首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fighting is a powerful social experience that can affect male reproductive behavior, including ejaculatory strategies. Whereas winners may monopolize females, losers may instead perceive high sperm competition and limited future mating opportunities, and accordingly enhance ejaculate quality to maximize their reproductive success. In male field crickets Gryllus bimaculatus that fight aggressively for control of breeding territories, winners are known to possess sperm of lower quality (viability) compared to losers, but it remains unclear whether this is due to short‐term fighting consequences. To test if the fighting experience per se (winning or losing) affects male adjustment of sperm viability, we subjected males to winning and losing experiences by staging fights against size‐matched rivals of known fighting ability. These rivals were males that previously won or lost a fight and, due to “winner‐loser effects” kept winning or losing subsequent contests. We sampled sperm prior and after the fight and twice in control males with no fighting experience and found no differences in sperm viability across measures. We conclude that males do not tailor their ejaculate quality following a single fight, or based on its outcome. Intrinsic differences in other attributes between winners and loser phenotypes may explain differences in sperm quality previously described in this system.  相似文献   

2.
Contest decisions are influenced by the outcomes of recent fights (winner–loser effects). Steroid hormones and serotonin are closely associated with aggression and therefore probably also play important roles in mediating winner–loser effects. In mangrove rivulus fish, Kryptolebias marmoratus, individuals with higher testosterone (T), 11-ketotestosterone and cortisol levels are more capable of winning, but titres of these hormones do not directly mediate winner–loser effects. In this study, we investigated the effects of winning/losing experiences on brain expression levels of the receptor genes for androgen (AR), oestrogen α/β (ERα/β), glucocorticoid (GR) and serotonin (5-HT1AR). The effect of contest experience on AR gene expression depended on T levels: repeated losses decreased, whereas repeated wins increased AR gene expression in individuals with low T but not in individuals with medium or high T levels. These results lend strong support for AR being involved in mediating winner–loser effects, which, in previous studies, were more detectable in individuals with lower T. Furthermore, the expression levels of ERα/β, 5-HT1AR and GR genes were higher in individuals that initiated contests against larger opponents than in those that did not. Overall, contest experience, underlying endocrine state and hormone and serotonin receptor expression patterns interacted to modulate contest decisions jointly.  相似文献   

3.
Prior fighting experience of opponents can influence the outcome of conflicts. After a victory, animals are more likely to win subsequent contests, whereas after a defeat animals are more likely to lose, regardless of the identity of opponents. The underlying mechanisms and the adaptive significance of these winner and loser effects are as yet unknown. Here, we tested experimentally whether agonistic behavior of male wild‐type Norway rats is influenced by social experience, and we investigated whether this might reduce fighting costs (duration of contest, risk of injury) in subsequent encounters. Rats were randomly assigned to receive either a losing or a winning experience and subsequently tested with unfamiliar, naïve opponents. We found that most rats with a winning experience won the subsequent encounter, and all rats with a losing experience lost the next contest. Previous winners attacked more rapidly in the subsequent encounter and reduced their aggressive behavior sooner; the contests were decided more quickly, which saved time and behavioral effort to the winner. Previous losers received less aggression in the next encounter, despite emitting fewer submissive ultrasonic calls than in the preceding contest, thereby reducing the risk of being injured by the opponent. Thus, anonymous social experience influenced rats’ subsequent behavior toward size‐matched, naïve, unknown social partners. Furthermore, apparently, they benefit from showing winner and loser effects in intraspecific contests by saving time, energy, and risk.  相似文献   

