首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Early stages of surface colonization in coastal marine waters appear to be dominated by the marine Rhodobacter group of the α subdivision of the division Proteobacteria (α-Proteobacteria). However, the quantitative contribution of this group to primary surface colonization has not been determined. In this study, glass microscope slides were incubated in a salt marsh tidal creek for 3 or 6 days. Colonizing bacteria on the slides were examined by fluorescence in situ hybridization by employing DNA probes targeting 16S or 23S rRNA to identify specific phylogenetic groups. Confocal laser scanning microscopy was then used to quantify and track the dynamics of bacterial primary colonists during the early stages of surface colonization and growth. More than 60% of the surface-colonizing bacteria detectable by fluorescence staining (Yo-Pro-1) could also be detected with the Bacteria domain probe EUB338. Archaea were not detected on the surfaces and did not appear to participate in surface colonization. Of the three subdivisions of the Proteobacteria examined, the α-Proteobacteria were the most abundant surface-colonizing organisms. More than 28% of the total bacterial cells and more than 40% of the cells detected by EUB338 on the surfaces were affiliated with the marine Rhodobacter group. Bacterial abundance increased significantly on the surfaces during short-term incubation, mainly due to the growth of the marine Rhodobacter group organisms. These results demonstrated the quantitative importance of the marine Rhodobacter group in colonization of surfaces in salt marsh waters and confirmed that at least during the early stages of colonization, this group dominated the surface-colonizing bacterial assemblage.  相似文献   

2.
The seasonal distributions of salt marsh free-living and particle-associated bacteria belonging to three subdivisions of the Proteobacteria were determined by fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). More than 66% (median = 78%) of total bacterial cells that were stainable with the fluorescent DNA stain Yo-Pro-1 were also detected using the bacterial probe EUB338. The alpha-Proteobacteria, especially those from the marine Rhodobacter group, were abundant on suspended particles and as free-living cells all year round. The marine Rhodobacter group constituted more than 25% of the particle-associated bacteria and more than 18% of the free-living bacteria. Probes specific for three subgroups within the marine Rhodobacter group detected more than 49% of the total marine Rhodobacter group cells. These subgroups displayed different seasonal dynamics. The marine Rhodobacter group is clearly a widespread, diverse and important bacterial lineage in bacterioplankton and particle-associated assemblages in south-eastern United States salt marshes at all times of the year.  相似文献   

3.
The nearly universal colonization of surfaces in marine waters by bacteria and the formation of biofilms and biofouling communities have important implications for ecological function and industrial processes. However, the dynamics of surface attachment and colonization in situ, particularly during the early stages of biofilm establishment, are not well understood. Experimental surfaces that differed in their degrees of hydrophilicity or hydrophobicity were incubated in a salt marsh estuary tidal creek for 24 or 72 h. The organisms colonizing these surfaces were examined by using a cultivation-independent approach, amplified ribosomal DNA restriction analysis. The goals of this study were to assess the diversity of bacterial colonists involved in early succession on a variety of surfaces and to determine the phylogenetic affiliations of the most common early colonists. Substantial differences in the representation of different cloned ribosomal DNA sequences were found when the 24- and 72-h incubations were compared, indicating that some new organisms were recruited and some other organisms were lost. Phylogenetic analyses of the most common sequences recovered showed that the colonists were related to organisms known to inhabit surfaces or particles in marine systems. A total of 22 of the 26 clones sequenced were affiliated with the Roseobacter subgroup of the alpha subdivision of the division Proteobacteria (alpha-Proteobacteria), and most of these clones were recovered at a high frequency from all surfaces after 24 or 72 h of incubation. Two clones were affiliated with the Alteromonas group of the gamma-Proteobacteria and appeared to be involved only in the very early stages of colonization (within the first 24 h). A comparison of the colonization patterns on the test surfaces indicated that the early bacterial community succession rate and/or direction may be influenced by surface physicochemical properties. However, organisms belonging to the Roseobacter subgroup are ubiquitous and rapid colonizers of surfaces in coastal environments.  相似文献   

