首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incorporation of crop genes into wild and weedy relative populations (i.e. introgression) has long been of interest to ecologists and weed scientists. Potential negative outcomes that result from crop transgene introgression (e.g. extinction of native wild relative populations; invasive spread by wild or weedy hosts) have not been documented, and few examples of transgene introgression exist. However, molecular evidence of introgression from non-transgenic crops to their relatives continues to emerge, even for crops deemed low-risk candidates for transgene introgression. We posit that transgene introgression monitoring and mitigation strategies are warranted in cases in which transgenes are predicted to confer selective advantages and disadvantages to recipient hosts. The utility and consequences of such strategies are examined, and future directions provided.  相似文献   

2.
Gene flow and introgression from cultivated to wild plant populations have important evolutionary and ecological consequences and require detailed investigations for risk assessments of transgene escape into natural ecosystems. Sugar beets (Beta vulgaris ssp. vulgaris) are of particular concern because: (i) they are cross-compatible with their wild relatives (the sea beet, B. vulgaris ssp. maritima); (ii) crop-to-wild gene flow is likely to occur via weedy lineages resulting from hybridization events and locally infesting fields. Using a chloroplastic marker and a set of nuclear microsatellite loci, the occurrence of crop-to-wild gene flow was investigated in the French sugar beet production area within a 'contact-zone' in between coastal wild populations and sugar beet fields. The results did not reveal large pollen dispersal from weed to wild beets. However, several pieces of evidence clearly show an escape of weedy lineages from fields via seed flow. Since most studies involving the assessment of transgene escape from crops to wild outcrossing relatives generally focused only on pollen dispersal, this last result was unexpected: it points out the key role of a long-lived seed bank and highlights support for transgene escape via man-mediated long-distance dispersal events.  相似文献   

3.
Hybridization between wild boar (Sus scrofa) and domestic pig occurred in the past and still occurs today, having great evolutionary and management implications. In fact, genetic introgression from the domestic form may alter traits like behavior, reproduction rate, and immunology in wild populations, with likely demographic impacts. Thus, it is crucial to understand under what conditions hybridization occurs in S. scrofa. Captive crosses with domestic pigs (released or escaped) have been suggested to constitute the major source of the spread of domestic genes into wild boar populations. However, to date, few studies have assessed the degree of admixture in farmed animals in comparison to the surrounding wild populations. With this purpose, we analyzed microsatellite loci in wild boar sampled in breeding stations and in the local wild population in two Italian regions (Sardinia and Piedmont). Both captive populations had lower allelic richness than the corresponding wild population, but a similar expected heterozygosity. In Piedmont, introgression from the domestic form into the wild population seems to be extremely low, while there are significant signs of admixture in the sampled breeding stations. In Sardinia, instead, the captive sample did not differ significantly from the wild population, which showed moderate signs of introgression. We conclude that hybridization in nature seems to play the key role in Sardinia, while intentional hybridization in captivity is the major source of introgression in Piedmont. Our findings emphasize the need for a routine genetic monitoring of wild boar captive populations, coupled with reference data on the neighboring wild populations.  相似文献   

4.

Background and Aims

Transgene introgression from crops into wild relatives may increase the resistance of wild plants to herbicides, insects, etc. The chance of transgene introgression depends not only on the rate of hybridization and the establishment of hybrids in local wild populations, but also on the metapopulation dynamics of the wild relative. The aim of the study was to estimate gene flow in a metapopulation for assessing and managing the risks of transgene introgression.

Methods

Wild carrots (Daucus carota) were sampled from 12 patches in a metapopulation. Eleven microsatellites were used to genotype wild carrots. Genetic structure was estimated based on the FST statistic. Contemporary (over the last several generations) and historical (over many generations) gene flow was estimated with assignment and coalescent methods, respectively.

