首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mRNA codon in the ribosomal A-site is recognized by aminoacyl-tRNA (aa-tRNA) in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here we report the 13 A resolution three-dimensional reconstruction determined by cryo-electron microscopy of the kirromycin-stalled codon-recognition complex. The structure of the ternary complex is distorted by binding of the tRNA anticodon arm in the decoding center. The aa-tRNA interacts with 16S rRNA, helix 69 of 23S rRNA and proteins S12 and L11, while the sarcin-ricin loop of 23S rRNA contacts domain 1 of EF-Tu near the nucleotide-binding pocket. These results provide a detailed snapshot view of an important functional state of the ribosome and suggest mechanisms of decoding and GTPase activation.  相似文献   

2.
3.
All three kingdoms of life employ two methionine tRNAs, one for translation initiation and the other for insertion of methionines at internal positions within growing polypeptide chains. We have used a reconstituted yeast translation initiation system to explore the interactions of the initiator tRNA with the translation initiation machinery. Our data indicate that in addition to its previously characterized role in binding of the initiator tRNA to eukaryotic initiation factor 2 (eIF2), the initiator-specific A1:U72 base pair at the top of the acceptor stem is important for the binding of the eIF2.GTP.Met-tRNA(i) ternary complex to the 40S ribosomal subunit. We have also shown that the initiator-specific G:C base pairs in the anticodon stem of the initiator tRNA are required for the strong thermodynamic coupling between binding of the ternary complex and mRNA to the ribosome. This coupling reflects interactions that occur within the complex upon recognition of the start codon, suggesting that these initiator-specific G:C pairs influence this step. The effect of these anticodon stem identity elements is influenced by bases in the T loop of the tRNA, suggesting that conformational coupling between the D-loop-T-loop substructure and the anticodon stem of the initiator tRNA may occur during AUG codon selection in the ribosomal P-site, similar to the conformational coupling that occurs in A-site tRNAs engaged in mRNA decoding during the elongation phase of protein synthesis.  相似文献   

4.
S Joseph  H F Noller 《The EMBO journal》1998,17(12):3478-3483
Translocation, catalyzed by elongation factor EF-G, is the precise movement of the tRNA-mRNA complex within the ribosome following peptide bond formation. Here we examine the structural requirement for A- and P-site tRNAs in EF-G-catalyzed translocation by substituting anticodon stem-loop (ASL) analogs for the respective tRNAs. Translocation of mRNA and tRNA was monitored independently; mRNA movement was assayed by toeprinting, while tRNA and ASL movement was monitored by hydroxyl radical probing by Fe(II) tethered to the ASLs and by chemical footprinting. Translocation depends on occupancy of both A and P sites by tRNA bound in a mRNA-dependent fashion. The requirement for an A-site tRNA can be satisfied by a 15 nucleotide ASL analog comprising only a 4 base pair (bp) stem and a 7 nucleotide anticodon loop. Translocation of the ASL is both EF-G- and GTP-dependent, and is inhibited by the translocational inhibitor thiostrepton. These findings show that the D, T and acceptor stem regions of A-site tRNA are not essential for EF-G-dependent translocation. In contrast, no translocation occurs if the P-site tRNA is substituted with an ASL, indicating that other elements of P-site tRNA structure are required for translocation. We also tested the effect of increasing the A-site ASL stem length from 4 to 33 bp on translocation from A to P site. Translocation efficiency decreases as the ASL stem extends beyond 22 bp, corresponding approximately to the maximum dimension of tRNA along the anticodon-D arm axis. This result suggests that a structural feature of the ribosome between the A and P sites, interferes with movement of tRNA analogs that exceed the normal dimensions of the coaxial tRNA anticodon-D arm.  相似文献   

