首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular phylogenetic analysis of the conjugating green algae (Class Zygnemophyceae) using nuclear (SSU rDNA) and chloroplast (rbcL) gene sequences has resolved hypotheses of relationship at the class, order, and family levels, but several key questions will require data from additional genes. Based on SSU and rbcL sequences, the Zygnemophyceae and Desmidiales are monophyletic, and families of placoderm desmids are distinct clades (Desmidiaceae, Peniaceae, Closteriaceae, and Gonatozygaceae). In contrast, the Zygnemataceae and Mesotaeniaceae are paraphyletic, although whether these two traditional families constitute a clade is uncertain. In addition, relationships of genera within families have proven resistant to resolution with these two oft‐used genes. We have sequenced the coxIII gene from the mitochondrial genome to address some of these ambiguous portions of the phylogeny of conjugating green algae. The coxIII gene is more variable than rbcL or SSU rDNA and offers greater resolving power for relationships of genera. We present preliminary analyses of coxIII sequences from each of the traditional families of Zygnemophyceae and contrast the resulting topologies with those derived from nuclear and chloroplast genes.  相似文献   

2.
Abstract Nuclear-encoded SSU rDNA sequences have been obtained from 64 strains of conjugating green algae (Zygnemophyceae, Streptophyta, Viridiplantae). Molecular phylogenetic analyses of 90 SSU rDNA sequences of Viridiplantae (inciuding 78 from the Zygnemophyceae) were performed using complex evolutionary models and maximum likelihood, distance, and maximum parsimony methods. The significance of the results was tested by bootstrap analyses, deletion of long-branch taxa, relative rate tests, and Kishino–Hasegawa tests with user-defined trees. All results support the monophyly of the class Zygnemophyceae and of the order Desmidiales. The second order, Zygnematales, forms a series of early-branching clades in paraphyletic succession, with the two traditional families Mesotaeniaceae and Zygnemataceae not recovered as lineages. Instead, a long-branch Spirogyra/Sirogonium clade and the later-diverging Netrium and Roya clades represent independent clades. Within the order Desmidiales, the families Gonatozygaceae and Closteriaceae are monophyletic, whereas the Peniaceae (represented only by Penium margaritaceum) and the Desmidiaceae represent a single weakly supported lineage. Within the Desmidiaceae short internal branches and varying rates of sequence evolution among taxa reduce the phylogenetic resolution significantly. The SSU rDNA-based phylogeny is largely congruent with a published analysis of the rbcL phylogeny of the Zygnemophyceae (McCourt et al. 2000) and is also in general agreement with classification schemes based on cell wall ultrastructure. The extended taxon sampling at the subgenus level provides solid evidence that many genera in the Zygnemophyceae are not monophyletic and that the genus concept in the group needs to be revised.  相似文献   

3.
Hildebrand  M.  &Dahlin  K. 《Journal of phycology》2000,36(S3):30-30
Molecular phylogenetic analysis of the conjugating green algae (Class Zygnemophyceae) using nuclear (SSU rDNA) and chloroplast ( rbcL ) gene sequences has resolved hypotheses of relationship at the class, order, and family levels, but several key questions will require data from additional genes. Based on SSU and rbc L sequences, the Zygnemophyceae and Desmidiales are monophyletic, and families of placoderm desmids are distinct clades (Desmidiaceae, Peniaceae, Closteriaceae, and Gonatozygaceae). In contrast, the Zygnemataceae and Mesotaeniaceae are paraphyletic, although whether these two traditional families constitute a clade is uncertain. In addition, relationships of genera within families have proven resistant to resolution with these two oft-used genes. We have sequenced the cox III gene from the mitochondrial genome to address some of these ambiguous portions of the phylogeny of conjugating green algae. The cox III gene is more variable than rbc L or SSU rDNA and offers greater resolving power for relationships of genera. We present preliminary analyses of coxIII sequences from each of the traditional families of Zygnemophyceae and contrast the resulting topologies with those derived from nuclear and chloroplast genes.  相似文献   

