7.
A genetic melanotic neoplasm of Drosophila melanogaster   总被引:6,自引:0,他引:6  
The construction of mature fruiting bodies occurs during the culmination stage of development of Dictyostelium discoideum. These contain at least two different cell types, spores and stalks, which originate from an initially homogenous population of vegetative amoebas. As an attempt to identify proteins whose synthesis is regulated in each cell type during differentiation, we have analyzed the two-dimensional profiles of proteins synthesized by spore and stalk cells during the culmination stage. We have identified 5 major polypeptides which are specifically synthesized by spore cells during culmination and 9 which are only made by stalk cells. Furthermore, synthesis of about 20 polypeptides appears to be enriched either in the spore or in the stalk cells. We also show that synthesis of actin, a major protein synthesized during Dictyostelium development, is specifically inhibited in the spore cells during culmination. Synthesis of most of the cell type-specific proteins initiates at 19–20 hr, during culmination. Moreover, the proteins whose synthesis is induced after formation of tight aggregates, the time when the major change in gene expression occurs, are not specifically incorporated into spores or stalk cells, and appear to be synthesized by both cell types. We conclude that a new class of genes is expressed during the culmination stage in Dictyostelium, giving rise to specific patterns of protein synthesis in spore and stalk cells.  相似文献   

8.
The DIFs are a family of secreted chlorinated molecules that control cell fate during development of Dictyostelium cells in culture and probably during normal development too. They induce stalk cell differentiation and suppress spore cell formation. The biosynthetic and inactivation pathways of DIF-1 (the major bioactivity) have been worked out. DIF-1 is probably synthesised in prespore cells and inactivated in prestalk cells, by dechlorination. Thus, each cell type tends to alter DIF-1 level so as to favour differentiation of the other cell type. This relationship leads to a model for cell-type proportioning during normal development.  相似文献   

9.
Dictyopyrones A and B (DpnA and B), whose function(s) is not known, were isolated from fruiting bodies of Dictyostelium discoideum. In the present study, to assess their function(s), we examined the effects of Dpns on in vitro cell differentiation in D. discoideum monolayer cultures with cAMP. Dpns at 1-20 microM promoted stalk cell formation to some extent in the wild-type strain V12M2. Although Dpns by themselves could hardly induce stalk cell formation in a differentiation-inducing factor (DIF)-deficient strain HM44, both of them dose-dependently promoted DIF-1-dependent stalk cell formation in the strain. In the sporogenous strain HM18, Dpns at 1-20 microM suppressed spore formation and promoted stalk cell formation in a dose-dependent manner. Analogs of Dpns were less effective in affecting cell differentiation in both HM44 and HM18 cells, indicating that the activity of Dpns should be chemical structure specific. It was also shown that DpnA at 2-20 microM dose-dependently suppressed spore formation induced with 8-bromo cAMP and promoted stalk cell formation in V12M2 cells. Interestingly, it was shown by the use of RT-PCR that DpnA at 10 microM slightly promoted both prespore- and prestalk-specific gene expressions in an early phase of V12M2 and HM18 in vitro differentiation. The present results suggest that Dpns may have functions (1) to promote both prespore and prestalk cell differentiation in an early stage of development and (2) to suppress spore formation and promote stalk cell formation in a later stage of development in D. discoideum.  相似文献   

10.
Reproductive division of labour is common in many societies, including those of eusocial insects, cooperatively breeding vertebrates, and most forms of multicellularity. However, conflict over what is best for the individual vs. the group can prevent an optimal division of labour from being achieved. In the social amoeba Dictyostelium discoideum, cells aggregate to become multicellular and a fraction behaves altruistically, forming a dead stalk that supports the rest. Theory suggests that intra‐organismal conflict over spore–stalk cell fate can drive rapid evolutionary change in allocation traits, leading to polymorphisms within populations or rapid divergence between them. Here, we assess several proxies for stalk size and spore–stalk allocation as metrics of altruism investment among strains and across geographic regions. We observe geographic divergence in stalk height that can be partly explained by differences in multicellular size, as well as variation among strains in clonal spore–stalk allocation, suggesting within‐population variation in altruism investment. Analyses of chimeras comprised of strains from the same vs. different populations indicated genotype‐by‐genotype epistasis, where the morphology of the chimeras deviated significantly from the average morphology of the strains developed clonally. The significantly negative epistasis observed for allopatric pairings suggests that populations are diverging in their spore–stalk allocation behaviours, generating incompatibilities when they encounter one another. Our results demonstrate divergence in microbial social traits across geographically separated populations and demonstrate how quantification of genotype‐by‐genotype interactions can elucidate the trajectory of social trait evolution in nature.  相似文献   

11.
12.
We describe rblA, the Dictyostelium ortholog of the retinoblastoma susceptibility gene Rb. In the growth phase, rblA expression is correlated with several factors that lead to 'preference' for the spore pathway. During multicellular development, expression increases 200-fold in differentiating spores. rblA-null strains differentiate stalk cells and spores normally, but in chimeras with wild type, the mutant shows a strong preference for the stalk pathway. rblA-null cells are hypersensitive to the stalk morphogen DIF, suggesting that rblA normally suppresses the DIF response in cells destined for the spore pathway. rblA overexpression during growth leads to G1 arrest, but as growing Dictyostelium are overwhelmingly in G2 phase, rblA does not seem to be important in the normal cell cycle. rblA-null cells show reduced cell size and a premature growth-development transition; the latter appears anomalous but may reflect selection pressures acting on social ameba.  相似文献   