Key Results

The genetic structure in the wild carrot metapopulation was moderate (FST = 0·082) and most of the genetic variation resided within patches. A pattern of isolation by distance was detected, suggesting that most of the gene flow occurred between neighbouring patches (≤1 km). The mean contemporary gene flow was 5 times higher than the historical estimate, and the correlation between them was very low. Moreover, the contemporary gene flow in roadsides was twice that in a nature reserve, and the correlation between contemporary and historical estimates was much higher in the nature reserve. Mowing of roadsides may contribute to the increase in contemporary gene flow. Simulations demonstrated that the higher contemporary gene flow could accelerate the process of transgene introgression in the metapopulation.

Conclusions

Human disturbance such as mowing may alter gene flow patterns in wild populations, affecting the metapopulation dynamics of wild plants and the processes of transgene introgression in the metapopulation. The risk assessment and management of transgene introgression and the control of weeds need to take metapopulation dynamics into consideration.  相似文献   

5.
Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, where wild rice (O. rufipogon) can be found growing in close proximity to cultivated and weedy rice. Using 375 accessions and a combined analysis of 24 neutral SSR loci and two rice domestication genes (sh4, controlling seed shattering, and Bh4, controlling hull colour), we addressed the following questions: (i) What is the relationship of Malaysian weedy rice to domesticated and wild rice, and to weedy rice strains in the USA? (ii) To what extent does the presence of O. rufipogon influence the genetic and phenotypic diversity of Malaysian weeds? (iii) What do the distributions of sh4 and Bh4 alleles and associated phenotypes reveal about the origin and contemporary evolution of Malaysian weedy rice? Our results reveal the following: independent evolutionary origins for Malaysian weeds and US strains, despite their very close phenotypic resemblance; wild‐to‐weed gene flow in Malaysian weed populations, including apparent adaptive introgression of seed‐shattering alleles; and a prominent role for modern Malaysian cultivars in the origin and recent proliferation of Malaysian weeds. These findings suggest that the genetic complexity and adaptability of weedy crop relatives can be profoundly influenced by proximity to reproductively compatible wild and domesticated populations.  相似文献   

6.
Genes invading new populations: a risk assessment perspective   总被引:1,自引:0,他引:1  
One of the concerns raised over the introduction of genetically modified crops is that transgenes will invade populations of wild relatives, causing ecologically significant changes in fitness. In recent years, this has given rise to several studies estimating hybridization rates and the fitness of crop-wild relative hybrids. These studies have established that transgenes are likely to move to F1 hybrids, albeit at low frequency. Hybridization, however, is not synonymous with introgression, and questions remain as to whether particular transgenes will cause ecologically significant changes in recipient plant populations. Research effort should now focus on estimating any changes in the fitness of a population as a consequence of having a transgene, understanding genotype x environment interactions, and deducing the extent to which pathogens and herbivores (transgene targets) regulate wild relative populations. This will involve a combination of manipulative experiments and empirically motivated mathematical models.  相似文献   

7.
Lack of introgression or divergent selection may be responsible for the maintenance of phenotypic differences between sympatric populations of crops and their wild progenitors. To distinguish between these hypotheses, amplified fragment length polymorphism markers were located on a molecular linkage map of Phaseolus vulgaris relative to genes for the domestication syndrome and other traits. Diversity for these same markers was then analyzed in two samples of wild and domesticated populations from Mesoamerica. Differentiation between wild and domesticated populations was significantly higher in parapatric and allopatric populations compared to sympatric populations. It was also significantly higher near genes for domestication compared to those away from these genes. Concurrently, the differences in genetic diversity between wild and domesticated populations were strongest around such genes. These data suggest that selection in the presence of introgression appears to be a major evolutionary factor maintaining the identity of wild and domesticated populations in sympatric situations. Furthermore, alleles from domesticated populations appear to have displaced alleles in sympatric wild populations, thus leading to a reduction in genetic diversity in such populations. These results also provide a possible experimental framework for assessing the long-term risk of transgene escape and the targeting of transgenes inside the genome to minimize the survival of these transgenes into wild populations following introduction by gene flow.This article is dedicated to the memory of Epimaki M. K. Koinange.  相似文献   