4.
Sequences for the Rubisco large subunit (rbcL) gene were used to test hypotheses about the evolution of chloroplast shape and thallus type in genera of two families of conjugating green algae (Zygnematales): the Mesotaeniaceae (saccoderm desmids, mostly unicellular) and the Zygnemataceae (strictly filamentous). Unicellular (u) and filamentous (f) genera exhibit a series of three similar chloroplast shapes: ribbonlike (e.g. Spirotaenia [u], Spirogyra [f], and Sirogonium [f], laminate (e.g. Mesotaenium [u] and Mougeotia [f]), and twin-stellate (e.g. Cylindrocystis [u] and Zygnema [f]. Two conflicting phylogenetic hypotheses have been proposed: 1) families are polyphyletic constructs drawn from three lineages, each with unicellular and filamentous taxa characterized by a specific chloroplast shape; or 2) unicells form one monophyletic lineage (Mesotaeniaceae) and filaments form another (Zygnemataceae), with some chloroplast shapes independently derived. The rbcL data strongly refute hypothesis 2 (monophyly of the two traditional families) and support hypothesis 1 in part. Parsimony, maximum likelihood, and neighbor-joining analyses of the rbcL data strongly support monophyly of a clade containing taxa with ribbonlike chloroplasts and, to a lesser extent, monophyly of a second clade of the four genera with the other two chloroplast shapes. Two saccoderm genera (Roya, curved laminate chloroplasts; Netrium, "cucumber"-shaped chloroplasts) are not members of either of these clades, but they are included in a monophyletic Zygnematales .  相似文献   

5.
Nuclear-encoded SSU rDNA sequences have been obtained from 64 strains of conjugating green algae (Zygnemophyceae, Streptophyta, Viridiplantae). Molecular phylogenetic analyses of 90 SSU rDNA sequences of Viridiplantae (inciuding 78 from the Zygnemophyceae) were performed using complex evolutionary models and maximum likelihood, distance, and maximum parsimony methods. The significance of the results was tested by bootstrap analyses, deletion of long-branch taxa, relative rate tests, and Kishino-Hasegawa tests with user-defined trees. All results support the monophyly of the class Zygnemophyceae and of the order Desmidiales. The second order, Zygnematales, forms a series of early-branching clades in paraphyletic succession, with the two traditional families Mesotaeniaceae and Zygnemataceae not recovered as lineages. Instead, a long-branch Spirogyra/Sirogonium clade and the later-diverging Netrium and Roya clades represent independent clades. Within the order Desmidiales, the families Gonatozygaceae and Closteriaceae are monophyletic, whereas the Peniaceae (represented only by Penium margaritaceum) and the Desmidiaceae represent a single weakly supported lineage. Within the Desmidiaceae short internal branches and varying rates of sequence evolution among taxa reduce the phylogenetic resolution significantly. The SSU rDNA-based phylogeny is largely congruent with a published analysis of the rbcL phylogeny of the Zygnemophyceae (McCourt et al. 2000) and is also in general agreement with classification schemes based on cell wall ultrastructure. The extended taxon sampling at the subgenus level provides solid evidence that many genera in the Zygnemophyceae are not monophyletic and that the genus concept in the group needs to be revised.  相似文献   

6.
Forty-seven species of desmids, representing all four families, were examined for the presence of the xanthophyll loroxanthin by reverse-phase high-performance liquid chromatography. In the Desmidiaceae 28 of the 35 species examined possessed loroxanthin, and in the Mesotaeniaceae two of the six examined had loroxanthin present. All six species of the families Peniaceae and Closteriaceae examined possessed loroxanthin. Although the distribution of loroxanthin appears to be disjunct in the desmids and does not have strict taxonomic significance, it does follow a coherent pattern consistent with current ideas on desmid phylogeny. This pattern suggests that loroxanthin synthesis probably evolved once in the desmid lineage, with one or more subsequent reversals.  相似文献   

