首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Comparative docking is based on experimentally determined structures of protein-protein complexes (templates), following the paradigm that proteins with similar sequences and/or structures form similar complexes. Modeling utilizing structure similarity of target monomers to template complexes significantly expands structural coverage of the interactome. Template-based docking by structure alignment can be performed for the entire structures or by aligning targets to the bound interfaces of the experimentally determined complexes. Systematic benchmarking of docking protocols based on full and interface structure alignment showed that both protocols perform similarly, with top 1 docking success rate 26%. However, in terms of the models' quality, the interface-based docking performed marginally better. The interface-based docking is preferable when one would suspect a significant conformational change in the full protein structure upon binding, for example, a rearrangement of the domains in multidomain proteins. Importantly, if the same structure is selected as the top template by both full and interface alignment, the docking success rate increases 2-fold for both top 1 and top 10 predictions. Matching structural annotations of the target and template proteins for template detection, as a computationally less expensive alternative to structural alignment, did not improve the docking performance. Sophisticated remote sequence homology detection added templates to the pool of those identified by structure-based alignment, suggesting that for practical docking, the combination of the structure alignment protocols and the remote sequence homology detection may be useful in order to avoid potential flaws in generation of the structural templates library.  相似文献   

2.
Customary practice in predicting 3D structures of protein-protein complexes is employment of various docking methods when the structures of separate monomers are known a priori. The alternative approach, i.e. the template-based prediction with pure sequence information as a starting point, is still considered as being inferior mostly due to presumption that the pool of available structures of protein-protein complexes, which can serve as putative templates, is not sufficiently large. Recently, however, several labs have developed databases containing thousands of 3D structures of protein-protein complexes, which enable statistically reliable testing of homology-based algorithms. In this paper we report the results on homology-based modeling of 3D structures of protein complexes using alignments of modified sequence profiles. The method, called HOMology-BAsed COmplex Prediction (HOMBACOP), has two distinctive features: (I) extra weight on aligning interfacial residues in the dynamical programming algorithm, and (II) increased gap penalties for the interfacial segments. The method was tested against our recently developed ProtCom database and against the Boston University protein-protein BENCHMARK. In both cases, models generated were compared to the models built on basis of customarily protein structure initiative (PSI)-BLAST sequence alignments. It was found that existence of homologous (by the means of PSI-BLAST) templates (44% of cases) enables both methods to produce models of good quality, with the profiles method outperforming the PSI-BLAST models (with respect to the percentage of correctly predicted residues on the complex interface and fraction of native interfacial contacts). The models were evaluated according to the CAPRI assessment criteria and about two thirds of the models were found to fall into acceptable and medium-quality categories. The same comparison of a larger set of 463 protein complexes showed again that profiles generate better models. We further demonstrate, using our ProtCom database, the suitability of the profile alignment algorithm in detecting remote homologues between query and template sequences, where the PSI-BLAST method fails.  相似文献   

3.
We evaluate tertiary structure predictions on medium to large size proteins by TASSER, a new algorithm that assembles protein structures through rearranging the rigid fragments from threading templates guided by a reduced Calpha and side-chain based potential consistent with threading based tertiary restraints. Predictions were generated for 745 proteins 201-300 residues in length that cover the Protein Data Bank (PDB) at the level of 35% sequence identity. With homologous proteins excluded, in 365 cases, the templates identified by our threading program, PROSPECTOR_3, have a root-mean-square deviation (RMSD) to native < 6.5 angstroms, with >70% alignment coverage. After TASSER assembly, in 408 cases the best of the top five full-length models has a RMSD < 6.5 angstroms. Among the 745 targets are 18 membrane proteins, with one-third having a predicted RMSD < 5.5 A. For all representative proteins less than or equal to 300 residues that have corresponding multiple NMR structures in the Protein Data Bank, approximately 20% of the models generated by TASSER are closer to the NMR structure centroid than the farthest individual NMR model. These results suggest that reasonable structure predictions for nonhomologous large size proteins can be automatically generated on a proteomic scale, and the application of this approach to structural as well as functional genomics represent promising applications of TASSER.  相似文献   

