首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The characteristics of phosphate uptake and photosynthetic capacity were studied in P-limited populations of Euglena gracilis Klebs (Z), using both P-limited batch cultures in stationary phase and cyclostat cultures grown on 14:10 LD. P uptake obeyed Michaelis-Menten kinetics between 0 and 150 μM PO4 under both growth conditions. The value of Vmax was 35% lower in the dark than in the light in the stationary phase cells. The value of K8 was not affected by light conditions, and uptake was completely inhibited in the presence of 1 mm KCN. P uptake (at 2.0 μM PO4) and photosynthetic capacity showed diel periodicity with peak rates occurring just before the beginning of the dark period for P uptake, and 8 h into the light period for photosynthetic capacity. Vmax for P uptake increased by a factor of 1.5 over the light period, whereas K8 remained constant at 1.4 μM PO4. These patterns were displayed by both nondividing stationary phase cells and populations in which less than a third of the cells divided each day, indicating that the rhythmicity is not coupled to cell division.  相似文献   

2.
Effects of phosphite (Phi) on phosphate (Pi) starvation responses were determined in Ulva lactuca L. by incubation in Pi‐limited (1 μM NaH2PO4) or Pi‐sufficient (100 μM NaH2PO4) seawater containing 0–3 mM Phi. Exposure to 1 μM NaH2PO4 decreased the growth rate and the content of free Pi and esterified‐P but increased the activities of extracellular alkaline phosphatase (EC 3.1.2.1) and intracellular acid phosphatase (ACP; EC 3.1.2.2); two ACP isozymes observed by activity staining on isoelectric focussing (IEF) gel were induced. The Km value of Pi uptake rate was decreased by incubation with 1 μM NaH2PO4 and the decrease in Km value was inhibited by 2 mM Phi, reflecting the operation of a high‐affinity Pi uptake system at low Pi concentrations. In the presence of Phi, the growth rate of Pi‐sufficient and Pi‐starved thalli decreased as Phi concentrations were increased from 0 to 2 mM. As Phi concentrations were increased from 0 to 2 mM, the free Pi contents in both Pi‐sufficient and Pi‐starved thalli decreased, but the esterified‐P contents in Pi‐starved thalli increased, whereas those in Pi‐sufficient thalli increased at 1 mM Phi and decreased at 2 mM Phi. Cell wall localized AP activity in both Pi‐sufficient and Pi‐starved thalli decreased as Phi concentrations were increased from 0 to 2 mM. Intracellular ACP activity in Pi‐starved thalli decreased as Phi concentrations were increased from 0 to 2 mM but was not affected in Pi‐sufficient thalli. The induction of ACP isozyme activity and high‐affinity Pi uptake system in Pi‐starved thalli was inhibited by Phi. The present investigation shows that Phi interrupts the sensing mechanisms of U. lactuca to Pi‐limiting conditions.  相似文献   

3.
Alexandrium catenella (Whedon et Kof.) Balech has exhibited seasonal recurrent blooms in the Thau lagoon (South of France) since first reported in 1995. Its appearance followed a strong decrease (90%) in phosphate (PO43?) concentrations in this environment over the 1970–1995 period. To determine if this dinoflagellate species has a competitive advantage in PO43?‐limited conditions in terms of nutrient acquisition, semicontinuous cultures were carried out to characterize phosphorus (P) uptake by A. catenella cells along a P‐limitation gradient using different dilution rates (DRs). Use of both inorganic and organic P was investigated from measurements of 33PO43? uptake and alkaline phosphatase activity (APA), respectively. P status was estimated from cellular P and carbon contents (QP and QC). Shifts in trends of QP/QC and QP per cell (QP·cell?1) along the DR gradient allowed the definition of successive P‐stress thresholds for A. catenella cells. The maximal uptake rate of 33PO43? increased strongly with the decrease in DR and the decrease in QP/QC, displaying physiological acclimations to PO43? limitation. Concerning maximal APA per cell, the observation of an all‐or‐nothing pattern along the dilution gradient suggests that synthesis of AP was induced and maximized at the cellular scale as soon as PO43? limitation set in. APA variations revealed that the synthesis of AP was repressed over a PO43? threshold between 0.4 and 1 μM. As lower PO43? concentrations are regularly observed during A. catenella blooms in Thau lagoon, a significant portion of P uptake by A. catenella cells in the field may come from organic compounds.  相似文献   