7.
We newly sequenced the nuclear-encoded small subunit (SSU) rDNA coding region for 21 taxa of the genus Closterium. The new sequences were integrated into an alignment with 13 known sequences of conjugating green algae representing six traditional families (i.e. Zygnemataceae, Mesotaeniaceae, Gonatozygaceae, Peniaceae, Closteriaceae, and Desmidiaceae) and five known charophycean sequences as outgroups. Both maximum likelihood and maximum parsimony analyses supported with high bootstrap values one large clade containing all placoderm desmids (Desmidiales). All the Closterium taxa formed one clade with 100% bootstrap support, indicating their monophyly, but not paraphyly, as suggested earlier. As to the taxa within the genus Closterium , we found two clades of morphologically closely related taxa in both maximum likelihood and maximum parsimony trees. They corresponded to the C. calosporum species complex and the C. moniliferum-ehrenbergii species complex. It is of particular interest that the homothallic entity of C. moniliferum v. moniliferum was distinguished from and ancestral to all other entities of the C. moniliferum-ehrenbergii species complex. Superimposing all 50 charophycean sequences on the higher order SSU rRNA structure model of Closterium , we investigated degrees of nucleotide conservation at a given position in the nucleotide sequence. A characteristic "signature" structure to the genus Closterium was found as an additional helix at the tip of V1 region. In addition, eight base deletions at the tip of helix 10 were found to be characteristic of the C. calosporum species complex, C. gracile , C. incurvum , C. pleurodermatum , and C. pusillum v. maius. These taxa formed one clade with an 82% bootstrap value in maximum parsimony analysis.  相似文献   

8.
Nuclear‐encoded SSU rDNA, chloroplast LSU rDNA, and rbcL genes were sequenced from 53 strains of conjugating green algae (Zygnematophyceae, Streptophyta) and used to analyze phylogenetic relationships in the traditional order Zygnematales. Analyses of a concatenated data set (5,220 nt) established 12 well‐supported clades in the order; seven of these constituted a superclade, termed “Zygnemataceae.” Together with genera (Zygnema, Mougeotia) traditionally placed in the family Zygnemataceae, the “Zygnemataceae” also included representatives of the genera Cylindrocystis and Mesotaenium, traditionally placed in the family Mesotaeniaceae. A synapomorphic amino acid replacement (codon 192, cysteine replaced by valine) in the LSU of RUBISCO characterized this superclade. The traditional genera Netrium, Cylindrocystis, and Mesotaenium were shown to be para‐ or polyphyletic, highlighting the inadequacy of phenotypic traits used to define these genera. Species of the traditional genus Netrium were resolved as three well‐supported clades each distinct in the number of chloroplasts per cell, their surface morphology (structure and arrangement of lamellae) and the position of the nucleus or nuclear behavior during cell division. Based on molecular phylogenetic analyses and synapomorphic phenotypic traits, the genus Netrium has been revised, and a new genus, Nucleotaenium gen. nov., was established. The genus Planotaenium, also formerly a part of Netrium, was identified as the sister group of the derived Roya/Desmidiales clade and thus occupies a key position in the evolutionary radiation leading to the most species‐rich group of streptophyte green algae.  相似文献   

9.
The conjugating green algae represent a lineage of charophyte green algae known for their structural diversity and unusual mode of sexual reproduction, conjugation. These algae are ubiquitous in freshwater environments, where they are often important primary producers, but few studies have investigated evolutionary relationships in a molecular systematic context. A 109‐taxon data set consisting of three gene fragments (two from the chloroplast and one from the mitochondrial genome) was used to estimate the phylogeny of the genera of the conjugating green algae. Maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) were used to estimate relationships from the 4,047 alignable nucleotides. This study confirmed the polyphyly of the Zygnemataceae and Mesotaeniaceae with respect to one another. The Peniaceae were determined to be paraphyletic, and two genera traditionally classified among the Zygnematales appear to belong to the lineage that gave rise to the Desmidiales. Six genera, Euastrum, Cosmarium, Cylindrocystis, Mesotaenium, Spondylosium, and Staurodesmus, were polyphyletic in this analysis. These findings have important implications for the evolution of structural characteristics in the group and will require some taxonomic changes. More work will be required to delineate lineages of Zygnematales in particular and to identify structural synapomorphies for some of the newly identified clades.  相似文献   

10.
Lee  O.-M.  McCourt  R.M.  Nam  M.  & Karol  K.G. 《Journal of phycology》2000,36(S3):42-43
Cosmarium and Staurastrum are the two most diverse genera of placoderm desmids (Family Desmidiaceae), with approximately 1100 and 800 species, respectively. Phylogenetic analysis of relationships of species has been extremely difficult. In a monograph of North American placoderm desmids, Prescott et al. described early phylogenetic work that concluded Staurastrum to be polyphyletic and certainly polymorphic. Likewise, Cosmarium has also been viewed as polyphyletic, and a number of workers have proposed splitting these genera. The classical view of West and West grouped species within each genus into two divisions and 6–8 sections based on wall features and semicell shape. We sequenced rbc L from 18 species of Cosmarium (2 divisions, 7 sections) and 12 species of Staurastrum (2 divisions and 7 sections) and performed a phylogenetic analysis (parsimony, maximum likelihood, bootstrap) using other placoderm desmids and Zygnematales as outgroups. The results exhibit little support for the monophyly of sections or divisions of the two genera. Furthermore, although there is support for the monophyly of clades within each genus, there is also support for a separate clade containing species from both genera.  相似文献   