5.
The -1 programmed ribosomal frameshifts (PRF), which are used by many viruses, occur at a heptanucleotide slippery sequence and are currently thought to involve the tRNAs interacting with the ribosomal P- and A-site codons. We investigated here whether the tRNA occupying the ribosomal E site that precedes a slippery site influences -1 PRF. Using the human immunodeficiency virus type 1 (HIV-1) frameshift region, we found that mutating the E-site codon altered the -1 PRF efficiency. When the HIV-1 slippery sequence was replaced with other viral slippery sequences, mutating the E-site codon also altered the -1 PRF efficiency. Because HIV-1 -1 PRF can be recapitulated in bacteria, we used a bacterial ribosome system to select, by random mutagenesis, 16S ribosomal RNA (rRNA) mutations that modify the expression of a reporter requiring HIV-1 -1 PRF. Three mutants were isolated, which are located in helices 21 and 22 of 16S rRNA, a region involved in translocation and E-site tRNA binding. We propose a novel model where -1 PRF is triggered by an incomplete translocation and depends not only on the tRNAs interacting with the P- and A-site codons, but also on the tRNA occupying the E site.  相似文献   

6.
The elongation factors of protein biosynthesis are well preserved through out evolution. They catalyze the elongation phase of protein biosynthesis, where on the ribosome amino acids are added one at a time to a growing peptide according to the genetic information transcribed into mRNA. Elongation factor Tu (EF-Tu) provides the binding of aminoacylated tRNA to the ribosome and protects the aminoester bond against hydrolysis until a correct match between the codon on mRNA and the anticodon on tRNA can be achieved. Elongation factor G (EF-G) supports the translocation of tRNAs and of mRNA on the ribosome so that a new codon can be exposed for decoding. Both these factors are GTP binding proteins, and as such exist in an active form with GTP and an inactive form with GDP bound to the nucleotide binding domain. Elongation factor Ts (EF-Ts) will catalyze the exchange of nucleotide on EF-Tu. This review describes structural work on EF-Tu performed in our laboratory over the last eight years. The structural results provide a rather complete picture of the major structural forms of EF-Tu, including the so called ternary complex of aa-tRNA:EF-Tu:GTP. The structural comparison of this ternary complex with the structure of EF-G:GDP displays an unexpected macromolecular mimicry, where three domains of EF-G mimick the shape of the tRNA in the ternary complex. This observation has initiated much speculation on the evolution of all factors involved in protein synthesis, as well as on the details of the ribosomal function in one part of elongation.  相似文献   

7.
We employ single-molecule fluorescence resonance energy transfer (smFRET) to study structural dynamics over the first two elongation cycles of protein synthesis, using ribosomes containing either Cy3-labeled ribosomal protein L11 and A- or P-site Cy5-labeled tRNA or Cy3- and Cy5-labeled tRNAs. Pretranslocation (PRE) complexes demonstrate fluctuations between classical and hybrid forms, with concerted motions of tRNAs away from L11 and from each other when classical complex converts to hybrid complex. EF-G?GTP binding to both hybrid and classical PRE complexes halts these fluctuations prior to catalyzing translocation to form the posttranslocation (POST) complex. EF-G dependent translocation from the classical PRE complex proceeds via transient formation of a short-lived hybrid intermediate. A-site binding of either EF-G to the PRE complex or of aminoacyl-tRNA?EF-Tu ternary complex to the POST complex markedly suppresses ribosome conformational lability.  相似文献   

8.
A modified nucleotide on the 3'-side of the anticodon loop of tRNA is one of the most important structure element regulating codon-anticodone interaction on the ribosome owing to the stacking interaction with the stack of codon-anticodon bases. The presence and identity (pyrimidine, purine or modified purine) of this nucleotide has an essential influence on the energy of the stacking interaction on A- and P-sites of the ribosome. There is a significant influence of the 37-modification by itself on the P-site, whereas there is no such one on the A-site of the ribosome. Comparison of binding enthalpies of tRNA interactions on the P- or A-site of the ribosome with the binding enthalpies of the complex of two tRNAs with the complementary anticodones suggests that the ribosome by itself significantly endows in the thermodynamics of codon-anticodon complex formation. It happens by additional ribosomal interactions with the molecule of tRNA or indirectly by the stabilization of codon-anticodon conformation. In addition to the stacking, tRNA binding in the A and P sites is futher stabilized by the interactions involving some magnesium ions. The number of them involved in those interactions strongly depends on the nucleotide identity in the 37-position of tRNA anticodon loop.  相似文献   

