首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diazotrophic macroalgal associations (DMAs) can contribute fixed nitrogen (N) to the host macroalgae. Biological nitrogen fixation (BNF) rates investigated using acetylene reduction assays with living macroalgae surrounding Santa Catalina Island were low (maximum: 36 nmol N × g−1 (dw) × h−1) and probably insufficient towards helping meet macroalgal N demand. However, DMAs were observed during periods of low nitrate availability in Southern California coastal waters, highlighting the potential importance of diazotrophs during N depleted conditions. Eleven long-term (16–32 days) litter bag decomposition experiments with various macroalgae, especially those with high (> 10) C:N ratios, resulted in much higher BNF rates (maximum: 693 nmol N × g−1 (dw) × h−1) than observed with living macroalgae. BNF rates were lower at the beginning of macroalgal decomposition but rapidly increased during the second phase before declining towards the end of decomposition. Labile carbon availability is likely influencing BNF rates throughout macroalgal degradation and limits BNF in the final decomposition stage. Comparable dark and light BNF rates with most macroalgae surveyed suggest macroalgal detrital systems are an overlooked, potentially global, niche for heterotrophic N2 fixation. Lastly, suppressed BNF rates with sodium molybdate additions highlight the prevalence of sulfate reducing diazotrophs.  相似文献   

2.
Summary Two newly isolated strains of Methanosarcina, strains JKAD and DALS, were grown in monoculture and in mixed culture in combination with Acetobacterium woodii WB1. Methanosarcina strains convert acetate into methane and carbon dioxide while Acetobacterium woodii grows on fructose, producing acetate via homoacetate fermentation. Monocultures of A. woodii in continuous culture consumed up to 6 mmoles g-1 dry weight (dw) h-1 of fructose and produced up to 12.9 mmoles g-1 dw h-1 of acetate at a dilution rate (D) of 0.13 h-1. In batch growth the methanogenic bacteria produced up to 12.1 mmoles g-1 dw h-1 of CH4 at a specific growth rate of 0.043 h-1. In continuous cultivation the specific growth rate and the specific methane production of Methanosarcina were lower than in batch cultures, with values of 0.031 h-1 and 3.1 mmoles g-1 dw h-1 of methane, respectively. In combination, A. woodii and Methanosarcina strain DALS in batch cultures completely converted fructose to methane and carbon dioxide with a maximum specific methane production rate of 1.9 mmoles g-1 dw h-1 of methane. In continuous cultivation these mixed cultures produced between 1.2 and 2 mmoles g-1 dw h-1 of CH4 at a dilution rate of up to 0.043 h-1. The methanogens were washed out at D values higher than 0.043 h-1 for A. woodii and Methanosarcina strain JKAD, and higher than 0.05 h-1 for A. woodii and Methanosarcina strain DALS. Data obtained from defined mixed cultures allow one to follow interactions in a mixed population of two species with different growth constants.  相似文献   

3.
Soil characteristics of mangrove forests at Amphur Laemngob, Trat Province, east Thailand were investigated in both dry andrainy seasons. Sonneratia alba, Avicennia alba andRhizophora mucronata mainly grew as seaward mangroves.Rhizophora apiculata, Ceriops tagal, Excoecaria agallocha andBruguiera gymnorrhiza grew as meso mangroves in most cases.Lumnitzera racemosa was found as a landward mangrove. The salinity of the soil in which these 8 species grew was significantly higher in the dry season than in the rainy season. Soil pH did not change irrespective of the season. Each species seemed to grow at inherent soil pH. Bruguiera gymnorrhiza, Sonneratia alba andAvicennia marina were found both in Japan and Thailand. The soil pH of each mangrove species was similar in Japan and Thailand. The soil salinity of each mangrove species in Japan was similar to that in Thailand in the dry season. It was suggested that soil pH and salinity in the dry season are the important factors governing the zonal distribution of mangroves.  相似文献   