11.
12.
Suspended and benthic algal communities from a mildly acidic, third-order Rhode Island stream were examined to determine the seasonal distribution, abundance and diversity of the lotic desmids. Within a one-year sampling period, 148 species and 202 subspecific taxa of desmids were identified, representing 23 genera. Species of Cosmarium and Closterium accounted for approximately 70% of the desmids present, and were the most diverse and abundant taxa during all seasons except spring, when Hyalotheca dissiliens was the dominant desmid species. Average abundance and species richness generally were greatest during summer for both suspended and benthic desmids. Most desmids occurred in benthic habitats, and were randomly distributed among substrata. Average seasonal abundance was 7.4 × 104 cells·g?1 dry wt substratum, among 13 types of substrata. Highest desmid abundance was measured among substrata with intricate morphologies, such as Fontinalis spp., which was associated with 1.2 × 106 desmid cells·g?1 dry wt substratum, or 1.7 × 103 cells·cm?2 substratum. Cell division was observed for 70 desmid taxa, and average seasonal reproduction (based on cell numbers) among all substrata ranged from 4% in winter to 20% during summer. In addition, sexually produced zygospores were found occasionally for H. dissiliens. Desmids were distributed among most substrata examined in this stream, with abundance comparable to reported estimates from softwater lakes and acid bogs. In contrast to established dogma, lotic desmids are not incidental drift organisms, but rather comprise a viable and persistent component of the stream periphyton.  相似文献   

13.
The phylogeny of the green algal Order Dasycladales was inferred by maximum parsimony and Bayesian analyses of chloroplast‐encoded rbcL sequence data. Bayesian analysis suggested that the tribe Acetabularieae is monophyletic but that some genera within the tribe, such as Acetabularia Lamouroux and Polyphysa Lamouroux, are not. Bayesian analysis placed Halicoryne Harvey as the sister group of the Acetabularieae, a result consistent with limited fossil evidence and monophyly of the family Acetabulariaceae but was not supported by significant posterior probability. Bayesian analysis further suggested that the family Dasycladaceae is a paraphyletic assemblage at the base of the Dasycladales radiation, casting doubt on the current family‐level classification. The genus Cymopolia Lamouroux was inferred to be the basal‐most dasycladalean genus, which is also consistent with limited fossil evidence. Unweighted parsimony analyses provided similar results but primarily differed by the sister relationship between Halicoryne Lamouroux and Bornetella Munier‐Chalmas, thus supporting the monophyly of neither the families Acetabulariaceae nor Dasycladaceae. This result, however, was supported by low bootstrap values. Low transition‐to‐transversion ratios, potential loss of phylogenetic signal in third codon positions, and the 550 million year old Dasycladalean lineage suggest that dasyclad rbcL sequences may be saturated due to deep time divergences. Such factors may have contributed to inaccurate reconstruction of phylogeny, particularly with respect to potential inconsistency of parsimony analyses. Regardless, strongly negative g1 values were obtained in analyses including all codon positions, indicating the presence of considerable phylogenetic signal in dasyclad rbcL sequence data. Morphological features relevant to the separation of taxa within the Dasycladales and the possible effects of extinction on phylogeny reconstruction are discussed relative to the inferred phylogenies.  相似文献   

14.
The species composition of desmids was studied in eight mountain lakes of the Kozhim and Malyi Patok River basins in the “Yugyd Va” National Park (subpolar Urals, Russia). A total of 98 desmid taxa representing 13 genera belonging to 4 families were identified. Geographical and ecological analyses showed that the desmid flora is typical, with a predominance of cosmopolitan species, planktic-benthic forms, acidophilic and pH indifferent species, and halophobic to salinity indifferent species. The investigated lakes can be classified as pristine and in good ecological condition on the basis of their hydrochemical and algal biodiversity characteristics. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