8.
Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate-resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate-resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20,400 samples (0.04 +/- 0.01% SE). CP4 EPSPS-positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen-mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short-term production can result in establishment of transgenic plants at multi-kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.  相似文献   

9.
Bumblebees (Bombus spp.) are commonly used for greenhouse pollination of tomatoes and other crop plants. The colonies used for this purpose are provided by commercial bumblebee breeders, which by now operate at a professional company level. As a result of this practice commercially bred bumblebee colonies are transported and used over large distances and national borders, introducing subspecies into non-endemic regions. The question whether and to what extends gene flow between such managed greenhouse and wild bumblebee populations exists, so far has not been addressed. Here we used samples from three greenhouses in Poland and the surrounding populations to address this question. Using microsatellite DNA data we found strong genetic introgression from the sampled greenhouse populations into the adjacent populations. Depending on the analysed population, the number of individuals assigned to the greenhouse populations ranged from 0.08 to 0.47. We also found that more distant populations were much less affected by genetic introgression from the greenhouses.  相似文献   

10.
With the proliferation of genetically modified (GM) products and the almost exponential growth of land use for GM crops, there is a growing need to develop quantitative approaches to estimating the risk of escape of transgenes into wild populations of crop relatives by natural hybridization. We assessed the risk of transgene escape by constructing a population genetic model based on information on fitness-related QTLs obtained from an F 2 population of wild soybean G. soja × cultivated soybean Glycine max. Simulation started with ten F 1 and 990 wild soybeans reproducing by selfing or outcrossing. Seed production was determined from the genetic effects of two QTLs for number of seeds (SN). Each seed survived winter according to the maternal genotype at three QTLs for winter survival (WS). We assumed that one neutral transgene was inserted at various sites and calculated its extinction rate. The presence of G. max alleles at SN and WS QTLs significantly decreased the probability of introgression of the neutral transgene at all insertion sites equally. The presence of G. max alleles at WS QTLs lowered the risk more than their presence at SN QTLs. Although most model studies have concentrated only on genotypic effects of transgenes, we show that the presence of fitness-related domestication genes has a large effect on the risk of transgene escape. Our model offers the advantage of considering the effects of both domestication genes and a transgene, and they can be widely applied to other wild × crop relative complexes.  相似文献   

11.
Transgenic plants have increased interest in the study of crop gene introgression in wild populations. Genes (or transgenes) conferring adaptive advantages persist in introgressed populations, enhancing competitiveness of wild or weedy plants. This represents an ecological risk that could increase problems of weed control. Introgression of cultivar alleles into wild plant populations via crop–wild hybridisations is primarily governed by their fitness effect. To evaluate this, we studied the second generation of seven wild–crop interspecific hybrids between weedy Helianthus petiolaris and cultivated sunflower, Hannuus var. macrocarpus. The second generation comprised open‐pollinated progeny and backcrosses to the wild parent, mimicking crosses that occur in natural situations. We compared a number of morphological, life history and fitness traits. Multivariate analysis showed that the parental species Hannuus and Hpetiolaris differed in a number of morphological traits, while the second hybrid generation between them was intermediate. Sunflower crop introgression lowered fitness of interspecific hybrids, but fitness parameters tended to recover in the following generation. Relative frequency of wild/weedy and introgressed plants was estimated through four generations, based on male and female parent fitness. In spite of several negative selection coefficients observed in the second generation, introgressed plants could be detected in stands of <100 weedy Hpetiolaris populations. The rapid recovery of fecundity parameters leads to prediction that any trait conferring an ecological advantage will diffuse into the wild or weedy population, even if F1 hybrids have low fitness.  相似文献   