4.
Residency is an important predictor of success in contests with ownership asymmetries. Residency often can interact with a winning experience. However, given that some residents lose a contest even when showing an ownership advantage and that the process leading to loss often determines the loser's subsequent success, prior ownership might also interact with a loss. Here, we staged experimental contests between males of the hermit crab Pagurus minutus with a similar-sized weapon (i.e., cheliped) to examine this possibility. Male–male contests in this species occur between a solitary intruder and an owner guarding a mature female. We evaluated (a) whether resource ownership and female value affect the contest outcome and (b) whether the probability of winning after losing differs depending on the initial role of the loser (i.e., owner or intruder) by using precopulatory guarding pairs of P. minutus collected from the field. In the first fighting trial, we found an ownership advantage and increasing owner success as the body size of his partner increased. Although some owners lost the fight, in contrast to our prediction, the frequency of losing in the second fighting trial did not differ between prior owners and prior intruders. Because losers from the first fighting trial of male–male contests have no female regardless of their initial role, this shared solitary status might be related to the lack of difference in success in the second fighting trial. Moreover, unlike in other animals, resident status might not always assure greater fighting ability in P. minutus males because guarding Pagurus males can avoid male–male contests by climbing up objects in the field. Losers in the first trial, therefore, may have been weaker contestants based on traits other than size, regardless of whether they were owners or intruders.  相似文献   

5.
In many species males that tend to win fights against othermales are more attractive to females. There are three ways inwhich male fighting ability and attractiveness may be associated:(1) attractiveness and fighting ability are influenced by thesame underlying traits (e.g., body size), (2) females prefermales that have directly observed winning fights, or (3) winningprevious fights indirectly improves a male's chance of beingpreferred by females. The last possibility may arise as a consequenceof the "loser effect"; in many species when a male loses a fighthis probability of losing subsequent fights increases. Thereare, however, no studies testing whether such a "loser effect"also influences male attractiveness. Here we show that maleattractiveness and fighting ability are positively correlatedin the house cricket, Acheta domesticus. Our experiment wasdesigned so that females could not directly observe the outcomeof fights, thus eliminating possibility (2) above. We then testedbetween possibilities (1) and (3) by making use of the factthat in some cricket species the "loser effect" can be eliminatedexperimentally by ‘shaking’ a male and stimulatingthe motor program for flying. We showed that in A. domesticus‘shaking’ does affect the outcome of subsequentfights. Males that had won two previous fights were less likelyto win a fight after being ‘shaken’ than when subjectto a control treatment. In contrast, males that had lost twoprevious fights were more likely to win a fight after being‘shaken’ than when they were not shaken. There was,however, no effect of ‘shaking’ on male attractiveness.We conclude that the "loser effect" does not alter the tendencyfor large, dominant males to be attractive to females. Instead,it appears that there are traits correlated with both fightingability and attractiveness. One such trait is body size. Fightwinners were significantly larger than losers and attractivenesswas positively correlated with male body size.  相似文献   

6.
In many animal taxa, prior contest experience affects future performance such that winning increases the chances of winning in the future (winner effect) and losing increases the chances of losing in the future (loser effect). It is, however, not clear whether this pattern typically arises from experience effects on actual or perceived fighting ability (or both). In this study, we looked at winner and loser effects in the jumping spider Phidippus clarus. We assigned winning or losing experience to spiders and tested them against opponents of similar fighting ability in subsequent contests at 1-, 2-, 5-, and 24-h intervals. We examined the strength of winner and loser effects, how long effects persist, as well as how experience affected perceived and actual fighting ability. Our results demonstrate that winner and loser effects are of approximately the same magnitude, although loser effects last longer than winner effects. Our results also demonstrate that previous experience alters actual fighting ability because both the assessment and escalation periods were affected by experience. We suggest that the retention time of experience effects depends on expected encounter rates as well as other behavioral and ecological factors. In systems with short breeding seasons and/or rapidly fluctuating populations, context-dependent retention of experience effects may allow males to track their status relative to the fluctuating fighting ability of local competitors without paying the costs necessary to recall or assess individual competitors.  相似文献   