15.
Extant genera of Characeae have been assigned to two tribes: Chareae (Chara, Lamprothamnium, Nitellopsis, and Lychnothamnus) and Nitelleae (Nitella and Tolypella), based on morphology of the thallus and reproductive structures. Character analysis of fossil and extant oogonia suggest that Tolypella is polyphyletic, the genus comprising two sections, one in each of the two tribes. Eleven morphological characters and sequence data for the Rubisco large subunit (rbcL) were used to reconstruct the phylogeny of genera, including the two sections of Tolypella. Parsimony analysis of the rbcL data, with all positions and changes weighted equally, strongly supports the monophyly of the Characeae. The two Tolypella sections form a robust monophyletic group basal to the family. Transversion weighting yielded the same tree but with a paraphyletic Tolypella. The rbcL data strongly support monophyly of tribe Chareae but tribe Nitelleae is paraphyletic. Parsimony analysis of morphological data produced one unrooted tree consistent with monophyly of the two tribes; on this tree the Tolypella sections were paraphyletic. Combining morphological with rbcL data did not change the results derived from rbcL sequences alone. The rbcL data support the monophyly of the Characeae and Coleochaete, which together form a monophyletic sister group to embryophytes.  相似文献   

16.
Reconstructing the phylogeny of the Sipuncula   总被引:9,自引:0,他引:9  
Sipunculans are marine spiralian worms with possible close affinities to the Mollusca or Annelida. Currently 147 species, 17 genera, 6 families, 4 orders and 2 classes are recognized. In this paper we review sipunculan morphology, anatomy, paleontological data and historical affiliations. We have conducted cladistic analyses for two data sets to elucidate the phylogenetic relationships among sipunculan species. We first analyzed the relationships among the 45 species of Phascolosomatidea with representatives of the Sipunculidea as outgroups, using 35 morphological characters. The resulting consensus tree has low resolution and branch support is low for most branches. The second analysis was based on DNA sequence data from two nuclear ribosomal genes (18S rRNA and 28S rRNA) and one nuclear protein-coding gene, histone H3. Outgroups were chosen among representative spiralians. In a third analysis, the molecular data were combined with the morphological data. Data were analyzed using parsimony as the optimality criterion and branch support evaluated with jackknifing and Bremer support values. Branch support for outgroup relationships is low but the monophyly of the Sipuncula is well supported. Within Sipuncula, the monophyly of the two major groups, Phascolosomatidea and Sipunculidea is not confirmed. Of the currently recognized families, only Themistidae appears monophyletic. The Aspidosiphonidae, Phascolosomatidae and Golfingiidae would be monophyletic with some adjustments in their definition. The Sipunculidae is clearly polyphyletic, with Sipunculus nudus as the sister group to the remaining Sipuncula, Siphonosoma cumanense the sister group to a clade containing Siphonosoma vastumand the Phascolosomatidea, and Phascolopsis gouldi grouping within the Golfingiiformes, as suggested previously by some authors. Of the genera with multiple representatives, only Phascolosoma and Themiste are monophyletic as currently defined. We are aiming to expand our current dataset with more species in our molecular database and more detailed morphological studies.  相似文献   

17.
 A data matrix of 143 morphological and chemical characters for 142 genera of euasterids according to the APG system was compiled and complemented with rbcL and ndhF sequences for most of the genera. The data were subjected to parsimony analysis and support was assessed by bootstrapping. Strict consensus trees from analyses of morphology alone and morphology + rbcL + ndhF are presented. The morphological data recover several groups supported by molecular data but at the level of orders and above relationships are only superficially in agreement with molecular studies. The analyses provide support for monophyly of Gentianales, Aquifoliales, Apiales, Asterales, and Dipsacales. All data indicate that Adoxaceae are closely related to Dipsacales and hence they should be included in that order. The trees were used to assess some possible morphological synapomorphies for euasterids I and II and for the orders of the APG system. Euasterids I are generally characterised by opposite leaves, entire leaf margins, hypogynous flowers, “early sympetaly” with a ring-shaped corolla primordium, fusion of stamen filaments with the corolla tube, and capsular fruits. Euasterids II often have alternate leaves, serrate-dentate leaf margins, epigynous flowers, “late sympetaly” with distinct petal primordia, free stamen filaments, and indehiscent fruits. It is unclear which of these characters represent synapomorphies and symplesiomorphies for the two groups, respectively, and there are numerous expections to be interpreted as reversals and parallelisms. Received August 28, 2000 Accepted August 7, 2001  相似文献   