9.
Tok JB  Cho J  Rando RR 《Nucleic acids research》2000,28(15):2902-2910
RNA–RNA recognition is a critical process in controlling many key biological events, such as translation and ribozyme functions. The recognition process governing RNA–RNA interactions can involve complementary Watson–Crick (WC) base pair binding, or can involve binding through tertiary structural interaction. Hence, it is of interest to determine which of the RNA–RNA binding events might emerge through an in vitro selection process. The A-site of the 16S rRNA decoding region was chosen as the target, both because it possesses several different RNA structural motifs, and because it is the rRNA site where codon/anticodon recognition occurs requiring recognition of both mRNA and tRNA. It is shown here that a single family of RNA molecules can be readily selected from two different sizes of RNA library. The tightest binding aptamer to the A-site 16S rRNA construct, 109.2-3, has its consensus sequences confined to a stem–loop region, which contains three nucleotides complementary to three of the four nucleotides in the stem–loop region of the A-site 16S rRNA. Point mutations on each of the three nucleotides on the stem–loop of the aptamer abolish its binding capacity. These studies suggest that the RNA aptamer 109.2-3 interacts with the simple 27 nt A-site decoding region of 16S rRNA through their respective stem–loops. The most probable mode of interaction is through complementary WC base pairing, commonly referred to as a loop–loop ‘kissing’ motif. High affinity binding to the other structural motifs in the decoding region were not observed.  相似文献   

10.
Naturally occurring nucleoside modifications are an intrinsic feature of transfer RNA (tRNA), and have been implicated in the efficiency, as well as accuracy-of codon recognition. The structural and functional contributions of the modified nucleosides in the yeast tRNA(Phe) anticodon domain were examined. Modified nucleosides were site-selectively incorporated, individually and in combinations, into the heptadecamer anticodon stem and loop domain, (ASL(Phe)). The stem modification, 5-methylcytidine, improved RNA thermal stability, but had a deleterious effect on ribosomal binding. In contrast, the loop modification, 1-methylguanosine, enhanced ribosome binding, but dramatically decreased thermal stability. With multiple modifications present, the global ASL stability was mostly the result of the individual contributions to the stem plus that to the loop. The effect of modification on ribosomal binding was not predictable from thermodynamic contributions or location in the stem or loop. With 4/5 modifications in the ASL, ribosomal binding was comparable to that of the unmodified ASL. Therefore, modifications of the yeast tRNA(Phe) anticodon domain may have more to do with accuracy of codon reading than with affinity of this tRNA for the ribosomal P-site. In addition, we have used the approach of site-selective incorporation of specific nucleoside modifications to identify 2'O-methylation of guanosine at wobble position 34 (Gm34) as being responsible for the characteristically enhanced chemical reactivity of C1400 in Escherichia coli 16S rRNA upon ribosomal footprinting of yeast tRNA(Phe). Thus, effective ribosome binding of tRNA(Phe) is a combination of anticodon stem stability and the correct architecture and dynamics of the anticodon loop. Correct tRNA binding to the ribosomal P-site probably includes interaction of Gm34 with 16S rRNA C1400.  相似文献   