4.
Bacterial surface colonization is a universal adaptation strategy in aquatic environments. However, neither the identities of early colonizers nor the temporal changes in surface assemblages are well understood. To determine the identities of the most common bacterial primary colonizers and to assess the succession process, if any, of the bacterial assemblages during early stages of surface colonization in coastal water of the West Pacific Ocean, nonnutritive inert materials (glass, Plexiglas, and polyvinyl chloride) were employed as test surfaces and incubated in seawater off the Qingdao coast in the spring of 2005 for 24 and 72 h. Phylogenetic analysis of the 16S rRNA gene sequences amplified from the recovered surface-colonizing microbiota indicated that diverse bacteria colonized the submerged surfaces. Multivariate statistical cluster analyses indicated that the succession of early surface-colonizing bacterial assemblages followed sequential steps on all types of test surfaces. The Rhodobacterales, especially the marine Roseobacter clade members, formed the most common and dominant primary surface-colonizing bacterial group. Our current data, along with previous studies of the Atlantic coast, indicate that the Rhodobacterales bacteria are the dominant and ubiquitous primary surface colonizers in temperate coastal waters of the world and that microbial surface colonization follows a succession sequence. A conceptual model is proposed based on these findings, which may have important implications for understanding the structure, dynamics, and function of marine biofilms and for developing strategies to harness or control surface-associated microbial communities.  相似文献   

5.
The nearly universal colonization of surfaces in marine waters by bacteria and the formation of biofilms and biofouling communities have important implications for ecological function and industrial processes. However, the dynamics of surface attachment and colonization in situ, particularly during the early stages of biofilm establishment, are not well understood. Experimental surfaces that differed in their degrees of hydrophilicity or hydrophobicity were incubated in a salt marsh estuary tidal creek for 24 or 72 h. The organisms colonizing these surfaces were examined by using a cultivation-independent approach, amplified ribosomal DNA restriction analysis. The goals of this study were to assess the diversity of bacterial colonists involved in early succession on a variety of surfaces and to determine the phylogenetic affiliations of the most common early colonists. Substantial differences in the representation of different cloned ribosomal DNA sequences were found when the 24- and 72-h incubations were compared, indicating that some new organisms were recruited and some other organisms were lost. Phylogenetic analyses of the most common sequences recovered showed that the colonists were related to organisms known to inhabit surfaces or particles in marine systems. A total of 22 of the 26 clones sequenced were affiliated with the Roseobacter subgroup of the α subdivision of the division Proteobacteria (α-Proteobacteria), and most of these clones were recovered at a high frequency from all surfaces after 24 or 72 h of incubation. Two clones were affiliated with the Alteromonas group of the γ-Proteobacteria and appeared to be involved only in the very early stages of colonization (within the first 24 h). A comparison of the colonization patterns on the test surfaces indicated that the early bacterial community succession rate and/or direction may be influenced by surface physicochemical properties. However, organisms belonging to the Roseobacter subgroup are ubiquitous and rapid colonizers of surfaces in coastal environments.  相似文献   

6.
Fluorescence in situ hybridization (FISH) with horseradish peroxidase (HRP)-labeled oligonucleotide probes and tyramide signal amplification, also known as catalyzed reporter deposition (CARD), is currently not generally applicable to heterotrophic bacteria in marine samples. Penetration of the HRP molecule into bacterial cells requires permeabilization procedures that cause high and most probably species-selective cell loss. Here we present an improved protocol for CARD-FISH of marine planktonic and benthic microbial assemblages. After concentration of samples onto membrane filters and subsequent embedding of filters in low-gelling-point agarose, no decrease in bacterial cell numbers was observed during 90 min of lysozyme incubation (10 mg ml(-1) at 37 degrees C). The detection rates of coastal North Sea bacterioplankton by CARD-FISH with a general bacterial probe (EUB338-HRP) were significantly higher (mean, 94% of total cell counts; range, 85 to 100%) than that with a monolabeled probe (EUB338-mono; mean, 48%; range, 19 to 66%). Virtually no unspecific staining was observed after CARD-FISH with an antisense EUB338-HRP. Members of the marine SAR86 clade were undetectable by FISH with a monolabeled probe; however, a substantial population was visualized by CARD-FISH (mean, 7%; range, 3 to 13%). Detection rates of EUB338-HRP in Wadden Sea sediments (mean, 81%; range, 53 to 100%) were almost twice as high as the detection rates of EUB338-mono (mean, 44%; range, 25 to 71%). The enhanced fluorescence intensities and signal-to-background ratios make CARD-FISH superior to FISH with directly labeled oligonucleotides for the staining of bacteria with low rRNA content in the marine environment.  相似文献   