7.
Aggressive contests probably occur in networking environments where information about fighting ability is conveyed both to an opponent and to individuals peripheral to the fight itself, the bystanders. Our primary aim was to investigate the relative influences of eavesdropping and prior social experience on the dynamics of aggressive contests in Xiphophorus helleri. A bystander's ability to witness an encounter was manipulated using clear, one-way mirror, and opaque partitions. After watching (or not watching) the initial contest, the bystander encountered either the winner or loser of the bout. Treatment comparisons of bystander-winner or bystander-loser contest dynamics indicated the presence or absence of winner, loser, or eavesdropping effects. Winner and loser effects had negligible influences on bystander contest dynamics. Eavesdropping significantly reduced the bystander's propensity to initiate aggression, escalate, and win against seen winners regardless of whether the watched bout had escalated or not. Though eavesdropping had relatively little effect on bystander-loser contest dynamics, bystanders were less prone to initiate aggression and win against losers that had escalated in the witnessed bout. Thus, bystanders appear to preferentially retain and utilize information gained about potentially dangerous opponents (winners or persistent losers). Our data lend clear support for the importance of eavesdropping in visually based aggressive signalling systems.  相似文献   

8.
Learning processes in Drosophila have been studied through the use of Pavlovian associative memory tests, and these paradigms have been extremely useful in identifying both genetic factors and neuroanatomical structures that are essential to memory formation. Whether these same genes and brain compartments also contribute to memory formed from nonassociative experiences is not well understood. Exposures to environmental stressors such as predators are known to induce innate behavioral responses and can lead to new memory formation that allows a predator response to persist for days after the predator threat has been removed. Here, we utilize a unique form of nonassociative behavior in Drosophila where female flies detect the presence of endoparasitoid predatory wasps and alter their oviposition behavior to lay eggs in food containing high levels of alcohol. The predator-induced change in fly oviposition preference is maintained for days after wasps are removed, and this persistence in behavior requires a minimum continuous exposure time of 14 hr. Maintenance of this behavior is dependent on multiple long-term memory genes, including orb2, dunce, rutabaga, amnesiac, and Fmr1. Maintenance of the behavior also requires intact synaptic transmission of the mushroom body. Surprisingly, synaptic output from the mushroom body (MB) or the functions of any of these learning and memory genes are not required for the change in behavior when female flies are in constant contact with wasps. This suggests that perception of this predator that leads to an acute change in oviposition behavior is not dependent on the MB or dependent on learning and memory gene functions. Because wasp-induced oviposition behavior can last for days and its maintenance requires a functional MB and the wild-type products of several known learning and memory genes, we suggest that this constitutes a paradigm for a bona fide form of nonassociative long-term memory that is not dependent on associated experiences.  相似文献   

9.
To study neuronal networks in terms of their function in behavior, we must analyze how neurons operate when each behavioral pattern is generated. Thus, simultaneous recordings of neuronal activity and behavior are essential to correlate brain activity to behavior. For such behavioral analyses, the fruit fly, Drosophila melanogaster, allows us to incorporate genetically encoded calcium indicators such as GCaMP1, to monitor neuronal activity, and to use sophisticated genetic manipulations for optogenetic or thermogenetic techniques to specifically activate identified neurons2-5. Use of a thermogenetic technique has led us to find critical neurons for feeding behavior (Flood et al., under revision). As a main part of feeding behavior, a Drosophila adult extends its proboscis for feeding6 (proboscis extension response; PER), responding to a sweet stimulus from sensory cells on its proboscis or tarsi. Combining the protocol for PER7 with a calcium imaging technique8 using GCaMP3.01, 9, I have established an experimental system, where we can monitor activity of neurons in the feeding center – the suboesophageal ganglion (SOG), simultaneously with behavioral observation of the proboscis. I have designed an apparatus ("Fly brain Live Imaging and Electrophysiology Stage": "FLIES") to accommodate a Drosophila adult, allowing its proboscis to freely move while its brain is exposed to the bath for Ca2+ imaging through a water immersion lens. The FLIES is also appropriate for many types of live experiments on fly brains such as electrophysiological recording or time lapse imaging of synaptic morphology. Because the results from live imaging can be directly correlated with the simultaneous PER behavior, this methodology can provide an excellent experimental system to study information processing of neuronal networks, and how this cellular activity is coupled to plastic processes and memory.  相似文献   