11.
Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin α-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin–ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their binding to the ribosome, but its precise role is not yet understood. We studied the effect of α-sarcin on defined steps of translation by the bacterial ribosome. α-Sarcin-treated ribosomes showed no defects in mRNA and tRNA binding, peptide-bond formation and sparsomycin-dependent translocation. Cleavage of SRL slightly affected binding of elongation factor Tu ternary complex (EF-Tu•GTP•tRNA) to the ribosome. In contrast, the activity of elongation factor G (EF-G) was strongly impaired in α-sarcin-treated ribosomes. Importantly, cleavage of SRL inhibited EF-G binding, and consequently GTP hydrolysis and mRNA–tRNA translocation. These results suggest that the SRL is more critical in EF-G than ternary complex binding to the ribosome implicating different requirements in this region of the ribosome during protein elongation.  相似文献   

12.
Coordinated translocation of the tRNA-mRNA complex by the ribosome occurs in a precise, stepwise movement corresponding to a distance of three nucleotides along the mRNA. Frameshift suppressor tRNAs generally contain an extra nucleotide in the anticodon loop and they subvert the normal mechanisms used by the ribosome for frame maintenance. The mechanism by which suppressor tRNAs traverse the ribosome during translocation is poorly understood. Here, we demonstrate translocation of a tRNA by four nucleotides from the A site to the P site, and from the P site to the E site. We show that translocation of a punctuated mRNA is possible with an extra, unpaired nucleotide between codons. Interestingly, the NMR structure of the four nucleotide anticodon stem-loop reveals a conformation different from the canonical tRNA structure. Flexibility within the loop may allow conformational adjustment upon A site binding and for interacting with the four nucleotide codon in order to shift the mRNA reading frame.  相似文献   

13.
Locking and unlocking of ribosomal motions   总被引:20,自引:0,他引:20  
Valle M  Zavialov A  Sengupta J  Rawat U  Ehrenberg M  Frank J 《Cell》2003,114(1):123-134
During the ribosomal translocation, the binding of elongation factor G (EF-G) to the pretranslocational ribosome leads to a ratchet-like rotation of the 30S subunit relative to the 50S subunit in the direction of the mRNA movement. By means of cryo-electron microscopy we observe that this rotation is accompanied by a 20 A movement of the L1 stalk of the 50S subunit, implying that this region is involved in the translocation of deacylated tRNAs from the P to the E site. These ribosomal motions can occur only when the P-site tRNA is deacylated. Prior to peptidyl-transfer to the A-site tRNA or peptide removal, the presence of the charged P-site tRNA locks the ribosome and prohibits both of these motions.  相似文献   

14.
Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites   总被引:63,自引:0,他引:63  
D Moazed  H F Noller 《Cell》1989,57(4):585-597
Three sets of conserved nucleotides in 23 rRNA are protected from chemical probes by binding of tRNA to the ribosomal A, P, and E sites, respectively. They are located almost exclusively in domain V, primarily in or adjacent to the loop identified with the peptidyl transferase function. Some of these sites are also protected by antibiotics such as chloramphenicol, which could explain how these drugs interfere with protein synthesis. Certain tRNA-dependent protections are abolished when the 3'-terminal A or CA or 2',3'-linked acyl group is removed, providing direct evidence for the interaction of the conserved CCA terminus of tRNA with 23S rRNA. When the EF-Tu.GTP.aminoacyl-tRNA ternary complex is bound to the ribosome, no tRNA-dependent A site protections are detected in 23S rRNA until EF-Tu is released. Thus, EF-Tu prevents interaction of the 3' terminus of the incoming aminoacyl-tRNA with the peptidyl transferase region of the ribosome during anticodon selection, thereby permitting translational proofreading.  相似文献   

