首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
This study aims to explore effects of 1,25(OH)2D3 and vitamin D receptor (VDR) on peripheral CD4+/CD8+ double‐positive (DP) T lymphocytes in systemic lupus erythematosus (SLE). MRL‐LPr/LPr mice with SLE (n = 20) and normal MRL mice (n = 20) were assigned into the control group (normal mice, without feeding with 1,25(OH)2D3), the 1,25(OH)2D3 group (SLE mice, feeding with 1,25(OH)2D3), the VDR‐knock‐in + 1,25(OH)2D3 group (SLE mice, VDR‐knock‐in, feeding with 1,25(OH)2D3) and the VDR‐knockout group (normal mice, VDR‐knockout, without feeding with 1,25(OH)2D3) (n = 10 per group). Levels of T lymphocytes were measured by flow cytometry. The mRNA and proteins expressions of inflammatory factors were measured by qRT‐PCR and ELISA. Extracellular signal‐regulated kinase‐1/2 (ERK1/2) expression was measured by Western blotting. Compared with normal mice, SLE mice showed reduced levels of CD4+, CD4+/CD8+ ratio, and DP lymphocytes. The levels of SLE‐related indicators all increased significantly, followed with severe skin ulcers and urinary system infection. With the increase in time, skin ulcers and urinary system infection were significantly improved, levels of CD4+, CD4+/CD8+ ratio, and DP lymphocytes increased, and levels of SLE‐related indicators all decreased in the 1,25(OH)2D3 group. There were no significant changes in bioindicators in the control and the VDR‐knock‐in + 1,25(OH)2D3 groups. The symptoms of SLE gradually occurred in the VDR‐knockout group. This study demonstrates that VDR and 1,25(OH)2D3 could elevate CD4+/CD8+ DP T lymphocytes and reduce expressions of inflammatory factors, thus inhibiting the development and progression of SLE.  相似文献   

4.
5.
6.
7.
8.
9.
To elucidate whether PTH(7-84), a degradation product of PTH(1-84), which inhibits PTH(1-84)-induced bone resorption, also exerts an antagonistic effect on the kidney, we studied the effect of PTH(7-84) on PTH(1-34)-induced production of 1,25-(OH)2D3 in primary cultured murine renal tubules.Neonatal mouse renal tubules cultured in serum-free MEM for 7 days were treated with PTH(1-34) and/or PTH(7-84). Three hours after addition of 25-OHD3 (10−6 M), 1,25-(OH)2D3 was determined. PTH(1-34) stimulated the conversion of 25-OHD3 to 1,25-(OH)2D3, and PTH(7-84) dose-dependently inhibited this process. Real-time PCR revealed that PTH(1-34) increased the expression level of 1α-hydroxylase mRNA, whereas PTH(7-84) did not affect the expression level 1α or 24-hydroxylase mRNA.These in vitro data suggest that PTH(7-84) elicits an antagonistic effect in renal tubules through receptors different from the type I PTH/PTHrP receptor. This may at least partly account for the decreased serum level of 1,25-(OH)2D in patients with severe primary hyperparathyroidism with renal failure.  相似文献   