4.
Lim Heo  Michael Feig 《Proteins》2020,88(5):637-642
Protein structure prediction has long been available as an alternative to experimental structure determination, especially via homology modeling based on templates from related sequences. Recently, models based on distance restraints from coevolutionary analysis via machine learning to have significantly expanded the ability to predict structures for sequences without templates. One such method, AlphaFold, also performs well on sequences where templates are available but without using such information directly. Here we show that combining machine-learning based models from AlphaFold with state-of-the-art physics-based refinement via molecular dynamics simulations further improves predictions to outperform any other prediction method tested during the latest round of CASP. The resulting models have highly accurate global and local structures, including high accuracy at functionally important interface residues, and they are highly suitable as initial models for crystal structure determination via molecular replacement.  相似文献   

5.
In recent years, it has been repeatedly demonstrated that the coordinates of the main-chain atoms alone are sufficient to determine the side-chain conformations of buried residues of compact proteins. Given a perfect backbone, the side-chain packing method can predict the side-chain conformations to an accuracy as high as 1.2 Å RMS deviation (RMSD) with greater than 80% of the χ angles correct. However, similarly rigorous studies have not been conducted to determine how well these apply, if at all, to the more important problem of homology modeling per se. Specifically, if the available backbone is imperfect, as expected for practical application of homology modeling, can packing constraints alone achieve sufficiently accurate predictions to be useful? Here, by systematically applying such methods to the pairwise modeling of two repressor and two cro proteins from the closely related bacteriophages 434 and P22, we find that when the backbone RMSD is 0.8 Å, the prediction on buried side chain is accurate with an RMS error of 1.8 Å and approximately 70% of the χ angles correctly predicted. When the backbone RMSD is larger, in the range of 1.6–1.8 Å, the prediction quality is still significantly better than random, with RMS error at 2.2 Å on the buried side chains and 60% accuracy on χ angles. Together these results suggest the following rules-of-thumb for homology modeling of buried side chains. When the sequence identity between the modeled sequence and the template sequence is >50% (or, equivalently, the expected backbone RMSD is <1 Å), side-chain packing methods work well. When sequence identity is between 30–50%, reflecting a backbone RMS error of 1–2 Å, it is still valid to use side-chain packing methods to predict the buried residues, albeit with care. When sequence identity is below 30% (or backbone RMS error greater than 2 Å), the backbone constraint alone is unlikely to produce useful models. Other methods, such as those involving the use of database fragments to reconstruct a template backbone, may be necessary as a complementary guide for modeling.  相似文献   

6.
MOTIVATION: There are two main areas of difficulty in homology modelling that are particularly important when sequence identity between target and template falls below 50%: sequence alignment and loop building. These problems become magnified with automatic modelling processes, as there is no human input to correct mistakes. As such we have benchmarked several stand-alone strategies that could be implemented in a workflow for automated high-throughput homology modelling. These include three new sequence-structure alignment programs: 3D-Coffee, Staccato and SAlign, plus five homology modelling programs and their respective loop building methods: Builder, Nest, Modeller, SegMod/ENCAD and Swiss-Model. The SABmark database provided 123 targets with at least five templates from the same SCOP family and sequence identities 相似文献   