15.
Initiation factor 3 (IF3) acts to switch the decoding preference of the small ribosomal subunit from elongator to initiator tRNA. The effects of IF3 on the 30 S ribosomal subunit and on the 30 S.mRNA. tRNA(f)(Met) complex were determined by UV-induced RNA crosslinking. Three intramolecular crosslinks in the 16 S rRNA (of the 14 that were monitored by gel electrophoresis) are affected by IF3. These are the crosslinks between C1402 and C1501 within the decoding region, between C967xC1400 joining the end loop of a helix of 16 S rRNA domain III and the decoding region, and between U793 and G1517 joining the 790 end loop of 16 S rRNA domain II and the end loop of the terminal helix. These changes occur even in the 30 S.IF3 complex, indicating they are not mediated through tRNA(f)(Met) or mRNA. UV-induced crosslinks occur between 16 S rRNA position C1400 and tRNA(f)(Met) position U34, in tRNA(f)(Met) the nucleotide adjacent to the 5' anticodon nucleotide, and between 16 S rRNA position C1397 and the mRNA at positions +9 and +10 (where A of the initiator AUG codon is +1). The presence of IF3 reduces both of these crosslinks by twofold and fourfold, respectively. The binding site for IF3 involves the 790 region, some other parts of the 16 S rRNA domain II and the terminal stem/loop region. These are located in the front bottom part of the platform structure in the 30 S subunit, a short distance from the decoding region. The changes that occur in the decoding region, even in the absence of mRNA and tRNA, may be induced by IF3 from a short distance or could be caused by the second IF3 structural domain.  相似文献   

16.
Helix 69 of 23S rRNA forms one of the major inter-subunit bridges of the 70S ribosome and interacts with A- and P-site tRNAs and translation factors. Despite the proximity of h69 to the decoding center and tRNAs, the contribution of h69 to the tRNA selection process is unclear: previous genetic analyses have shown that h69 mutations increase frameshifting and readthrough of stop codons. However, a complete deletion of h69 does not affect the selection of cognate tRNAs in vitro. To address these discrepancies, the in vivo effects of a range of single- and multi-base h69 mutations in Escherichia coli 23S rRNA on various translation errors have been determined. While a majority of the h69 mutations examined here affected readthrough of stop codons and frameshifting, the ΔA1916 single base deletion mutation uniquely influenced missense decoding. Different h69 mutants had either increased or decreased levels of stop codon readthrough. The h69 mutations that decreased UGA readthrough also decreased UGA reading by a mutant, near-cognate tRNATrp carrying a G24A substitution in the D arm, but had far less effect on UGA reading by a suppressor tRNA with a complementary anticodon. These results suggest that h69 interactions with release factors contribute significantly to termination efficiency and that interaction with the D arm of A-site tRNA is important for discrimination between cognate and near-cognate tRNAs.  相似文献   

17.
Following peptide-bond formation, the mRNA:tRNA complex must be translocated within the ribosomal cavity before the next aminoacyl tRNA can be accommodated in the A site. Previous studies suggested that following peptide-bond formation and prior to EF-G recognition, the tRNAs occupy an intermediate (hybrid) state of binding where the acceptor ends of the tRNAs are shifted to their next sites of occupancy (the E and P sites) on the large ribosomal subunit, but where their anticodon ends (and associated mRNA) remain fixed in their prepeptidyl transferase binding states (the P and A sites) on the small subunit. Here we show that pre-translocation-state ribosomes carrying a dipeptidyl-tRNA substrate efficiently react with the minimal A-site substrate puromycin and that following this reaction, the pre-translocation-state bound deacylated tRNA:mRNA complex remains untranslocated. These data establish that pre-translocation-state ribosomes must sample or reside in an intermediate state of tRNA binding independent of the action of EF-G.  相似文献   