4.
A new model is presented to predict the plant uptake of nitrate supplied by diffusion and mass flow to its roots. Plant growth, root-shoot ratio and the plant's nitrate uptake capacity are all set dependent on the plant's N nutrition state. By thoroughly integrating processes occurring in both plant and soil, the model enables to control the relative importance of both under a wide range of different nutritional scenarios.Soil parameters D0 diffusion coefficient in water (m2 day-1) - De diffusion coefficient in soil (m2 day-1) - C nitrate concentration in soil (mol m-3) - f tortuosity (-) - volumetric moisture content (-) - R radial distance from root axis (m) Plant parameters b1, b2 parameters of biomass partitioning Equation (10) - IR interroot distance (m) - KmU Michaelis-Menten constant of the uptake system (mol m-3) - KmNRA Michaelis-Menten constant of nitrogen reduction system (mol g-1) - k1, k2, k3 parameters of growth model Equation (9) - Lv Root length density (m m-3) - NO3 set - Set point of the cytoplasmatic nitrate pool (mol g-1 dw) - NO3 c - cytoplasmatic nitrate concentration (mol g-1 dw) - NO3 v - vacuolar nitrate concentration (mol g-1 dw) - NRAmax maximum nitrate reductase activity (mol g-1 dw day-1) - Nre reduced nitrogen content (mol) - Nremax maximum reduced N concentration in the plant (mol g-1 dw) - P partitioning coefficient of nitrate between cyplasm and vacuole - R(1) root radius (m) - RGR relative growth rate (day-1) - U uptake rate (mol day-1 m-2) - Umax maximum uptake rate (Eq. 6) (day-1 m-2) - Vo water flux at root surface (m day-1) - Wr root dry weight (g) - Wsh shoot dry weight (g) - X model parameter: number of root compartments - Y model parameter: number of nodes  相似文献   

5.
Summary Nitrogen fixation (C2H2 reduction) by blue-green algae occurring on the juvenile lava field of Heimaey, Iceland was examined both in the laboratory (potential at 20° C and 39° C) and in the field, three and a half years after the volcanic eruption.Already at this early stage of colonization representatives of unicellular and filamentous heterocystous and non-heterocystous blue-green algae were commonly observed. The predominating algae were Nostoc sp. (20° C) and Schizothrix sp. — Microcoleus chthonoplastes, (39° C), the former often in association with the protonemata-rhizoids of moss plants.The potential for nitrogen fixation was recorded at an average rate of 109.2 (20° C) and 138.1 (39° C) ng N g-1 h-1 in soil collected from localities randomly distributed over the lava field.Tests for nitrogen fixation performed in situ revealed significant fixation activities in all the eleven localities subject to examination. The activities ranged from 2.8 to 63.4 (mean 21.5) ng N g-1 h-1 and 1.9 to 17.7 (mean 7.9) ng N cm-2 h-1.All the nitrogen fixation data noted imply that blue-green algae contribute a substantial part of the nitrogen input to the lava. Further, it was found that material incubated under micro-aerophilic conditions exhibited considerably enhanced nitrogenase activity.The role of nitrogen-fixing blue-green algae in general and Nostoc muscorum in particular in being suitable as pioneering organisms preparing the bare lava for ingress of other plants is also discussed.  相似文献   

6.
Although water in mangrove sediments influences nutrient cycling in both, mangrove forest and estuary, little information exists on seasonal and vertical distribution of dissolved organic and inorganic compounds in the sediment column. We studied the influence of sediment texture and chemistry, permeability (K), tides, and rainfall on dissolved organic carbon (DOC) and nitrogen (DON), dissolved inorganic phosphate (DIP) and salinity in creek and sediment waters of a mangrove in Pará, Brazil. Water samples were taken from boreholes and piezometers in the mangrove forest and from an adjacent tidal creek at neap and spring tides, during the dry and rainy season. Forest sediment was analysed for carbon (C), nitrogen (N), salinity and permeability. Clay, C and N decreased with depth. Sediment permeability (K) was lowest (<0.1 m day−1) in the upper, clay-rich and crab-burrow-free mud layer. In the deeper, fine sand strata, K ranged from 0.7 to 1.8 m day−1. Tidal range in the creek was 3.5 and 5.5 m for neap and spring tides, respectively. Salinity, DOC, DON and DIP in creek water were inversely related to tidal height. Piezometer data revealed significant water level changes in deeper, sandy sediment layer, which followed, time-lagged, the tidal fluctuations. In contrast, tide did not affect the water level in the upper sediment due to low permeability. Compared with creek water, sediment water was enriched in DOC, DON and DIP because of organic matter input and mineralization. In deeper layers, solute concentration was most likely affected by sorption processes (DOC and DIP) and reduction reactions (DIP). During the rainy season, DOC and DON in creek and sediment water were higher than in the dry season. DIP appeared invariant to seasonal changes. In the rainy season, salt flushing from surface sediments resulted in higher salinities at intermediate sediment depths, while in the deeper layers salinity was lower due to exchange with water from the tidal creek.  相似文献   