7.
Biofilms were grown in annular reactors supplied with drinking water enriched with 235 microg C/L. Changes in the biofilms with ageing, disinfection, and phosphate treatment were monitored using fluorescence in situ hybridization. EUB338, BET42a, GAM42a, and ALF1b probes were used to target most bacteria and the alpha (alpha), beta (beta), and gamma (gamma) subclasses of Proteobacteria, respectively. The stability of biofilm composition was checked after the onset of colonization between T = 42 days and T = 113 days. From 56.0% to 75.9% of the cells detected through total direct counts with DAPI (4'-6-diamidino-2-phenylindole) were also detected with the EUB338 probe, which targets the 16S rRNA of most bacteria. Among these cells, 16.9%-24.7% were targeted with the BET42a probe, 1.8%-18.3% with the ALF1b probe, and <2.5% with the GAM42a probe. Phosphate treatment induced a significant enhancement to the proportion of gamma-Proteobacteria (detected with the GAM42a probe), a group that contains many health-related bacteria. Disinfection with monochloramine for 1 month or chlorine for 3 days induced a reduction in the percentage of DAPI-stained cells that hybridized with the EUB338 probe (as expressed by percentages of EUB338 counts/DAPI) and with any of the ALF1b, BET42a, and GAM42a probes. The percentage of cells detected by any of the three probes (ALF1b+BET42a+GAM42a) tended to decrease, and reached in total less than 30% of the EUB338-hybridized cells. Disinfection with chlorine for 7 days induced a reverse shift; an increase in the percentage of EUB338 counts targeted by any of these three probes was noted, which reached up to 87%. However, it should be noted that the global bacterial densities (heterotrophic plate counts and total direct counts) tended to decrease over the duration of the experiment. Therefore, those bacteria that could be considered to resist 7 days of chlorination constituted a small part of the initial biofilm community, up to the point at which the other bacterial groups were destroyed by chlorination. The results suggest that there were variations in the kinetics of inactivation by disinfectant, depending on the bacterial populations involved.  相似文献   

8.
In situ hybridization with rRNA-targeted oligonucleotide probes has become a widely applied tool for direct analysis of microbial population structures of complex natural and engineered systems. In such studies probe EUB338 (AMANN et al., 1990) is routinely used to quantify members of the domain Bacteria with a sufficiently high cellular ribosome content. Recent reevaluations of probe EUB338 coverage based on all publicly available 16S rRNA sequences, however, indicated that important bacterial phyla, most notably the Planctomycetales and Verrucomicrobia, are missed by this probe. We therefore designed and evaluated two supplementary versions (EUB338-II and EUB338-III) of probe EUB338 for in situ detection of most of those phyla not detected with probe EUB338. In situ dissociation curves with target and non-target organisms were recorded under increasing stringency to optimize hybridization conditions. For that purpose a digital image software routine was developed. In situ hybridization of a complex biofilm community with the three EUB338 probes demonstrated the presence of significant numbers of probe EUB338-II and EUB338-III target organisms. The application of EUB338, EUB338-II and EUB338-III should allow a more accurate quantification of members of the domain Bacteria in future molecular ecological studies.  相似文献   