10.
Natural polymorphisms at the foraging (for) gene influence several behaviors. However, it is seldom clear how different for alleles could be selected. In one case, Drosophila with the rover allele (for r ) have higher locomotor activity in the presence of food than animals with the sitter allele (for s ), suggesting a complementary feeding strategy. There are, in addition, differences between for r and for s Drosophila in some tests of short-term memory (for r animals generally perform at higher levels) and thermotolerance (for s larvae are more resistant to the effects of high-temperature). We asked whether there could be a direct compensating advantages in adult for s flies that could maintain the natural for variants. First, are adult for s flies more thermotolerant? Second, do for r flies have a higher short-term place memory? Third, as an alternative, might for s flies have higher place memory? Our results do not confirm these possibilities. Thus, a thermotolerance advantage of for s flies does not compensate for a potential for r short-term memory advantage; for r flies do not have a universal advantage in short-term memory; and for s flies do not have an advantage in place memory that could compensate for for r advantages in other learning contexts.  相似文献   

11.

Introduction

Individual recognition and winner/loser effects both play important roles in animal contests, but how their influences are integrated to affect an individual’s contest decisions in combination remains unclear. Individual recognition provides an animal with relatively precise information about its ability to defeat conspecifics that it has fought previously. Winner/loser effects, conversely, rely on sampling information about how an animal’s ability to win compares with those of others in the population. The less precise information causing winner/loser effects should therefore be more useful to an individual facing an unfamiliar opponent. In this study, we used Kryptolebias marmoratus, a hermaphroditic mangrove killifish, to test whether winner/loser effects do depend on opponent familiarity. In addition, as previous studies have shown that subordinates that behave aggressively sometimes suffer post-retreat retaliation from contest winners, we also explored this aspect of contest interaction in K. marmoratus.

Results

In the early stages of a contest, subordinates facing an unfamiliar dominant were more likely to signal their aggressiveness with either gill displays or attacks rather than retreating immediately. A winning experience then increased the likelihood that the most aggressive behavioral pattern the subordinates exhibited would be attacks rather than gill displays, irrespective of their opponents’ familiarity. Dominants that received a losing experience and faced an unfamiliar opponent were less likely than others to launch attacks directly. And subordinates that challenged dominants with more aggressive tactics but still lost received more post-retreat attacks from their dominant opponents.

Conclusions

Subordinates’ contest decisions were influenced by both their contest experience and the familiarity of their opponents, but these influences appeared at different stages of a contest and did not interact significantly with each other. The influence of a losing experience on dominants’ contest decisions, however, did depend on their subordinate opponents’ familiarity. Subordinates and dominants thus appeared to integrate information from the familiarity of their opponents and the outcome of previous contests differently, which warrants further investigation. The higher costs that dominants imposed on subordinates that behaved more aggressively toward them may have been to deter them from either fighting back or challenging them in the future.
  相似文献   

12.
Although play–fighting is widespread among juvenile mammals, its adaptive significance remains unclear. It has been proposed that play is beneficial for developing skills to improve success in adult contests (motor‐training hypothesis), but the links between juvenile play–fighting and adult aggression are complex and not well understood. In this theoretical study, we investigate the coevolution between juvenile play–fighting and adult aggression using evolutionary computer simulations. We consider a simple life history with two sequential stages: a juvenile phase in which individuals play–fight with other juveniles to develop their fighting skills; and an adult phase in which individuals engage in potentially aggressive contests over access to resources and ultimately mating opportunities, leading to reproductive success. The simulations track genetic evolution in key traits affecting adult contests, such as the level of aggression, as well as juvenile investment in play–fighting, capturing the coevolutionary feedbacks between juvenile and adult decisions. We find that coevolution leads to one of two outcomes: a high‐play, high‐aggression situation with highly aggressive adult contests preceded by a prolonged period of juvenile play–fighting to improve fighting ability, or a low‐play, low‐aggression situation in which adult contests are resolved without fighting and there is minimal investment in play–fighting before individuals mature. Which of these outcomes is favoured depends on the mortality costs and on the type of societal structure: societies with strong reproductive skew, favouring monopolization of resources, show high levels of adult aggression and high investment in juvenile play–fighting, whereas societies with low reproductive skew have both low adult aggression and low levels of play–fighting. A review of empirical evidence, particularly in the primate genus Macaca, highlights some limitations of our model and suggests that other, complementary functional explanations are needed to account for the full range of competitive and cooperative forms of play–fighting. Our study illustrates the power of evolutionary simulations to shed light on the long‐standing puzzle of animal play.  相似文献   