18.
The protein environment of each nucleotide of the template codon located in the A site of the human ribosome was studied with UUCUCAA and UUUGUU derivatives containing a Phe codon (UUC and UUU, respectively) and a perfluoroarylazido group at U4, U5, or U6. The analogs were positioned in the ribosome with the use of tRNA(Phe), which is cognate to the UUC or UUU codon and directs it to the P site, bringing a modified codon in the A site with a modified nucleotide occupying position +4, +5, or +6 relative to the first nucleotide of the P-site codon. On irradiation of ribosome complexes with tRNA(Phe) and mRNA analogs with mild UV light, the analogs crosslinked predominantly to the 40S subunit, modifying the proteins to a greater extent than the rRNA. The 18S rRNA nucleotides crosslinking to the analogs were identified previously. Of the small-subunit proteins, S3 and S15 were the major targets of modification in all cases. The former was modified both in ternary complexes and in the absence of tRNA, and the latter, only in ternary complexes. The extent of crosslinking of mRNA analogs to S15 decreased when the modified nucleotide was shifted from position +4 to position +6. The results were collated with the data on ribosomal proteins located at the decoding site of the 70S ribosome, and conclusion was made that the protein environment of the A-site codon strikingly differs between bacterial and eukaryotic ribosomes.  相似文献   

19.
The many interactions of tRNA with the ribosome are fundamental to protein synthesis. During the peptidyl transferase reaction, the acceptor ends of the aminoacyl and peptidyl tRNAs must be in close proximity to allow peptide bond formation, and their respective anticodons must base pair simultaneously with adjacent trinucleotide codons on the mRNA. The two tRNAs in this state can be arranged in two nonequivalent general configurations called the R and S orientations, many versions of which have been proposed for the geometry of tRNAs in the ribosome. Here, we report the combined use of computational analysis and tethered hydroxyl-radical probing to constrain their arrangement. We used Fe(II) tethered to the 5' end of anticodon stem-loop analogs (ASLs) of tRNA and to the 5' end of deacylated tRNA(Phe) to generate hydroxyl radicals that probe proximal positions in the backbone of adjacent tRNAs in the 70S ribosome. We inferred probe-target distances from the resulting RNA strand cleavage intensities and used these to calculate the mutual arrangement of A-site and P-site tRNAs in the ribosome, using three different structure estimation algorithms. The two tRNAs are constrained to the S configuration with an angle of about 45 degrees between the respective planes of the molecules. The terminal phosphates of 3'CCA are separated by 23 A when using the tRNA crystal conformations, and the anticodon arms of the two tRNAs are sufficiently close to interact with adjacent codons in mRNA.  相似文献   

20.
Modified nucleosides are prevalent in tRNA. Experimental studies reveal that modifications play an important role in tuning tRNA activity. In this study, molecular dynamics (MD) simulations were used to investigate how modifications alter tRNA structure and dynamics. The X-ray crystal structures of tRNA-Asp, tRNA-Phe, and tRNA-iMet, both with and without modifications, were used as initial structures for 333-ns time-scale MD trajectories with AMBER. For each tRNA molecule, three independent trajectory calculations were performed. Force field parameters were built using the RESP procedure of Cieplak et al. for 17 nonstandard tRNA residues. The global root-mean-square deviations (RMSDs) of atomic positions show that modifications only introduce significant rigidity to tRNA-Phe’s global structure. Interestingly, regional RMSDs of anticodon stem-loop suggest that modified tRNA has more rigid structure compared to the unmodified tRNA in this domain. The anticodon RMSDs of the modified tRNAs, however, are higher than those of corresponding unmodified tRNAs. These findings suggest that rigidity of the anticodon arm is essential for tRNA translocation in the ribosome complex, and, on the other hand, flexibility of anticodon might be critical for anticodon–codon recognition. We also measure the angle between the 3D L-shaped arms of tRNA; backbone atoms of acceptor stem and TψC stem loop are selected to indicate one vector, and backbone atoms of anticodon stem and D stem loop are selected to indicate the other vector. By measuring the angle between two vectors, we find that the initiator tRNA has a narrower range of hinge motion compared to tRNA-Asp and tRNA-Phe, which are elongator tRNA. This suggests that elongator tRNAs, which might require significant flexibility in this hinge to transition from the A–to-P site in the ribosome, have evolved to specifically accommodate this need.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号