13.
14.
Young sorocarps (consisting of a mass of spore cells resting on a stalk) were exposed to low levels of [U-14C]glucose and the spore cells were rapidly separated from stalk cells. Metabolites were isolated from spores and their specific radioactivities compared to these metabolites isolated from the whole organism; i.e. spore plus stalk cells. Based on these data, known reaction rates, and metabolite concentrations, highly constrained steady state models of metabolism in spore and stalk cells were constructed. Direct evidence has been obtained which substantiates earlier predictions regarding cell permeability, the distribution of specific metabolites, and the location of reactions in vivo.  相似文献   

15.
A mutant of Dictyostelium discoideum, HM18, will differentiate into both stalk and spore cells when plated at high cell density (105 cells/cm2) as a monolayer on non-nutrient agar containing 5 mM cAMP [6]. At low cell density (103 cells/cm2) neither stalk nor spore cells are produced, but the addition of a cytosol fraction leads to stalk cell formation, and the addition of a membrane fraction leads to spore cell formation. The spore cell-inducing activity of the cell membranes is developmentally regulated; it is first detectable during late aggregation and increases to a maximum level in the pseudoplasmodial stage of development. The activity is sensitive to proteolysis and insensitive to periodate treatment. It is partially inactivated by incubation at 100 °C for 5 min. Variable amounts of the activity can be removed from the membrane by washing, suggesting that at least part of the activity is loosely membrane-bound. Activity is enriched in plasma membrane fractions, suggesting that the inducing factor is located at the cell surface. It is possible that the membranes are replacing a cell-cell contact requirement for spore formation.  相似文献   

16.
Abstract Sporogenous mutants of Dictyostelium discoideum strain V12M2 were used to determine whether the intracellular levels of cyclic AMP or other second messengers regulate differentiation. Increasing external concentrations of cyclic AMP promoted spore formation. Caffeine and progesterone, which lower intracellular cyclic AMP levels by different mechanisms, blocked spore formation and favored stalk cell formation. In contrast, differentiation of both spore and stalk cells occurred normally in the presence of agents that disrupt calcium/calmodulin or protein kinase C-based second messenger systems. The data are in accord with the view that (1) intracellular cyclic AMP is essential for terminal differentiation of both cell types, and (2) higher levels are required for formation of spores than for stalk cells.  相似文献   

17.
Single-celled myxamoebae undergo differentiation into either stalk cells or spore cells during a 24-hr period in Dictyostelium discoideum. This study employed ultramicrochemical techniques and enzymatic cycling to assess the presence of cell-specific events in spore and stalk cells. Freeze-dried sections of one organism were assayed in 0.1 μl of reaction mixture. This method was used to determine the extent of localization of trehalose in spore cells and stalk cells during development.Trehalose was low in the early stages of differentiation to about 20 hr when the level started to increase. In developing spore cells, the trehalose level increased sixfold during the last 5 hr of development. Likewise, the entire stalk contained trehalose when the stalk was first formed. At mature sorocarp, trehalose levels were the same in spores and the apex of the stalk. There was a decreasing gradient of trehalose down the stalk. The bottom one-fourth of the stalk was devoid of this disaccharide. Therefore, trehalose was degraded from an area of the stalk where it was localized earlier in development.The results of this investigation negate the assumption that trehalose is never present in the stalk. Although trehalose was found in spore cells, prestalk cells also contained high trehalose levels. The stalk cell-specific trehalose was not retained during differentiation, however, but was apparently degraded in the mature stalk cell.  相似文献   

18.
19.
The processes of differentiation of the presumptive cells (prespore and prestalk cens) into mature spores, stalk and basal-disc cells in Dictyotelium discoideum was investigated. The number of stalk and disc cells in pre-labeled culminating cell masses was estimated by determining the radioactivity of the undissociable fraction separated by filtration from the dissociable fraction containing presumptive cells and spores. Changes in the proportion of amoeboid cells stainable with fluorescein-conjugated antispore serum and encapsulated spores were also followed in the dissociable fraction. Formation of stalk and disc cells began at 17 hr of development and was completed at 26 hr, while formation of morphologically identifiable spores began at 18 hr and was completed at 20 hr, long before completion of stalk formation. At the onset of culmination, unstained cells abruptly increased with an accompanying decrease of stained cells, when unstained rear-guard cells appeared in the hind region. Although some of the rear-guard cells soon differentiated into basal-disc cells, the rest remained amoeboid in the upper part of the spore mass (sorus) after complete formation of a fruiting body. Despite the presence of the amoeboid cells in mature sori, the proportion of the sorus to the stalk and disc of a fruiting body was approximately equal to that of stained (prespore) to unstained (prestalk) cells in a migrating slug.  相似文献   

20.
对盘基网柄菌发育过程中分化诱导因子(DIF)的作用及其机制进行了综述,包括DIF对盘基网柄菌前柄细胞、柄细胞分化的作用以及DIF的生物合成、DIF的诱导、降解失活、DIF对细胞命运和细胞比例的调节及其作用机制等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号