7.
In this article, we present a statistical analysis of the electrostatic properties of 298 protein-protein complexes and 356 domain-domain structures extracted from the previously developed database of protein complexes (ProtCom, http://www.ces.clemson.edu/compbio/protcom). For each structure in the dataset we calculated the total electrostatic energy of the binding and its two components, Coulombic and reaction field energy. It was found that in a vast majority of the cases (>90%), the total electrostatic component of the binding energy was unfavorable. At the same time, the Coulombic component of the binding energy was found to favor the complex formation while the reaction field component of the binding energy opposed the binding. It was also demonstrated that the components in a wild-type (WT) structure are optimized/anti-optimized with respect to the corresponding distributions, arising from random shuffling of the charged side chains. The degree of this optimization was assessed through the Z-score of WT energy in respect to the random distribution. It was found that the Z-scores of Coulombic interactions peak at a considerably negative value for all 654 cases considered while the Z-score of the reaction field energy varied among different types of complexes. All these findings indicate that the Coulombic interactions within WT protein-protein complexes are optimized to favor the complex formation while the total electrostatic energy predominantly opposes the binding. This observation was used to discriminate WT structures among sets of structural decoys and showed that the electrostatic component of the binding energy is not a good discriminator of the WT; while, Coulombic or reaction field energies perform better depending upon the decoy set used.  相似文献   

8.

Background

Protein inter-residue contact maps provide a translation and rotation invariant topological representation of a protein. They can be used as an intermediary step in protein structure predictions. However, the prediction of contact maps represents an unbalanced problem as far fewer examples of contacts than non-contacts exist in a protein structure. In this study we explore the possibility of completely eliminating the unbalanced nature of the contact map prediction problem by predicting real-value distances between residues. Predicting full inter-residue distance maps and applying them in protein structure predictions has been relatively unexplored in the past.

Results

We initially demonstrate that the use of native-like distance maps is able to reproduce 3D structures almost identical to the targets, giving an average RMSD of 0.5Å. In addition, the corrupted physical maps with an introduced random error of ±6Å are able to reconstruct the targets within an average RMSD of 2Å. After demonstrating the reconstruction potential of distance maps, we develop two classes of predictors using two-dimensional recursive neural networks: an ab initio predictor that relies only on the protein sequence and evolutionary information, and a template-based predictor in which additional structural homology information is provided. We find that the ab initio predictor is able to reproduce distances with an RMSD of 6Å, regardless of the evolutionary content provided. Furthermore, we show that the template-based predictor exploits both sequence and structure information even in cases of dubious homology and outperforms the best template hit with a clear margin of up to 3.7Å. Lastly, we demonstrate the ability of the two predictors to reconstruct the CASP9 targets shorter than 200 residues producing the results similar to the state of the machine learning art approach implemented in the Distill server.

Conclusions

The methodology presented here, if complemented by more complex reconstruction protocols, can represent a possible path to improve machine learning algorithms for 3D protein structure prediction. Moreover, it can be used as an intermediary step in protein structure predictions either on its own or complemented by NMR restraints.  相似文献   

9.
Polyketides are a medicinally important class of natural products. The architecture of modular polyketide synthases (PKSs), composed of multiple covalently linked domains grouped into modules, provides an attractive framework for engineering novel polyketide-producing assemblies. However, impaired domain-domain interactions can compromise the efficiency of engineered polyketide biosynthesis. To facilitate the study of these domain-domain interactions, we have used nuclear magnetic resonance (NMR) spectroscopy to determine the first solution structure of an acyl carrier protein (ACP) domain from a modular PKS, 6-deoxyerythronolide B synthase (DEBS). The tertiary fold of this 10-kD domain is a three-helical bundle; an additional short helix in the second loop also contributes to the core helical packing. Superposition of residues 14-94 of the ensemble on the mean structure yields an average atomic RMSD of 0.64 +/- 0.09 Angstrom for the backbone atoms (1.21 +/- 0.13 Angstrom for all non-hydrogen atoms). The three major helices superimpose with a backbone RMSD of 0.48 +/- 0.10 Angstrom (0.99 +/- 0.11 Angstrom for non-hydrogen atoms). Based on this solution structure, homology models were constructed for five other DEBS ACP domains. Comparison of their steric and electrostatic surfaces at the putative interaction interface (centered on helix II) suggests a model for protein-protein recognition of ACP domains, consistent with the previously observed specificity. Site-directed mutagenesis experiments indicate that two of the identified residues influence the specificity of ACP recognition.  相似文献   