7.
BACKGROUND AND AIMS: The mangrove Rhizophora mucronata has previously been reported to lack annual growth rings, thus barring it from dendrochronological studies. In this study the reported absence of the growth rings was reconsidered and the periodic nature of light and dark brown layers visible on polished stem discs investigated. In addition, the formation of these layers in relation to prevailing environmental conditions, as well as their potential for age determination of the trees, was studied. METHODS: Trees of known age were collected and a 2.5-year cambial marking experiment was conducted to determine the periodic nature of the visible growth layers. KEY RESULTS: Annual indistinct growth rings were detected in R. mucronata and are defined by a low vessel density earlywood and a high vessel density latewood. The formation of these growth rings and their periodic nature was independent from site-specific environmental conditions in two forests along the Kenyan coast. However, the periodic nature of the rings was seriously affected by slow growth rates, allowing accurate age determination only in trees with radial growth rates above 0.5 mm year(-1). The onset of the formation of the low vessel density wood coincided with the onset of the long rainy season (April-May) and continues until the end of the short rainy season (November). The high vessel density wood is formed during the dry season (December-March). Age determination of the largest trees collected in the two studied forests revealed the relatively young age of these trees (+/-100 years). CONCLUSIONS: This study reports, for the first time, the presence of annual growth rings in the mangrove R. mucronata, which offers further potential for dendrochronological and silvicultural applications.  相似文献   

8.
Mangrove photosynthetic activity and, consequently, physiological stress can be monitored indirectly using leaf chlorophyll-a (Chla) measurements. Recent studies have demonstrated the feasibility of mangrove leaf Chla content estimation from in situ hyperspectral vegetation indices (VI) but no such research has been conducted using data collected from contrasting seasons (i.e. dry and rainy). In this study, mangrove leaves were collected in a sub-tropical forest of the Mexican Pacific for Chla content determination and in situ hyperspectral measurements (450–1,000 nm). Specifically, we tested 35 VI to estimate Chla content based on a leaf sample of 360 collected from the same trees during both the dry and rainy seasons. The forest examined contained three species of mangrove (Rhizophora mangle, Avicennia germinans and Laguncularia racemosa) exhibiting various conditions of health (dwarf condition, tall and healthy). A principal component analysis, followed by linear regression analyses, were conducted in order to identify those VI that best predict mangrove leaf Chla content during the two seasons. The results indicate that VI derived from hyperspectral measurements collected during the dry season are better at estimating leaf Chla content than those collected during the rainy season. Among the 35 VI, the Vog1 (R740/R720) index was found to be the best predictor of mangrove leaf Chla content, resulting in R 2 values of 0.80 and 0.68 for the dry and rainy season respectively. These results would suggest that for identifying variation in mangrove forest stress (i.e. health) in sub-tropical regions, hyperspectral measurements should be carried out during the dry season.  相似文献   

9.
Singh  J.S.  Singh  Smita  Raghubanshi  A.S.  Singh  Saranath  Kashyap  A.K.  Reddy  V.S. 《Plant and Soil》1997,196(1):115-121
Methane uptake was measured for two consecutive years for four forest and one savanna sites in a seasonally dry tropical region of India. The soils were nutrient-poor and well drained. These sites differed in vegetational cover and physico-chemical features of the soil. There were significant differences in CH4 consumption rates during the two years (mean 0.43 and 0.49 mg m-2 h-1), and at different sites (mean 0.36 to 0.57 mg m-2 h-1). The mean uptake rate was higher (P < 0.05) in dry seasons than in the rainy season at all the sites. There was a significant season and site interaction, indicating that the effect of different seasons differed across the sites. There was a positive relation between soil moisture and CH4 uptake rates during summer (the driest period) and a negative relation during the rest of the year. The results suggested that seasonally dry tropical forests are a strong sink for CH4, and C and N status of soils regulates the strength of the sink in the long term.  相似文献   