9.
Succession of bacterial communities during the first 36 h of biofilm formation in coastal water was investigated at 3 approximately 15 h intervals. Three kinds of surfaces (i.e., acryl, glass, and steel substratum) were submerged in situ at Sacheon harbor, Korea. Biofilms were harvested by scraping the surfaces, and the compositions of bacterial communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP), and cloning and sequencing of 16S rRNA genes. While community structure based on T-RFLP analysis showed slight differences by substratum, dramatic changes were commonly observed for all substrata between 9 and 24 h. Identification of major populations by 16S rRNA gene sequences indicated that gamma-Proteobacteria (Pseudomonas, Acinetobacter, Alteromonas, and uncultured gamma-Proteobacteria) were predominant in the community during 0 approximately 9 h, while the ratio of alpha-Proteobacteria (Loktanella, Methylobacterium, Pelagibacter, and uncultured alpha-Proteobacteria) increased 2.6 approximately 4.8 folds during 24 approximately 36 h of the biofilm formation, emerging as the most predominant group. Previously, alpha-Proteobacteria were recognized as the pioneering organisms in marine biofilm formation. However, results of this study, which revealed the bacterial succession with finer temporal resolution, indicated some species of gamma-Proteobacteria were more important as the pioneering population. Measures to control pioneering activities of these species can be useful in prevention of marine biofilm formation.  相似文献   

10.
Submerged metal surfaces in marine waters undergo rapid microbial colonization and biocorrosion, causing huge damage to marine engineering facilities and significant financial losses. In coastal areas, an accelerated and particularly severe form of biocorrosion termed accelerated low water corrosion (ALWC) is widespread globally. While identification of biocorroding microorganisms and the dynamics of their community structures is the key for understanding the processes and mechanisms leading to ALWC, neither one is presently understood. In this study, analysis of constructed clone libraries and qPCR assays targeting group-specific 16S rRNA or functional marker genes were used to determine the identity and abundance of putative early carbon steel surface-colonizing and biocorroding microbes in coastal seawater. Diverse microbial groups including 10 bacterial phyla, archaea and algae were found to putatively participate in the surface-colonizing process. Analysis of the community structure of carbon steel surface microbiota revealed a temporal succession leading to ALWC. By extending the current state of knowledge, our work demonstrates the global importance of Alphaproteobacteria (mainly Rhodobacterales), Gammaproteobacteria (mainly Alteromonadales and Oceanospirillales), Bacteroidetes (mainly Flavobacteriales) and microalgae as the pioneer and sustaining surface colonizers that contribute to initial formation and development of surface biofilms. We also discovered Epsilonproteobacteria and the recently described Zetaproteobacteria as putative corrosion-causing microorganisms during early steps of the ALWC process. Hence, our study reports that Zetaproteobacteria may be ubiquitous also in non-hydrothermal coastal seawaters and that ALWC of submerged carbon steel surfaces in coastal waters may involve a highly diverse, complex and dynamic microbial consortium. Our finding that Epsilon- and Zetaproteobacteria may play pivotal roles in ALWC provides a new starting point for future investigation of the ALWC process and mechanism in marine environments. Further studies of Epsilon- and Zetaproteobacteria in particular may thus help with the design of effective corrosion prevention and control strategies.  相似文献   