12.
转基因技术研发为提高我国水稻产量和减少劳动力投入提供了巨大机遇。我国对转基因水稻研发进行了大量的投入,目前已培育了具有不同新性状的转基因水稻品系,许多品系已进入生物安全评价阶段。风险评价对转基因水稻的安全生产至关重要,是其商品化生产之前必须解决的问题,其中包括转基因逃逸及其潜在环境影响。对水稻抗虫转基因逃逸及其潜在环境风险的评价包括3个重要环节:(1)通过田间试验和模型模拟检测转基因漂移到非转基因栽培稻及其野生近缘种的频率;(2)检测转基因在栽培稻和野生近缘种后代中的表达;(3)确定转基因对野生近缘种群体适合度和进化潜力的影响。大量研究表明,在近距离的空间范围内栽培稻品种之间的基因漂移频率很低(〉0.1%),但栽培稻与其野生近缘种的基因漂移频率变异很大。进一步研究还表明,Bt抗虫转基因在栽培稻与普通野生稻后代中均能正常表达,但在其不同生长阶段,表达量有很大变异。在有较高水平的害虫虫压下,含有抗虫转基因的栽培稻及野生近缘种杂交后代与不含转基因的对照相比,抗虫性显著提高且适合度利益明显;但是,在虫害发生水平较低时,含有抗虫转基因的群体与不含抗虫转基因的群体相比没有显著的适合度优势。综上,转基因逃逸到非转基因水稻的频率极低,并且可以通过空间隔离阻断其逃逸。虽然抗虫转基因向杂草稻以及与栽培稻距离较近的野生稻群体的逃逸无法避免,但是野生稻和杂草稻群体周围环境中的总体虫压较低,所以基因漂移带来的环境影响应十分有限。  相似文献   

13.
The persistence of transgenes in wild populations may cause unintended ecological consequences, and the possibility of transgenes' persistence and introgression is dependent on fitness performance of transgenic crop–wild hybrids. To investigate the effects of transgene and genotype × environment on the fitness of crop–wild rice hybrids, a total of 11 cross‐combination progenies between insect‐resistant transgene (CpTI and Bt/CpTI) rice lines and wild rice (Oryza rufipogon) were evaluated at different sites with contrasting insect treatments. The results showed that fitness performance varied between transgenic hybrids having different wild parents and under different environmental conditions, indicating that fitness effects of transgenes on hybrid progenies depend heavily on the genetic background of recipient plants and growing environment. Significant fitness advantages conferred by transgenes were found only in some hybrids under high insect pressure condition, demonstrating that the level of target insects in the field environment influences the persistence and spread of insect‐resistant transgenes in wild rice populations. These findings suggest that evolutionary fate of escaped transgenes is different in wild populations with diverse genetic backgrounds under various environmental conditions.  相似文献   

14.
de Jong TJ  Hesse E 《The New phytologist》2012,194(4):1134-1142
Pollen of the crop oilseed rape (Brassica napus, AACC) can cross-fertilize ovules of Brassica rapa (AA), which leads to an influx of unpaired C-chromosomes into wild B. rapa populations. The presence of such extra chromosomes is thought to be an indicator of introgression. Backcrosses and F(1) hybrids were found in Danish populations but, surprisingly, only F(1) hybrids were found in the UK and the Netherlands. Here, a model tests how the level of selection and biased vs unbiased transmission affect the population frequency of C-chromosomes. In the biased-transmission scenario the experimental results of the first backcross are extrapolated to estimate survival of gametes with different numbers of C-chromosomes from all crosses in the population. With biased transmission, the frequency of C-chromosomes always rapidly declines to zero. With unbiased transmission, the continued presence of plants with extra C-chromosomes depends on selection in the adult stage and we argue that this is the most realistic option for modeling populations. We suggest that selection in the field against plants with unpaired C-chromosomes is strong in Dutch and UK populations. The model highlights what we do not know and makes suggestions for further research on introgression.  相似文献   