13.
Animal conflicts are influenced by social experience such that a previous winning experience increases the probability of winning the next agonistic interaction, whereas a previous losing experience has the opposite effect. Since androgens respond to social interactions, increasing in winners and decreasing in losers, we hypothesized that socially induced transient changes in androgen levels could be a causal mediator of winner/loser effects. To test this hypothesis, we staged fights between dyads of size-matched males of the Mozambique tilapia (Oreochromis mossambicus). After the first contest, winners were treated with the anti-androgen cyproterone acetate and losers were supplemented with 11-ketotestosterone. Two hours after the end of the first fight, two contests were staged simultaneously between the winner of the first fight and a naive male and between the loser of first fight and another naive male. The majority (88%) of control winners also won the second interaction, whereas the majority of control losers (87%) lost their second fight, thus confirming the presence of winner/loser effects in this species. As predicted, the success of anti-androgen-treated winners in the second fight decreased significantly to chance levels (44%), but the success of androgenized losers (19%) did not show a significant increase. In summary, the treatment with anti-androgen blocks the winner effect, whereas androgen administration fails to reverse the loser effect, suggesting an involvement of androgens on the winner but not on the loser effect.  相似文献   

14.
This study demonstrates that injection of the serotonin precursor 5-HTP causes substantial changes in the behavioral state, fighting behavior and ability to establish winner–loser relationships in male crickets (Gryllus bimaculatus). The characteristic features of 5-HTP-treated crickets include an elevated posture, enhanced general activity, longer duration of fighting, enhanced rival singing and a decreased ability to produce a clear fight loser. In addition, 5-HTP-treated males showed a slightly delayed latency to spread their mandibles, a decreased number of attacks and an equal potential to win in comparison to controls (physiological solution-treated males). The obtained results imply a significant role for serotonin in the regulation of social status-related behaviors in G. bimaculatus. Specifically, these data indicate that a decrease in serotonergic activity may be functionally important for the control of loser behavior and that some behavioral features of dominant male crickets are likely to be connected with the activation of the serotonergic system.  相似文献   

15.
Drosophila melanogaster is an emerging model to study different aspects of social interactions. For example, flies avoid areas previously occupied by stressed conspecifics due to an odorant released during stress known as the Drosophila stress odorant (dSO). Through the use of the T-maze apparatus, one can quantify the avoidance of the dSO by responder flies in a very affordable and robust assay. Conditions necessary to obtain a strong performance are presented here. A stressful experience is necessary for the flies to emit dSO, as well as enough emitter flies to cause a robust avoidance response to the presence of dSO. Genetic background, but not their group size, strongly altered the avoidance of the dSO by the responder flies. Canton-S and Elwood display a higher performance in avoiding the dSO than Oregon and Samarkand strains. This behavioral assay will allow identification of mechanisms underlying this social behavior, and the assessment of the influence of genes and environmental conditions on both emission and avoidance of the dSO. Such an assay can be included in batteries of simple diagnostic tests used to identify social deficiencies of mutants or environmental conditions of interest.  相似文献   

16.
When social animals engage in inter-group contests, the outcome is determined by group sizes and individual masses, which together determine group resource-holding potential ('group RHP'). Individuals that perceive themselves as being in a group with high RHP may receive a motivational increase and increase their aggression levels. Alternatively, individuals in lower RHP groups may increase their aggression levels in an attempt to overcome the RHP deficit. We investigate how 'group RHP' influences agonistic tactics in red wood ants Formica rufa. Larger groups had higher total agonistic indices, but per capita agonistic indices were highest in the smallest groups, indicating that individuals in smaller groups fought harder. Agonistic indices were influenced by relative mean mass, focal group size, opponent group size and opponent group agonistic index. Focal group attrition rates decreased as focal group relative agonistic indices increased and there was a strong negative influence of relative mean mass. The highest focal attrition rates were received when opponent groups were numerically large and composed of large individuals. Thus, fight tactics in F. rufa seem to vary with both aspects of group RHP, group size and the individual attributes of group members, indicating that information on these are available to fighting ants.  相似文献   