11.
We describe an approach to sort cells from coastal North Sea bacterioplankton by flow cytometry after in situ hybridization with rRNA-targeted horseradish peroxidase-labeled oligonucleotide probes and catalyzed fluorescent reporter deposition (CARD-FISH). In a sample from spring 2003 >90% of the cells were detected by CARD-FISH with a bacterial probe (EUB338). Approximately 30% of the microbial assemblage was affiliated with the Cytophaga-Flavobacterium lineage of the Bacteroidetes (CFB group) (probe CF319a), and almost 10% was targeted by a probe for the beta-proteobacteria (probe BET42a). A protocol was optimized to detach cells hybridized with EUB338, BET42a, and CF319a from membrane filters (recovery rate, 70%) and to sort the cells by flow cytometry. The purity of sorted cells was >95%. 16S rRNA gene clone libraries were constructed from hybridized and sorted cells (S-EUB, S-BET, and S-CF libraries) and from unhybridized and unsorted cells (UNHYB library). Sequences related to the CFB group were significantly more frequent in the S-CF library (66%) than in the UNHYB library (13%). No enrichment of beta-proteobacterial sequence types was found in the S-BET library, but novel sequences related to Nitrosospira were found exclusively in this library. These bacteria, together with members of marine clade OM43, represented >90% of the beta-proteobacteria in the water sample, as determined by CARD-FISH with specific probes. This illustrates that a combination of CARD-FISH and flow sorting might be a powerful approach to study the diversity and potentially the activity and the genomes of different bacterial populations in aquatic habitats.  相似文献   

12.
We determined the compositions of bacterioplankton communities in surface waters of coastal California using clone libraries of 16S rRNA genes and fluorescence in situ hybridization (FISH) in order to compare the community structures inferred from these two culture-independent approaches. The compositions of two clone libraries were quite similar to those of clone libraries of marine bacterioplankton examined by previous studies. Clones from gamma-proteobacteria comprised ca. 28% of the libraries, while approximately 55% of the clones came from alpha-proteobacteria, which dominated the clone libraries. The Cytophaga-Flavobacter group and three others each comprised 10% or fewer of the clone libraries. The community composition determined by FISH differed substantially from the composition implied by the clone libraries. The Cytophaga-Flavobacter group dominated 8 of the 11 communities assayed by FISH, including the two communities assayed using clone libraries. On average only 10% of DAPI (4', 6'-diamidino-2-phenylindole)-stained bacteria were detected by FISH with a probe for alpha-proteobacteria, but 30% of DAPI-stained bacteria appeared to be in the Cytophaga-Flavobacter group as determined by FISH. alpha-Proteobacteria were greatly overrepresented in clone libraries compared to their relative abundance determined by FISH, while the Cytophaga-Flavobacter group was underrepresented in clone libraries. Our data show that the Cytophaga-Flavobacter group can be a numerically dominant component of coastal marine bacterioplankton communities.  相似文献   

13.
Dynamics of bacterial and fungal communities on decaying salt marsh grass   总被引:4,自引:0,他引:4  
Both bacteria and fungi play critical roles in decomposition processes in many natural environments, yet only rarely have they been studied as an integrated microbial community. Here we describe the bacterial and fungal assemblages associated with two decomposition stages of Spartina alterniflora detritus in a productive southeastern U.S. salt marsh. 16S rRNA genes and 18S-to-28S internal transcribed spacer (ITS) regions were used to target the bacterial and ascomycete fungal communities, respectively, based on DNA sequence analysis of isolates and environmental clones and by using community fingerprinting based on terminal restriction fragment length polymorphism (T-RFLP) analysis. Seven major bacterial taxa (six affiliated with the alpha-Proteobacteria and one with the Cytophagales) and four major fungal taxa were identified over five sample dates spanning 13 months. Fungal terminal restriction fragments (T-RFs) were informative at the species level; however, bacterial T-RFs frequently comprised a number of related genera. Amplicon abundances indicated that the salt marsh saprophyte communities have little-to-moderate variability spatially or with decomposition stage, but considerable variability temporally. However, the temporal variability could not be readily explained by either successional shifts or simple relationships with environmental factors. Significant correlations in abundance (both positive and negative) were found among dominant fungal and bacterial taxa that possibly indicate ecological interactions between decomposer organisms. Most associations involved one of four microbial taxa: two groups of bacteria affiliated with the alpha-Proteobacteria and two ascomycete fungi (Phaeosphaeria spartinicola and environmental isolate "4clt").  相似文献   