10.
Of the various risk factors contributing to osteoporosis, dietary/lifestyle factors are important. In a clinical study we reported that women with caffeine intakes >300 mg/day had higher bone loss and women with vitamin D receptor (VDR) variant, tt were at a greater risk for this deleterious effect of caffeine. However, the mechanism of how caffeine effects bone metabolism is not clear. 1,25-Dihydroxy vitamin D3 (1,25(OH)2D3) plays a critical role in regulating bone metabolism. The receptor for 1,25(OH)2D3, VDR has been demonstrated in osteoblast cells and it belongs to the superfamily of nuclear hormone receptors. To understand the molecular mechanism of the role of caffeine in relation to bone, we tested the effect of caffeine on VDR expression and 1,25(OH)2D3 mediated actions in bone. We therefore examined the effect of different doses of caffeine (0.2, 0.5, 1.0 and 10 mM) on 1,25(OH)2D3 induced VDR protein expression in human osteoblast cells. We also tested the effect of different doses of caffeine on 1,25(OH)2D3 induced alkaline phosphatase (ALP) activity, a widely used marker of osteoblastic activity. Caffeine dose dependently decreased the 1,25(OH)2D3 induced VDR expression and at concentrations of 1 and 10 mM, VDR expression was decreased by about 50–70%, respectively. In addition, the 1,25(OH)2D3 induced alkaline phosphatase activity was also reduced at similar doses thus affecting the osteoblastic function. The basal ALP activity was not affected with increasing doses of caffeine. Overall, our results suggest that caffeine affects 1,25(OH)2D3 stimulated VDR protein expression and 1,25(OH)2D3 mediated actions in human osteoblast cells.  相似文献   

11.
An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2D by 1α‐hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2D3. We show that myoblasts not only responded to 1,25(OH)2D3, but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α‐hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2D3. J. Cell. Physiol. 231: 2517–2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

12.
The active form of vitamin D3, 1,25(OH)2D3, has significant immunomodulatory properties and is an important determinant in the differentiation of CD4+ effector T cells. The biological actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR) and are believed to correlate with the VDR protein expression level in a given cell. The aim of this study was to determine if and how 1,25(OH)2D3 by itself regulates VDR expression in human CD4+ T cells. We found that activated CD4+ T cells have the capacity to convert the inactive 25(OH)D3 to the active 1,25(OH)2D3 that subsequently up-regulates VDR protein expression approximately 2-fold. 1,25(OH)2D3 does not increase VDR mRNA expression but increases the half-life of the VDR protein in activated CD4+ T cells. Furthermore, 1,25(OH)2D3 induces a significant intracellular redistribution of the VDR. We show that 1,25(OH)2D3 stabilizes the VDR by protecting it from proteasomal degradation. Finally, we demonstrate that proteasome inhibition leads to up-regulation of VDR protein expression and increases 1,25(OH)2D3-induced gene activation. In conclusion, our study shows that activated CD4+ T cells can produce 1,25(OH)2D3, and that 1,25(OH)2D3 induces a 2-fold up-regulation of the VDR protein expression in activated CD4+ T cells by protecting the VDR against proteasomal degradation.  相似文献   

13.
Guggulsterone (GS) and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] have been shown to influence adipogenesis in 3T3-L1 cells. We investigated the ability of GS and 1,25(OH)2D3, alone and in combination to inhibit adipogenesis and induce apoptosis in 3T3-L1 adipocytes. Maturing preadipocytes were treated with 1,25(OH)2D3 in combination with GS for 6 days during differentiation. GS and 1,25(OH)2D3 each inhibited lipid accumulation, but the combination potentiated the inhibition of lipid accumulation. Apoptosis was increased by 1,25(OH)2D3 while GS had no effect, but GS + 1,25(OH)2D3 increased apoptosis more than either compound alone. Furthermore, GS + 1,25(OH)2D3 caused a potentiated decrease in the expression of aP2 and farnesoid X receptor expression more than either compound alone. In addition, 1,25(OH)2D3 increased vitamin D receptor expression after 6 days, while GS had no effect. GS + 1,25(OH)2D3, however, caused a potentiated increase in the expression of VDR. These findings show that GS potentiates 1,25(OH)2D3’s anti-adipogenic and pro-apoptotic effects in maturing 3T3-L1 preadipocytes.  相似文献   