10.
The problem of protein tertiary structure prediction from primary sequence can be separated into two subproblems: generation of a library of possible folds and specification of a best fold given the library. A distance geometry procedure based on random pairwise metrization with good sampling properties was used to generate a library of 500 possible structures for each of 11 small helical proteins. The input to distance geometry consisted of sets of restraints to enforce predicted helical secondary structure and a generic range of 5 to 11 A between predicted contact residues on all pairs of helices. For each of the 11 targets, the resulting library contained structures with low RMSD versus the native structure. Near-native sampling was enhanced by at least three orders of magnitude compared to a random sampling of compact folds. All library members were scored with a combination of an all-atom distance-dependent function, a residue pair-potential, and a hydrophobicity function. In six of the 11 cases, the best-ranking fold was considered to be near native. Each library was also reduced to a final ab initio prediction via consensus distance geometry performed over the 50 best-ranking structures from the full set of 500. The consensus results were of generally higher quality, yielding six predictions within 6.5 A of the native fold. These favorable predictions corresponded to those for which the correlation between the RMSD and the scoring function were highest. The advantage of the reported methodology is its extreme simplicity and potential for including other types of structural restraints.  相似文献   

11.
One of the most important and challenging tasks in protein modelling is the prediction of loops, as can be seen in the large variety of existing approaches. Loops In Proteins (LIP) is a database that includes all protein segments of a length up to 15 residues contained in the Protein Data Bank (PDB). In this study, the applicability of LIP to loop prediction in the framework of homology modelling is investigated. Searching the database for loop candidates takes less than 1 s on a desktop PC, and ranking them takes a few minutes. This is an order of magnitude faster than most existing procedures. The measure of accuracy is the root mean square deviation (RMSD) with respect to the main-chain atoms after local superposition of target loop and predicted loop. Loops of up to nine residues length were modelled with a local RMSD <1 A and those of length up to 14 residues with an accuracy better than 2 A. The results were compared in detail with a thoroughly evaluated and tested ab initio method published recently and additionally with two further methods for a small loop test set. The LIP method produced very good predictions. In particular for longer loops it outperformed other methods.  相似文献   

12.
Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment‐based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ~25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root‐mean‐square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments .  相似文献   

13.
He Y  Xu J  Pan XM 《Proteins》2007,69(1):75-82
We propose a simple model for the calculation of pK(a) values of ionizable residues in proteins. It is based on the premise that the pK(a) shift of ionizable residues is linearly correlated to the interaction between a particular residue and the local environment created by the surrounding residues. Despite its simplicity, the model displays good prediction performance. Under the sixfold cross test prediction over a data set of 405 experimental pK(a) values in 73 protein chains with known structures, the root-mean-square deviation (RMSD) between the experimental and calculated pK(a) was found to be 0.77. The accuracy of this model increases with increasing size of the data set: the RMSD is 0.609 for glutamate (the largest data set with 141 sites) and approximately 1 pH unit for lysine, with a data set containing 45 sites.  相似文献   

14.
We report here an all-atom energy based Monte Carlo docking procedure tested on a dataset of 226 protein-ligand complexes. Average root mean square deviation (RMSD) from crystal conformation was observed to be approximately 0.53 A. The correlation coefficient (r(2)) for the predicted binding free energies calculated using the docked structures against experimental binding affinities was 0.72. The docking protocol is web-enabled as a free software at www.scfbio-iitd.res.in/dock.  相似文献   