14.
Diversity and genomics of Antarctic marine micro-organisms   总被引:2,自引:0,他引:2  
Marine bacterioplanktons are thought to play a vital role in Southern Ocean ecology and ecosystem function, as they do in other ocean systems. However, our understanding of phylogenetic diversity, genome-enabled capabilities and specific adaptations to this persistently cold environment is limited. Bacterioplankton community composition shifts significantly over the annual cycle as sea ice melts and phytoplankton bloom. Microbial diversity in sea ice is better known than that of the plankton, where culture collections do not appear to represent organisms detected with molecular surveys. Broad phylogenetic groupings of Antarctic bacterioplankton such as the marine group I Crenarchaeota, alpha-Proteobacteria (Roseobacter-related and SAR-11 clusters), gamma-Proteobacteria (both cultivated and uncultivated groups) and Bacteriodetes-affiliated organisms in Southern Ocean waters are in common with other ocean systems. Antarctic SSU rRNA gene phylotypes are typically affiliated with other polar sequences. Some species such as Polaribacter irgensii and currently uncultivated gamma-Proteobacteria (Ant4D3 and Ant10A4) may flourish in Antarctic waters, though further studies are needed to address diversity on a larger scale. Insights from initial genomics studies on both cultivated organisms and genomes accessed through shotgun cloning of environmental samples suggest that there are many unique features of these organisms that facilitate survival in high-latitude, persistently cold environments.  相似文献   

15.
Fluorescence in situ hybridization (FISH) with horseradish peroxidase (HRP)-labeled oligonucleotide probes and tyramide signal amplification, also known as catalyzed reporter deposition (CARD), is currently not generally applicable to heterotrophic bacteria in marine samples. Penetration of the HRP molecule into bacterial cells requires permeabilization procedures that cause high and most probably species-selective cell loss. Here we present an improved protocol for CARD-FISH of marine planktonic and benthic microbial assemblages. After concentration of samples onto membrane filters and subsequent embedding of filters in low-gelling-point agarose, no decrease in bacterial cell numbers was observed during 90 min of lysozyme incubation (10 mg ml−1 at 37°C). The detection rates of coastal North Sea bacterioplankton by CARD-FISH with a general bacterial probe (EUB338-HRP) were significantly higher (mean, 94% of total cell counts; range, 85 to 100%) than that with a monolabeled probe (EUB338-mono; mean, 48%; range, 19 to 66%). Virtually no unspecific staining was observed after CARD-FISH with an antisense EUB338-HRP. Members of the marine SAR86 clade were undetectable by FISH with a monolabeled probe; however, a substantial population was visualized by CARD-FISH (mean, 7%; range, 3 to 13%). Detection rates of EUB338-HRP in Wadden Sea sediments (mean, 81%; range, 53 to 100%) were almost twice as high as the detection rates of EUB338-mono (mean, 44%; range, 25 to 71%). The enhanced fluorescence intensities and signal-to-background ratios make CARD-FISH superior to FISH with directly labeled oligonucleotides for the staining of bacteria with low rRNA content in the marine environment.  相似文献   

16.
17.
The genus Pseudoalteromonas has attracted interest because it has frequently been found in association with eukaryotic hosts, and because many Pseudoalteromonas species produce biologically active compounds. One distinct group of Pseudoalteromonas species is the antifouling subgroup containing Pseudoalteromonas tunicata and Ps. ulvae, which both produce extracellular compounds that inhibit growth and colonization by different marine organisms. PCR primers targeting the 16S rRNA gene of the genus Pseudoalteromonas and the antifouling subgroup were developed and applied in this study. Real-time quantitative PCR (qPCR) was applied to determine the relative bacterial abundance of the genus and the antifouling subgroup, and denaturing gradient gel electrophoresis (DGGE) was applied to study the diversity of the genus in 11 different types of marine samples from Danish coastal waters. The detection of Ps. tunicata that contain the antifouling subgroup was achieved through specific PCR amplification of the antibacterial protein gene (alpP). The Pseudoalteromonas species accounted for 1.6% of the total bacterial abundance across all samples. The Pseudoalteromonas diversity on the three unfouled marine organisms Ciona intestinalis, Ulva lactuca and Ulvaria fusca was found to be low, and Ps. tunicata was only detected on these three hosts, which all contain accessible cellulose polymers in their cell walls.  相似文献   