10.
Sediments were examined in the Mapopwe Creek, a tidally dominated mangrove waterway in the Chwaka Bay mangrove forest, Zanzibar, to assess their significance in the nutrient dynamics of the mangrove forest and the adjacent bay. Porewater concentrations of dissolved ammonium and that of soluble reactive phosphorus (SRP) were generally higher during the dry season than during the wet season. NO3? plus NO2? concentration averaged 1 µm and did not vary much between the two periods. Fluxes of ammonium ranged from ?575 to 523 µm m?2 h?1 and those of SRP from ?55.7 to 69.5 µm m?2 h?1. Measurements of NOx did not show any consistent fluxes of this dissolved nitrogen species. Variations of flux rates between the two seasons were not significant even though there were small variations in the flux direction in both nutrients. Results imply that Mapopwe sediments are a source of NH4+ but act as a sink for SRP.  相似文献   

11.
Benthic primary production and nutrient dynamics were examined along a transect in the Bangrong mangrove forest in Thailand. Six stations were established extending from a high-intertidal site within the mangrove forest to low-intertidal flats and seagrass beds in front of the mangrove forest. Benthic processes (O2 and CO2 fluxes) and nutrient dynamics (mineralization, sediment-water fluxes, pore water and sediment pools) were measured under light and dark conditions during wet and dry seasons over a 2-yr period. The sediments were mostly autotrophic, only the mangrove forest sites were net heterotrophic during the wet season. Maximum daily net primary production was found at the non-vegetated tidal flats (40–75 mmol O2 m-2d-1), where light and nutrient availability were highest. The variation in benthic mineralization along the transect was minor (1.6–4.3 mmol CO2 m-2h-1) and did not reflect the large changes inorganic matter content (organic carbon: 0.7–4.2% DW) and quality (C:N ratio varied from 25 to 100), suggesting that the mineralizable pool of organic matter was of similar magnitude at all sites. There was only minor seasonal variation in rates of mineralization. The net primary production showed more variation with lower rates in the mangrove forest (reduced with 74%) and higher rates at the tidal flats (increased with 172%) and in the seagrass beds (increased with 228%) during the wet season. The nutrient pools and fluxes across the sediment-water interface were generally low along the transect, and the sediments were efficient in retaining nitrogen in the nutrient limited mangrove/seagrass environment. Pools and fluxes of phosphorus were generally very low suggesting that benthic primary production was phosphorus limited along the transect. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Thirty-six hour diurnal studies of Ng-fixation by Nostoc in a rocky-bedded stream were carried out during the peak of the seasonal cycle of growth on clear and cloudy days in 1971 and 1972. On both occasions an unexpected pattern of N2-fixation occurred with maximum fixation rates in the light but also in the dark portion of the day, with lowest fixation periods in the early evening. I postulate that competition for reductant between nitrogenase and other processes, especially photorespiration, controls this unusual diel cycle rather than variations in the intracellular N-pool. N2-fixation rates on a cloudless May day in 1971 ranged from 0.2 to 4.8 nmoles C2H4 cm−2 h−1 and from 0.3 to 3.3 nmoles C2H4 mg−1 h−1 dry weight of Nostoc, depending on time of day and favourableness of site. On the same site on a cloudy, rainy May day in 1972 fixation ranged from 0.5 to 3.1 nmoles C2H4 mg−1 h−1 dry weight, and from 1 to 4.5 nmoles C2H4 mg−1 h−1 ash-free dry weight of Nostoc. Since Nostoc is most abundant in unshaded areas, and since one-third of each day's nitrogen i s fixed in the dark, future studies should take dark fixation into account.  相似文献   

13.
The production, nitrogen fixation, and release rates and fate of dissolved organic matter of a pelagic Sargassum community have been investigated at eight stations in the Gulf Stream and the Sargasso Sea. Net production and gross nitrogen fixation rates of Sargassum and epiphytes varied significantly between stations, 328 ± 114μg C (g dry wt)?1h?1 and 18 ± 7.4μg N g?1h?1, respectively. The net release rates of dissolved organic carbon (287 ± 150μg DOC g?1h?1) also showed the same variability between stations. On the other hand, the community carbon and nitrogen content, 268 ± 4.8 and 16.9 ± 2.4 mg g dry wt?1, respectively, remained constant at all stations. The results of chemical measurements indicate that ≈ 0–50 % of the gross production was lost as a result of photosynthate release. From 14C-tracer experiments it was found that the planktonic and epiphytic heterotrophs mineralized 50–70 % of the photosynthate released by Sargassum and epiphytic algae. Based on the community gross production and fixation rates, carbon and nitrogen content, the amount of nitrogen required for the observed production rates, the Sargassum community appears to obtain a substantial part (40%) of its nitrogen from nitrogen fixation.  相似文献   