15.
The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta) in Prince William Sound (PWS), Alaska, with 135 single nucleotide polymorphism (SNP) markers. Historical population structure was inferred from the analysis of DNA from fish scales, which had been archived since the late 1960’s for several populations in PWS. Parallel analyses with microsatellites and a test based on Hardy-Weinberg proportions showed that about 50% of the fish-scale DNA was cross-contaminated with DNA from other fish. These samples were removed from the analysis. We used a novel application of the classical source-sink model to compare SNP allele frequencies in these archived fish-scales (1964–1982) with frequencies in contemporary samples (2008–2010) and found a temporal shift toward hatchery allele frequencies in some wild populations. Other populations showed markedly less introgression, despite moderate amounts of hatchery straying. The extent of introgression may reflect similarities in spawning time and life-history traits between hatchery and wild fish, or the degree that hybrids return to a natal spawning area. The source-sink model is a powerful means of detecting low levels of introgression over several generations.  相似文献   

16.
A possible method of control for the management of wild populations consists of continual introgression of an inducible transgene by releasing transgenic individuals, with periodic exposure of the population to a trigger. Exposure to the trigger causes death or sterility in carriers of the transgene, but is otherwise benign. We investigate the effectiveness of various strategies for control. We show that suppression of the population density below any pre-specified level is possible using this technique. At the same time we show that too frequent or too efficient exposure to the trigger can select for non-transgenic genotypes at an intensity such that the population density will be largely unaffected by the trigger. Choices for management parameters can ensure that the latter scenario is avoided. We show that releasing individuals carrying the transgene at more than one locus facilitates density control.  相似文献   

17.

Premise

Cultivated species and their wild relatives often hybridize in the wild, and the hybrids can survive and reproduce in some environments. However, it is unclear whether cultivar alleles are permanently incorporated into the wild genomes or whether they are purged by natural selection. This question is key to accurately assessing the risk of escape and spread of cultivar genes into wild populations.

Methods

We used genomic data and population genomic methods to study hybridization and introgression between cultivated and wild carrot (Daucus carota) in the United States. We used single nucleotide polymorphisms (SNPs) obtained via genotyping by sequencing for 450 wild individuals from 29 wild georeferenced populations in seven states and 144 cultivars from the United States, Europe, and Asia.

Results

Cultivated and wild carrot formed two genetically differentiated groups, and evidence of crop–wild admixture was detected in several but not all wild carrot populations in the United States. Two regions were identified where cultivar alleles were present in wild carrots: California and Nantucket Island (Massachusetts). Surprisingly, there was no evidence of introgression in some populations with a long-known history of sympatry with the crop, suggesting that post-hybridization barriers might prevent introgression in some areas.

Conclusions

Our results provide support for the introgression and long-term persistence of cultivar alleles in wild carrots populations. We thus anticipate that the release of genetically engineered (GE) cultivars would lead to the introduction and spread of GE alleles in wild carrot populations.  相似文献   

18.

Background and Aims

Wild carrot is the ancestor of cultivated carrot and is the most important gene pool for carrot breeding. Transgenic carrot may be released into the environment in the future. The aim of the present study was to determine how far a gene can disperse in wild carrot populations, facilitating risk assessment and management of transgene introgression from cultivated to wild carrots and helping to design sampling strategies for germplasm collections.

Methods

Wild carrots were sampled from Meijendel and Alkmaar in The Netherlands and genotyped with 12 microsatellite markers. Spatial autocorrelation analyses were used to detect spatial genetic structures (SGSs). Historical gene dispersal estimates were based on an isolation by distance model. Mating system and contemporary pollen dispersal were estimated using 437 offspring of 20 mothers with different spatial distances and a correlated paternity analysis in the Meijendel population.