18.
Nuclear‐encoded small subunit rDNA, 1506 group I intron, and internal transcribed spacer sequences were obtained from 39 strains representing five core desmid genera, Staurastrum, Staurodesmus Teil., Cosmarium Corda ex Ralfs, Xanthidium Ehr. ex Ralfs, and Euastrum Ehr. ex Ralfs (Desmidiaceae, Zygnematophyceae), and used individually and concatenated to assess phylogenetic relationships between putatively allied members of the family. To identify positional homology between divergent noncoding sequences, secondary structure models were generated and their reliability assessed by screening the alignment for compensating base changes. The phylogeny based on coding and noncoding sequence comparisons confidently resolved a monophyletic core of the genus Staurastrum but also revealed the artificial nature of the traditional genus. Twenty distinct species representing a wide range of morphotypes of Staurastrum formed a strongly supported generic clade that was further split into three well‐resolved lineages. The phylogenetic relationships revealed within Staurastrum were in conflict with all previous formal or informal classifications of the genus. The genera Staurodesmus and Cosmarium were shown to be highly polyphyletic, and some morphologically similar taxa displayed high sequence divergence that exceeded generic boundaries. Apparently, the taxonomic significance of some morphological characters in Staurastrum and other desmid genera has been greatly overestimated.  相似文献   

19.
Current taxonomy of the Bryopsidales recognizes eight families; most of which are further categorized into two suborders, the Bryopsidineae and Halimedineae. This concept was supported by early molecular phylogenetic analyses based on rRNA sequence data, but subsequent cladistic analyses of morphological characters inferred monophyly in only the Halimedineae. These conflicting results prompted the current analysis of 32 taxa from this diverse group of green algae based on plastid‐encoded RUBISCO large subunit (rbcL) gene sequences. Results of these analyses suggested that the Halimedineae and Bryopsidineae are distinct monophyletic lineages. The families Bryopsidaceae, Caulerpaceae, Codiaceae, Derbesiaceae, and Halimediaceae were inferred as monophyletic, however the Udoteaceae was inferred as non‐monophyletic. The phylogenetic position of two taxa with uncertain subordinal affinity, Dichotomosiphon tuberosus Lawson and Pseudocodium floridanum Dawes & Mathieson, were also inferred. Pseudocodium was consistently placed within the halimedinean clade suggesting its inclusion into this suborder, however familial affinity was not resolved. D. tuberosus was the inferred sister taxon of the Halimedineae based on analyses of rbcL sequence data and thus a possible member of this suborder.  相似文献   

20.
Cladistic analyses of plastid DNA sequences rbcL and trnL-F are presented separately and combined for 48 genera of Amaryllidaceae and 29 genera of related asparagalean families. The combined analysis is the most highly resolved of the three and provides good support for the monophyly of Amaryllidaceae and indicates Agapanthaceae as its sister family. Alliaceae are in turn sister to the Amaryllidaceae/Agapanthaceae clade. The origins of the family appear to be western Gondwanaland (Africa), and infrafamilial relationships are resolved along biogeographic lines. Tribe Amaryllideae, primarily South African, is sister to the rest of Amaryllidaceae; this tribe is supported by numerous morphological synapomorphies as well. The remaining two African tribes of the family, Haemantheae and Cyrtantheae, are well supported, but their position relative to the Australasian Calostemmateae and a large clade comprising the Eurasian and American genera, is not yet clear. The Eurasian and American elements of the family are each monophyletic sister clades. Internal resolution of the Eurasian clade only partially supports currently accepted tribal concepts, and few conclusions can be drawn on the relationships of the genera based on these data. A monophyletic Lycorideae (Central and East Asian) is weakly supported. Galanthus and Leucojum (Galantheae pro parte) are supported as sister genera by the bootstrap. The American clade shows a higher degree of internal resolution. Hippeastreae (minus Griffinia and Worsleya) are well supported, and Zephyranthinae are resolved as a distinct subtribe. An Andean clade marked by a chromosome number of 2n = 46 (and derivatives thereof) is resolved with weak support. The plastid DNA phylogenies are discussed in the context of biogeography and character evolution in the family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号