14.
Sphagnum bogs play an important role when considering the impacts of global change on global carbon and nitrogen cycles. Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) was grown at 360 (ambient) and 700 μL L?1 (elevated) atmospheric [CO2] in combination with different nitrogen deposition rates (6, 15, 23 g N m?2 y?1), in a short‐ and long‐term growth chamber experiment. After 6 months, elevated atmospheric [CO2] in combination with the lowest nitrogen deposition rate, increased plant dry mass by 17%. In combination with a high nitrogen deposition rate, biomass production was not significantly stimulated. At the start of the experiment, photosynthesis was stimulated by elevated atmospheric [CO2], but it was downregulated to control levels after three days of exposure. Elevated [CO2] substantially reduced dark respiration, which resulted in a continuous increase in soluble sugar content in capitula. Differences in growth response among different nitrogen and CO2 treatments could not be related to measured carbon exchange rates, which was mainly due to interference of microbial respiration. Doubling atmospheric [CO2] reduced total nitrogen content in capitula but not in stems at all nitrogen deposition rates. Reduction in total nitrogen content coincided with a decrease in amino acids, but soluble protein levels remained unaffected. Thus, elevated [CO2] induced a substantial shift in the partitioning of nitrogen compounds in capitula. Soluble sugar concentration was negatively correlated with total nitrogen content, which implies that the reduction in amino acid content in capitula, exposed to elevated [CO2], might be caused by the accumulation of soluble sugars. Growth was not stimulated by increased nitrogen deposition. High nitrogen deposition, resulting in a capitulum nitrogen content in excess of 15 mg g?1 dw, was detrimental to photosynthesis, reduced water content and induced necrosis. We propose a capitulum nitrogen content of 15 mg g?1 dw as a possible bioindicator for the detection of nitrogen pollution stress in oligo‐mesotrophic peat bog ecosystems. At the lowest nitrogen deposition level, nitrogen recovery was higher than 100%, which indicates substantial dry deposition and/or gaseous nitrogen fixation by bacteria, associated with Sphagnum. Increasing nitrogen deposition rates decreased nitrogen recovery percentages, which indicates reduced efficiency of nitrogen fixation.  相似文献   

15.
We used an acetylene reduction assay to measure rates of nitrogen fixation on a 38-year-oldAlnus hirsuta plantation in central Korea. The diurnal pattern of acetylene reduction changed significantly during May, August, and October, typically varying by 3-fold throughout the course of the day. Maximum rates occurred at 3 p.m. in May and October, but at 6 p.m. in August. Increasing trends were evident during the early growing season, with sustained high rates from mid-May through late September; July had the highest rates, averaging 7.2 μmole g-1 dry nodule h-1. The average nodule biomass for this plantation was 220 kg ha ’. Rates of acetylene reduction were related to soil temperature, but not to soil moisture content. Combining these nodule biomass calculations with seasonal average acetylene reduction rates yielded an estimate of current annual nitrogen fixation of 60 kg N ha-1 for the plantation. This rate of annual nitrogen addition was very large in relation to the yearly nitrogen requirements of coniferous and deciduous forests in central Korea.  相似文献   