18.
Bacteria of the phyla Proteobacteria and Bacteroidetes are known to be the most prominent heterotrophic organisms in marine surface waters. In order to investigate the occurrence of these phyla in a coastal environment, the tidal flat ecosystem German Wadden Sea, we analyzed a clone library of PCR-amplified and sequenced 16S rRNA gene fragments and isolated 46 new strains affiliated with these phyla from the water column with various polymers and complex media as substrates. The phylogenetic affiliation of these strains was analyzed on the basis of sequenced 16S rRNA gene fragments. Subsequently, a comprehensive phylogenetic analysis of Proteobacteria and Bacteroidetes including available sequences from oxic habitats of earlier studies of this ecosystem was performed. Sequences of the earlier studies were derived from isolation approaches and from denaturing gradient gel electrophoresis (DGGE) analyses of environmental samples and high dilution steps of MPN (most probable number) cultures. The majority of the 265 sequences included in this analysis affiliated with alpha-Proteobacteria (45.3%), gamma-Proteobacteria (31.7%), and Bacteroidetes (16.2%). Almost 7% belong to the delta-Proteobacteria and several of these clones affiliated with the Myxococcales, a group comprising obligate aerobic organisms. Within the alpha- and gamma-Proteobacteria specific clusters were identified including isolates from high dilution steps of dilution cultures and/or clones from the clone library or DGGE gels, implying a high abundance of some of these organisms. Within the gamma-Proteobacteria a new cluster is proposed, which consists of marine surface-attached organisms. This SAMMIC (Surface Attached Marine MICrobes) cluster comprises only uncultured phylotypes and exhibits a global distribution. Overall, the analysis indicates that Proteobacteria and Bacteroidetes of the Wadden Sea have a surprisingly high diversity, presumably a result of the signature of this ecosystem as a melting pot at the land-sea interface and comprising a great habitat variety.  相似文献   

19.
Based on direct measurements on surface sediments collected from an intertidal salt marsh, a positive relationship was demonstrated between bacterial abundance and specific surface area of sediment. While this relationship has been postulated previously, this is the first direct confirmation that it holds over a wide range of sediment types. A laboratory experiment was conducted to determine the effects of specific surface area, distribution of surface area, and organic loading on bacterial colonization. Model sediments included angular silica particles, kaolin, and spherical glass beads, used singly or in mixtures. Organic loading resulted in substantial enhancement of bacterial colonization. Distribution of surface area controlled by textural, shape, and sorting, had a complex effect, with glass bead sediments generally supporting better colonization than silica particles or kaolin. The effect of specific surface area was noted only in restricted comparisons of similarly shaped glass beads.  相似文献   

20.
Dike material was used as fill to construct high, mid, and low intertidal elevations in a subsided marsh located in the South Slough National Estuarine Research Reserve, Oregon. Marsh surface elevation change (including fill consolidation and compression of the original marsh soils), vertical accretion, tidal channel development, emergent vegetation colonization, and fish use were monitored over 3 years. Significant marsh surface elevation loss was detected at all elevations, with fill consolidation accounting for 70% of the loss at the highest elevation. Vertical accretion averaged 0.19 cm/yr in the sparsely vegetated Kunz Marsh compared with 0.70 cm/yr at the densely vegetated reference sites. Tidal channel development was influenced as much by marsh surface gradient as by marsh surface elevation. Vegetation colonization was directly correlated with elevation, whereas density and species richness of fish was inversely correlated with elevation. Manipulating the marsh surface to mid‐marsh elevations favors rapid vegetation colonization and facilitates vertical accretion‐dominated tidal channel development. Low marsh elevations result in initially slower developing vegetation colonization and channel development but are more beneficial to fish during the early stages of marsh recovery. High marsh elevations appear to sacrifice tidal channel development and associated fish access for rapid vegetation colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号