17.
Dopamine is necessary for the aversive olfactory associative memory formation in Drosophila, but its effect on other stages of memory is not known. Herein, we studied the effect of enhanced dopaminergic signaling on aversive olfactory memory retention in flies. We used l-3,4-dihydroxyphenylalanine (l-DOPA) to elevate dopamine levels: l-DOPA-treated flies exhibited a normal learning performance, but a decrease in 1-h memory. Dopamine transporter (DAT) mutant flies or flies treated with the DAT inhibitor desipramine exhibited poor memory retention. Flies subjected to heat stress after training exhibited a decrease in memory. Memory was restored by blocking dopaminergic neuronal output during heat stress, suggesting that dopamine is involved in heat stress-induced memory impairment in flies. Taken together, our findings suggest that increased dopaminergic signaling impairs aversive olfactory memory retention in flies.  相似文献   

18.
The evolution of male-biased sexual size dimorphism is often explained by sexual selection providing competitive advantage to the larger males. The aggressive interactions are often dangerous and energy consuming; thus, it is advantageous to reduce the risks by adjusting behavior to correspond with body size as a predictor of fighting success. Organization of contests into distinct phases with the initial displays preceding the real combat allows individuals to assess the body size and strength of the rival. We staged interactions between mangrove-dwelling monitor lizards (Varanus indicus) to uncover the initialization of aggression and factors determining the course of an encounter. The analyses revealed the importance of both absolute and relative body size of encountering males. The attack rate increases with the body weight of the lizard and offenders initializing a contact phase of the fight tend to be the heavier male of the dyad. Regardless of the final outcome of the combat, the results show that only short visual contact provides sufficient information about the body size of the opponent. This enables combatants to determine whether to initiate the fight or not. This finding together with the ethological details of contests provides the first evidence for the ability of mutual assessment in varanids.  相似文献   

19.
A freely walking single fly (Drosophila melanogaster) can be conditioned to avoid one side of a small test chamber if the chamber is heated whenever the fly enters this side. In a subsequent memory test without heat it keeps avoiding the heat-associated side. The memory mutants dunce 1 and rutabaga 1 successfully avoid the heated side but show no avoidance in the memory test. Wildtype flies can be trained to successively avoid alternating sides in a reversal conditioning experiment. Every single fly shows strong avoidance and a positive memory score. The new conditioning apparatus has several advantages: (1) Statistically significant learning scores can be obtained for individual flies. (2) Learning scores are obtained fully automatically without interference of the experimenter. (3) The procedure is fast, robust and requires little handling. Therefore the apparatus is suitable for largescale mutant screening. (4) Animals are not attached to a hook and thus can easily be used for breeding.Abbreviations dnc dunce gene - PI performance Index - rut rutabaga gene - S.E.M. standard error of mean  相似文献   

20.
Drosophila has proven to be a useful model system for analysis of behavior, including flight. The initial flight tester involved dropping flies into an oil-coated graduated cylinder; landing height provided a measure of flight performance by assessing how far flies will fall before producing enough thrust to make contact with the wall of the cylinder. Here we describe an updated version of the flight tester with four major improvements. First, we added a "drop tube" to ensure that all flies enter the flight cylinder at a similar velocity between trials, eliminating variability between users. Second, we replaced the oil coating with removable plastic sheets coated in Tangle-Trap, an adhesive designed to capture live insects. Third, we use a longer cylinder to enable more accurate discrimination of flight ability. Fourth we use a digital camera and imaging software to automate the scoring of flight performance. These improvements allow for the rapid, quantitative assessment of flight behavior, useful for large datasets and large-scale genetic screens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号