4.
Two dominant planktonic bloom‐forming algal species in a small shallow eutrophic pond were identified as Mallomonas elongata and Synura petersenii by electron microscopy. Their growth requirements were investigated as uni‐algal cultures in a laboratory study. The maximum population growth and maximum growth rate of M. elongata occurred at concentrations of 24 μM nitrate (NO3) and 5 μM phosphate (PO4) at a temperature of 15°C and a pH of 6. Synura petersenii grew maximally and exhibited the highest growth rate at a NO3 concentration of 24 μM and a PO4 concentration of 2 μM. Mallomonas elongata and S. petersenii had similar nutrient requirements for optimum growth, suggesting that the biomass of these two species can be controlled by nutrient gradients.  相似文献   

5.
Physiological aspects of phosphate utilization by the blue-green alga Plectonema boryanum were studied. It was found that the external phosphate concentration influenced the distribution of phosphorus-containing compounds in the cell. Culturing the alga in concentrations of 10, 100, and 1000 mg PO4/l resulted in increases in the level of acid-soluble and acid-insoluble polyphosphates. The values reported for 100 and 1000 mg PO4/l were the same, indicating that the cells were able to assimilate and utilize only fixed amounts of phosphates. The total phosphorus value for these cells was calculated to be 6.5 μg P per 106 cells. Culturing the alga in 1 mg PO4/l led to a decrease in phosphate concentration of all cell fractions. Cells grown in the absence of phosphate for 5 days had total cell phosphorus levels of 0.76 μg P per 106 cells. Cells in culture for two months or longer were found to have total cell phosphorus levels of 0.73 μg P per 106 cells. This was determined to be the minimum cell phosphorus level limiting growth. Transfer of cells from either culture condition to a medium containing phosphate led to an “overplus” phenomenon. This overplus phenomenon was characterized by increases in all cellular phosphorus fractions. The most dramatic increase was found in both the acid-soluble and acid-insoluble polyphosphates. These fractions often increased by more than an order of magnitude. The greatest phosphate uptake occurred within 1 hr of transfer of phosphate-starved cells into a medium containing a known amount of phosphate and is essentially complete at 4 hr. The total cell phosphorus levels for uptake never increased beyond 18.9 μg per 106 cells.  相似文献   

6.
Properties of the fully developed phosphate transport system in the fertilized egg of the sea urchin, Strongylocentrotus purpuratus, were investigated. The rates of phosphate transport at concentrations of external phosphate of 1 to 44 μM, both in the absence and in the presence of 100 μM arsenate, exhibit typical saturation kinetics. At sea water concentrations of 2 μM phosphate, the rate of uptake is about 2 × 10?9 μm/egg/minute at 15°C. Arsenate is a competitive inhibitor of phosphate transport, fully and immediately reversible in its effects, yielding Ki values ranging from 10.5 to 14.1 × 10?6 M in comparison to the corresponding apparent KM (Michaelis-Menten) constants for phosphate of 5.6 to 7.5 × 10?6 M (pH 8.0, 15°C). The rate of arsenate uptake in a phosphate deficient medium amounts to 2.8 to 2.9 × 10?10 μm arsenate/egg/minute at an arsenate concentration of 2.9 to 10.2 μM arsenate (HAsO4??), which is 9.5 and 5.6% of the rate of phosphate uptake at corresponding phosphate concentrations. Arsenate has essentially the same developmental effects at initial concentrations of 5–10 μM and 100 μM arsenate, namely no observable effects for exposure periods of 7.5 hours, although longer periods result in blockage of development at the early blastula stage. Outward flux of phosphate ions cannot be demonstrated by washing prelabelled eggs with sea water containing low or high concentrations of phosphate, even when phosphorylation has been blocked by exposing the eggs to a metabolic inhibitor. Phosphate uptake rates measured in the pH range from 5.0 to 10.0 reveal a sharp optimum at pH 8.8–8.9. Reference to the apparent pK' values of the phosphoric acid system indicate that the entering species is the HPO4?? ion. The effects on rates of phosphate uptake of exposure to sea water at pH values between 7 and 10 for 30 minute periods are fully reversible, but at lower pH values, reversal is delayed, and is only partial. Sodium molybdate (0.01 M), sodium pyrophosphate (1.5 × 10?4 M), and adenosine triphosphate (1–5 × 10?4 M) for exposure periods ranging from 40 to 180 minutes did not significantly affect phosphate uptake. Omission of Ca++ ion from artificial sea water is without effect on phosphate uptake but the absence of both Ca++ and Mg++ results in profound and irreversible depression of both phosphate uptake and development. The data of this and the following paper are consistent with the conclusion that the transport of phosphate involves a surface located carrier. The apparent secondary and tertiary ionization constants of phosphoric acid in sea water (ionic strength = 0.6885) were measured, resulting in a value for pK′2 = 6.14 and for pK′3 = 10.99, at 15°C and phosphate at infinite dilution.  相似文献   