16.
Morphology and physiology of fish embryos undergo dramatic changes during their development until the onset of feeding, supplied only by endogenous yolk reserves. For obtaining an insight how these restructuring processes are reflected by body mass related parameters, dry weights (dw), contents of the elements carbon and nitrogen and lipid and protein levels were quantified in different stages within the first four days of embryo development of the zebrafish (Danio rerio). The data show age dependent changes in tissue composition. Dry weights decreased significantly from 79μgdw/egg at 0hours post fertilization (hpf) to 61 μgdw/egg after 96 hpf. The amounts of total carbon fluctuated between 460 mg g-1 and 540 mg g-1 dw, nitrogen was at about 100 mg g-1 dw and total fatty acids were between 48–73 mg g-1 dw. In contrast to these parameters that remained relatively constant, the protein content, which was 240 mg g-1 at 0 hpf, showed an overall increase of about 40%. Comparisons of intact eggs and dechorionated embryos at stages prior to hatching (24, 30, 48 hpf) showed that the differences seen for dry weight and for carbon and nitrogen contents became smaller at more advanced stages, consistent with transition of material from the chorion to embryo tissue. Further, we determined the effect of 2,4-dinitrophenol at a subacutely toxic concentration (14 μM, LC10) as a model chemical challenge on the examined body mass related parameters. The compound caused significant decreases in phospholipid and glycolipid fatty acid contents along with a decrease in the phospholipid fatty acid unsaturation index. No major changes were observed for the other examined parameters. Lipidomic studies as performed here may thus be useful for determining subacute effects of lipophilic organic compounds on lipid metabolism and on cellular membranes of zebrafish embryos.  相似文献   

17.
Water column dynamics of carbon, nitrogen and phosphorus in the main creek of the Bangrong mangrove forest, Phuket Island, Thailand, were examined during the dry season. Water sampled from the upper and lower reaches of the creek throughout entire neap and spring tide periods was incubated under saturated irradiation and in the dark. The activity of microbial primary producers and heterotrophs were evaluated from changes in O2, TCO2, DOC, DIN, DON and PO4 3- concentrations. Gross primary production was moderate (1.6–2.4 M C h–1) with no pronounced spatial and temporal variations. A large fraction of the assimilated inorganic carbon and nitrogen was released in the form of DOC (50–90%) and DON (50–60%) indicating that primary producers were under stress or nutrient depleted. PO4 3- and occasionally DIN appeared to be the limiting nutrients. The pelagic heterotrophic community was supported by DOC (50–100%) and DON (40–90%) excreted by primary producers when exposed to light. However, rapid light attenuation in the turbid creek water rendered the entire water column strongly heterotrophic at all times (1.1–2.8 M C h–1). The microbial heterotrophs are therefore largely supported by particulate and dissolved substrates derived from tidal resuspension, mangrove root exudates and leachates from fallen leaves on the forest floor. The relatively high concentrations of metabolites (e.g. CO2, NH4 +) in creek water were primarily supplied by microbial mineralization. Water seeping from creek banks, which was only enriched in TCO2 (2 times) and PO4 3- (20–100 times) compared with creek water, is not considered an important source of solutes in the waterways of the Bangrong mangrove forest. Although the results obtained here are only strictly representative for the dry season, water column processes in the wet season are not expected to differ much due to the limited seasonal variations with respect to physical, chemical and biological parameters in the Bangrong area.  相似文献   

18.
In its natural habitat, Microcebus murinus, a small malagasy prosimian primate, is exposed to seasonal shortage of water and resources. During the winter dry season, animals enter a pronounced fattening period with concurrent decrease in behavioural/physiological activities, whereas the breeding season is restricted to the rainy summer months. To determine the role of daylength on metabolic rate and water loss in this nocturnal primate, we measured body mass, oxygen consumption at 25°C (RMR), circadian water loss through urine output (UO) and evaporation (EWL) in eight males exposed to either short days (8L:16D SD) or long days (14L:10D LD), under controlled captive conditions. Exposure to SD led to a ponderal increase (maximal body mass: 125±4 g, N=8), and to significant changes in RMR and water loss, both reaching lowest values after 3 months under SD (0.84±0.04 ml O2 h−1 g−1 and 38±0.3 mg H2O g−1 day−1, respectively). Following exposure to LD, body mass decreased to 77±3 g (N=8), whereas both RMR and water loss, mainly through EWL, significantly increased (P<0.001), the highest value occurring after 2 months (1.51±0.08 ml O2 h.−1 g−1 and 87±7 mgH2O g−1 day−1, respectively). Moreover, independent of daylength, circadian changes in EWL were characterized by significantly reduced values during the diurnal rest. The results demonstrate that daylength variations affect the physiology of this tropical primate, allowing anticipatory adaptation to seasonal environmental constraints.  相似文献   