Key Results

Significant SGSs are found in both populations and they are not significantly different from each other. Combined SGS analysis indicated significant positive genetic correlations up to 27 m. Historical gene dispersal σg and neighbourhood size Nb were estimated to be 4–12 m [95 % confidence interval (CI): 3–25] and 42–73 plants (95 % CI: 28–322) in Meijendel and 10–31 m (95 % CI: 7–∞) and 57–198 plants (95 % CI: 28–∞) in Alkmaar with longer gene dispersal in lower density populations. Contemporary pollen dispersal follows a fat-tailed exponential-power distribution, implying pollen of wild carrots could be dispersed by insects over long distance. The estimated outcrossing rate was 96 %.

Conclusions

SGSs in wild carrots may be the result of high outcrossing, restricted seed dispersal and long-distance pollen dispersal. High outcrossing and long-distance pollen dispersal suggest high frequency of transgene flow might occur from cultivated to wild carrots and that they could easily spread within and between populations.  相似文献   

19.

Background

Like conventional crops, some GM cultivars may readily hybridize with their wild or weedy relatives. The progressive introgression of transgenes into wild or weedy populations thus appears inevitable, and we are now faced with the challenge of determining the possible evolutionary effects of these transgenes. The aim of this study was to gain insight into the impact of interspecific hybridization between transgenic plants and weedy relatives on the evolution of the weedy phenotype.

Methodology/Principal Findings

Experimental populations of weedy birdseed rape (Brassica rapa) and transgenic rapeseed (B. napus) were grown under glasshouse conditions. Hybridization opportunities with transgenic plants and phenotypic traits (including phenological, morphological and reproductive traits) were measured for each weedy individual. We show that weedy individuals that flowered later and for longer periods were more likely to receive transgenic pollen from crops and weed×crop hybrids. Because stem diameter is correlated with flowering time, plants with wider stems were also more likely to be pollinated by transgenic plants. We also show that the weedy plants with the highest probability of hybridization had the lowest fecundity.

Conclusion/Significance

Our results suggest that weeds flowering late and for long periods are less fit because they have a higher probability of hybridizing with crops or weed×crop hybrids. This may result in counter-selection against this subset of weed phenotypes, and a shorter earlier flowering period. It is noteworthy that this potential evolution in flowering time does not depend on the presence of the transgene in the crop. Evolution in flowering time may even be counter-balanced by positive selection acting on the transgene if the latter was positively associated with maternal genes promoting late flowering and long flowering periods. Unfortunately, we could not verify this association in the present experiment.  相似文献   

20.
The research objectives were to determine aspects of the population dynamics relevant to effective monitoring of gene flow in the soybean crop complex in Japan. Using 20 microsatellite primers, 616 individuals from 77 wild soybean (Glycine soja) populations were analysed. All samples were of small seed size (< 0.03 g), were directly collected in the field and came from all parts of Japan where wild soybeans grow, except Hokkaido. Japanese wild soybean showed significant reduction in observed heterozygosity, low outcrossing rate (mean 3.4%) and strong genetic differentiation among populations. However, the individual assignment test revealed evidence of rare long-distance seed dispersal (> 10 km) events among populations, and spatial autocorrelation analysis revealed that populations within a radius of 100 km showed a close genetic relationship to one another. When analysis of graphical ordination was applied to compare the microsatellite variation of wild soybean with that of 53 widely grown Japanese varieties of cultivated soybean (Glycine max), the primary factor of genetic differentiation was based on differences between wild and cultivated soybeans and the secondary factor was geographical differentiation of wild soybean populations. Admixture analysis revealed that 6.8% of individuals appear to show introgression from cultivated soybeans. These results indicated that population genetic structure of Japanese wild soybean is (i) strongly affected by the founder effect due to seed dispersal and inbreeding strategy, (ii) generally well differentiated from cultivated soybean, but (iii) introgression from cultivated soybean occurs. The implications of the results for the release of transgenic soybeans where wild soybeans grow are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号