15.
16.
Protein-protein interactions play a key role in biological processes. Identifying the interacting residues is a first step toward understanding these interactions at a structural level. In this study, the interface prediction program WHISCY is presented. It combines surface conservation and structural information to predict protein-protein interfaces. The accuracy of the predictions is more than three times higher than a random prediction. These predictions have been combined with another interface prediction program, ProMate [Neuvirth et al. J Mol Biol 2004;338:181-199], resulting in an even more accurate predictor. The usefulness of the predictions was tested using the data-driven docking program HADDOCK [Dominguez et al. J Am Chem Soc 2003;125:1731-1737] in an unbound docking experiment, with the goal of generating as many near-native structures as possible. Unrefined rigid body docking solutions within 10 A ligand RMSD from the true structure were generated for 22 out of 25 docked complexes. For 18 complexes, more than 100 of the 8000 generated models were correct. Our results demonstrates the potential of using interface predictions to drive protein-protein docking.  相似文献   

17.
Structural characterization of protein‐protein interactions is important for understanding life processes. Because of the inherent limitations of experimental techniques, such characterization requires computational approaches. Along with the traditional protein‐protein docking (free search for a match between two proteins), comparative (template‐based) modeling of protein‐protein complexes has been gaining popularity. Its development puts an emphasis on full and partial structural similarity between the target protein monomers and the protein‐protein complexes previously determined by experimental techniques (templates). The template‐based docking relies on the quality and diversity of the template set. We present a carefully curated, nonredundant library of templates containing 4950 full structures of binary complexes and 5936 protein‐protein interfaces extracted from the full structures at 12 Å distance cut‐off. Redundancy in the libraries was removed by clustering the PDB structures based on structural similarity. The value of the clustering threshold was determined from the analysis of the clusters and the docking performance on a benchmark set. High structural quality of the interfaces in the template and validation sets was achieved by automated procedures and manual curation. The library is included in the Dockground resource for molecular recognition studies at http://dockground.bioinformatics.ku.edu . Proteins 2015; 83:1563–1570. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.  相似文献   

19.
MOTIVATION: In recent years, the Protein Data Bank (PDB) has experienced rapid growth. To maximize the utility of the high resolution protein-protein interaction data stored in the PDB, we have developed PIBASE, a comprehensive relational database of structurally defined interfaces between pairs of protein domains. It is composed of binary interfaces extracted from structures in the PDB and the Probable Quaternary Structure server using domain assignments from the Structural Classification of Proteins and CATH fold classification systems. RESULTS: PIBASE currently contains 158,915 interacting domain pairs between 105,061 domains from 2125 SCOP families. A diverse set of geometric, physiochemical and topologic properties are calculated for each complex, its domains, interfaces and binding sites. A subset of the interface properties are used to remove interface redundancy within PDB entries, resulting in 20,912 distinct domain-domain interfaces. The complexes are grouped into 989 topological classes based on their patterns of domain-domain contacts. The binary interfaces and their corresponding binding sites are categorized into 18,755 and 30,975 topological classes, respectively, based on the topology of secondary structure elements. The utility of the database is illustrated by outlining several current applications. AVAILABILITY: The database is accessible via the world wide web at http://salilab.org/pibase SUPPLEMENTARY INFORMATION: http://salilab.org/pibase/suppinfo.html.  相似文献   

20.
Development of sequence-based methods for predicting putative interfacial residues is an extremely important task in modeling 3D structures of protein–protein complexes. In the present paper we used non-gapped sequence segments to predict both interacting and interfacial residues. We demonstrated that continuous sequence segments do occur at the protein–protein interfaces and showed that continuous interacting interfacial segments (CIIS) of length nine are presented on average, in 37% of the complexes in our dataset. Our results indicate that CIIS consist mostly of interacting strands and/or loops, while the CIIS involving the helixes are scarce. We performed scoring of CIIS using four different scoring mechanisms and found that scores of CIIS differ significantly from the scores calculated for random stretches of residues. We argue that such statistical difference inferred thought the corresponding Z-scores could be used for detecting putative interfacial residue segments without using any structural information. This hypothesis was tested on our dataset and benchmarking resulted to 10–60% prediction accuracy depending on type of benchmarking and scoring scheme used in calculations. Such predictions that do not depend on the availability of the 3D structures of monomers can be quite valuable in modeling 3D structures of obligatory complexes, for which structures of separated monomers do not exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号