14.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays an integral role in calcium homeostasis in higher organisms through its actions in the intestine, kidney, and skeleton. Interestingly, although several intestinal genes are known to play a contributory role in calcium homeostasis, the entire caste of key components remains to be identified. To examine this issue, Cyp27b1 null mice on either a normal or a high calcium/phosphate-containing rescue diet were treated with vehicle or 1,25(OH)2D3 and evaluated 6 h later. RNA samples from the duodena were then subjected to RNA sequence analysis, and the data were analyzed bioinformatically. 1,25(OH)2D3 altered expression of large collections of genes in animals under either dietary condition. 45 genes were found common to both 1,25(OH)2D3-treated groups and were composed of genes previously linked to intestinal calcium uptake, including S100g, Trpv6, Atp2b1, and Cldn2 as well as others. An additional distinct network of 56 genes was regulated exclusively by diet. We then conducted a ChIP sequence analysis of binding sites for the vitamin D receptor (VDR) across the proximal intestine in vitamin D-sufficient normal mice treated with vehicle or 1,25(OH)2D3. The residual VDR cistrome was composed of 4617 sites, which was increased almost 4-fold following hormone treatment. Interestingly, the majority of the genes regulated by 1,25(OH)2D3 in each diet group as well as those found in common in both groups contained frequent VDR sites that likely regulated their expression. This study revealed a global network of genes in the intestine that both represent direct targets of vitamin D action in mice and are involved in calcium absorption.  相似文献   

15.
16.
Since the discovery of the Vitamin D receptor (VDR) in mammary cells, the role of the Vitamin D signaling pathway in normal glandular function and in breast cancer has been extensively explored. In vitro studies have demonstrated that the VDR ligand, 1,25(OH)2D3, modulates key proteins involved in signaling proliferation, differentiation and survival of normal mammary epithelial cells. Anti-proliferative and pro-differentiating effects of 1,25(OH)2D3 have also been observed in VDR positive breast cancer cells, indicating that transformation per se does not abolish Vitamin D signaling. However, many breast cancer cell lines are less sensitive to 1,25(OH)2D3 than normal mammary epithelial cells. Reduced sensitivity to 1,25(OH)2D3 has been linked to alterations in Vitamin D metabolizing enzymes as well as down regulation of VDR expression or function. In this report, we describe results from a proteomics screening approach used to search for proteins involved in dictating sensitivity or resistance to Vitamin D mediated apoptosis in breast cancer cells. Several proteins not previously linked to 1,25(OH)2D3 signaling were identified with this approach, and a distinct subset of proteins was linked to 1,25(OH)2D3 resistance. Follow-up studies to determine the relevance of these proteins to Vitamin D signaling in general are in progress.  相似文献   

17.
1,25(OH)2D3 inhibits adipogenesis in mouse 3T3-L1 adipocytes, but little is known about its effects or local metabolism in human adipose tissue. We showed that vitamin D receptor (VDR) and 1α-hydroxylase (CYP27B1), the enzyme that activates 25(OH)D3 to 1,25(OH)2D3, were expressed in human adipose tissues, primary preadipocytes and newly-differentiated adipocytes. Preadipocytes and newly-differentiated adipocytes were responsive to 1,25(OH)2D3, as indicated by a markedly increased expression of CYP24A1, a primary VDR target. 1,25(OH)2D3 enhanced adipogenesis as determined by increased expression of adipogenic markers and triglyceride accumulation (50% to 150%). The magnitude of the effect was greater in the absence of thiazolidinediones. 1,25(OH)2D3 was equally effective when added after the removal of differentiation cocktail on day 3, but it had no effect when added only during the induction period (day 0–3), suggesting that 1,25(OH)2D3 promoted maturation. 25(OH)D3 also stimulated CYP24A1 expression and adipogenesis, most likely through its conversion to 1,25(OH)2D3. Consistent with this possibility, incubation of preadipocytes with 25(OH)D3 led to 1,25(OH)2D3 accumulation in the media. 1,25(OH)2D3 also enhanced adipogenesis in primary mouse preadipocytes. We conclude that vitamin D status may regulate human adipose tissue growth and remodeling.  相似文献   