19.
Heterotrophic nitrogen fixation is a key ecosystem process in unpolluted, temperate old‐growth forests of southern South America as a source of new nitrogen to ecosystems. Decomposing leaf litter is an energy‐rich substrate that favours the occurrence of this energy demanding process. Following the niche ‘complementarity hypothesis’, we expected that decomposing leaf litter of a single tree species would support lower rates of non‐symbiotic N fixation than mixed species litter taken from the forest floor. To test this hypothesis we measured acetylene reduction activity in the decomposing monospecific litter of three evergreen tree species (litter C/N ratios, 50–79) in an old‐growth rain forest of Chiloé Island, southern Chile. Results showed a significant effect of species and month (anova , Tukey's test, P < 0.05) on decomposition and acetylene reduction rates (ARR), and a species effect on C/N ratios and initial % N of decomposing leaf litter. The lowest litter quality was that of Nothofagus nitida (C/N ratio = 78.7, lignin % = 59.27 ± 4.09), which resulted in higher rates of acetylene reduction activity (mean = 34.09 ± SE = 10.34 nmol h?1 g?1) and a higher decomposition rate (k = 0.47) than Podocarpus nubigena (C/N = 54.4, lignin % = 40.31 ± 6.86, Mean ARR = 4.11 ± 0.71 nmol h?1 g?1, k = 0.29), and Drimys winteri (C/N = 50.6, lignin % = 45.49 ± 6.28, ARR = 10.2 ± 4.01 nmol h?1 g?1, k = 0.29), and mixed species litter (C/N = 60.7, ARR = 8.89 ± 2.13 nmol h?1g?1). We interpret these results as follows: in N‐poor litter and high lignin content of leaves (e.g. N. nitida) free‐living N fixers would be at competitive advantage over non‐fixers, thereby becoming more active. Lower ARR in mixed litter can be a consequence of a lower litter C/N ratio compared with single species litter. We also found a strong coupling between in situ acetylene reduction and net N mineralization in surface soils, suggesting that as soon N is fixed by diazotroph bacteria it may be immediately incorporated into mineral soil by N mineralizers, thus reducing N immobilization.  相似文献   

20.
Measurements of net photosynthesis (PS, O2 evolution), dark respiration (R, O2 consumption), and light and dark carbon fixation (14C) were conducted on whole blades, isolated blade discs, sporophylls, apical scimitars and representative portions of stipe and holdfast of the giant kelp Macrocystis pyrifera L.C. Ag. On a dry weight basis, highest net PS rates were observed in apical scimitar segments and whole blades (3.81 and 3.07 mgC · g dry wt?1· h?1, respectively), followed by sporophylls (1.42 mgC·g dry wt?1· h?1) and stipe segments (0.15 mgC·g dry wt?1· h?1). No PS capacity was observed in holdfast material. Respiration rates showed similar ranking ranging from 1.22 mgC·g dry wt?1·h?1 for apical scimitar to 0.18–0.22 mgC·g dry wt?1· h?1 for holdfast material. Considerable within blade variability in both PS and R was also found. Steepest PS and R gradients on both an areal and weight basis were found within immature blades followed by senescent and mature blade material. Highest net PS rates were associated with the blade tips ranging from 3.08 (mature blades) to 10.3 mgC·dry wt?1·h?1 (immature blades). Highest rates of R generally occurred towards the basal portions of blades and ranged from 1.03–1.80 mgC·g dry wt?1·h?1 for immature blades. The variability within and between blades was high, with coefficients of variation approaching 50%. The observed patterns can be related to the decreasing proportionment of photosynthetic tissue and increasing proportionment of structural tissue as occurs from the blade tip to the blade base. Rates of light carbon fixation (LCF) revealed longitudinal profiles similar to oxygen measurements for the different blade types, with the absolute rates being slightly lower. Patterns of dark carbon fixation (DCF) were less easily interpreted. Highest rates of DCF (0.04–0.06 mgC·g dry wt?1·h?1) occurred at the basal portions of immature and senescent blades. Longitudinal profiles of total chlorophyll (a + c) on both an areal and weight basis were very similar to the profiles of PS. Normalized to chlorophyll a, PS displayed an unusual longitudinal profile in immature tissue; however, such profiles for mature and senescent tissues were similar to those for PS on an areal basis. It was demonstrated that it is difficult, if not impossible, to select single tissue discs that are representative of whole blades. The metabolic longitudinal profiles reveal a characteristic developmental pattern; the previous working definitions of immature, mature, and senescent blades, based on morphology and frond position thus have a physiological basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号