18.
1α,25-Dihydroxy-2β-(3-hydroxypropoxy)vitamin D3 (ED-71), an analog of active vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], possesses a hydroxypropoxy substituent at the 2β-position of 1,25(OH)2D3. ED-71 has potent biological effects on bone and is currently under phase III clinical studies for bone fracture prevention. It is well-known that the synthesis and secretion of parathyroid hormone (PTH) is regulated by 1,25(OH)2D3. Interestingly, during clinical development of ED-71, serum intact PTH in osteoporotic patients did not change significantly upon treatment with ED-71. The reason remains unclear, however. Brown et al. reported that 3-epi-1,25(OH)2D3, an epimer of 1,25(OH)2D3 at the 3-position, shows equipotent and prolonged activity compared to 1,25(OH)2D3 at suppressing PTH secretion. Since ED-71 has a bulky hydroxypropoxy substituent at the 2-position, epimerization at the adjacent and sterically hindered 3-position might be prevented, which may account for its weak potency in PTH suppression observed in clinical studies. We have significant interest in ED-71 epimerization at the 3-position and the biological potency of 3-epi-ED-71 in suppressing PTH secretion. In the present studies, synthesis of 3-epi-ED-71 and investigations of in vitro suppression of PTH using bovine parathyroid cells are described. The inhibitory potency of vitamin D3 analogs were found to be 1,25(OH)2D3 > ED-71 ≥ 3-epi-1,25(OH)2D3  3-epi-ED-71. ED-71 and 3-epi-ED-71 showed weak activity towards PTH suppression in our assays.  相似文献   

19.
20.
1,25-(OH)2D3 and 24,25-(OH)2D3 mediate their effects on chondrocytes through the classic vitamin D receptor (VDR) as well as through rapid membrane-mediated mechanisms which result in both nongenomic and genomic effects. In intact cells, it is difficult to distinguish between genomic responses via the VDR and genomic and nongenomic responses via membrane-mediated pathways. In this study, we used two hybrid analogues of 1,25-(OH)2D3 which have been modified on the A-ring and C,D-ring side chain (1α-(hydroxymethyl)-3β-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YA = 3a) and 1β-(hydroxymethyl)-3α-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YB = 3b) to examine the role of the VDR in response of rat costochondral resting zone (RC) and growth zone (GC) chondrocytes to 1,25-(OH)2D3 and 24,25-(OH)2D3. These hybrid analogues are only 0.1% as effective in binding to the VDR from calf thymus as 1,25-(OH)2D3. Chondrocyte proliferation ([3H]-thymidine incorporation), proteoglycan production ([35S]-sulfate incorporation), and activity of protein kinase C (PKC) were measured after treatment with 1,25-(OH)2D3, 24,25-(OH)2D3, or the analogues. Both analogues inhibited proliferation of both cell types, as did 1,25-(OH)2D3 and 24,25-(OH)2D3. Analogue 3a had no effect on proteoglycan production by GCs but increased that by RCs. Analogue 3b increased proteoglycan production in both GC and RC cultures. Both analogues stimulated PKC in GC cells; however, neither 3a nor 3b had an effect on PKC activity in RC cells. 1,25-(OH)2D3 and 3a decreased PKC in matrix vesicles from GC cultures, whereas plasma membrane PKC activity was increased, with 1,25-(OH)2D3 having a greater effect. 24,25-(OH)2D3 caused a significant decrease in PKC activity in matrix vesicles from RC cultures; 24,25-(OH)2D3, 3a, and 3b increased PKC activity in the plasma membrane fraction, however. Thus, with little or no binding to calf thymus VDR, 3a and 3b can affect cell proliferation, proteoglycan production, and PKC activity. The direct membrane effect is analogue-specific and cell maturation–dependent. By studying analogues with greatly reduced affinity for the VDR, we have provided further evidence for the existence of a membrane receptor(s) involved in mediating nongenomic effects of vitamin D metabolites. J. Cell. Biochem. 66:457–470, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号