7.
Uptake of phosphate ions by 1 mm segments of isolated maize root cortex layers was studied. Cortex segments (from roots of 8 days old maize plants) absorb phosphate ions from 1 mM KH2PO4 in 0.2 mM CaSCO4 at the average rate of 34.3 ±3.2 μg Pi g?1 (fr. m.) h?1,i.e. 0.35± 0.02 μmol Pi g?1 (fr. m.) h?1. Phosphate uptake considerably increases after a certain period of “augmentation”,i.e. washing in aerated 0.2 mM CaSO4. This increase is completely blocked by the presence of 10 μg ml?1 cycloheximide. The relation of uptake rate to phosphate concentration in the medium was shown to have 3 phases in the concentration range of 0.02 - 40 mM. Transition points were found between 0.8–1 mM and 10–20 mM. Following Km and Vmax values were found: Km[mM] : 0.37 - 3.82 - 27.67 Vmax[μg Pi g?1 (fr. m.) h?1] : 3.33 - 39.40 - 66.67 We have found no sharp pH optimum for phosphate uptake. It proceeds at almost constant rate till pH 6.0 and then the uptake rate drops with increasing pH. At low phosphate concentrations (1 mM) the lowest uptake rate was found at 5 and 13 °C, while the uptake is higher at 5 °C than at 13 °C at phosphate concentrations higher than 1 mM. At these concentrations uptake rate at 35 °C is lower than at 25 °C. Phosphate uptake considerably decreased in anaerobic conditions. DNP and iodoacetate (0.1 mM) completely blocked phosphate uptake from 1 mM KH2PO4, while uptake from 5 and 10 mM KH2PO4 was left unaffected by these substances. The inhibitors of active - SH groups NEM and PCMB inhibited phosphate uptake: 10?3 M NEM by 81.6%, 104 M NEM by 42% and 10?4 M PCMB by 42%.  相似文献   

8.
Phaeodactylum tricornutum Bohlin, the one diatom known to lack a silicon requirement for growth, and the prasinophyte Platymonas sp. are two representatives of a taxonomically diverse group of planktonic algae that have been reported to take up Si without a demonstrable requirement for the element. For both species, removal of Si from solution during growth in batch culture has at least two components; true biological uptake throughout the growth of the culture, and spontaneous inorganic precipitation of a solid silicate phase–probably Mg2Si3O8 (sepiolite)–under the elevated pH conditions that prevail late in batch growth. It is not clear to what extent previous observations of Si uptake by algae without siliceous frustules may be influenced by inorganic, non-cellular precipitation. The kinetics of true cellular uptake of Si are similar in Phaeodalylum and Platymonas, and different from those reported for the Si-requiring diatoms. Uptake follows hyperbolic saturation kinetics in both species, with half-saturation concentrations of 97.4 μM in Phaeodactylum and 80.9 μM in Platymonas, as compared to ca. 1–6 μM in diatoms that form siliceous frustules. Uptake by Phaeodactylum and Platymonas is not substrate-saturated until the dissolved Si concentration of the medium exceeds 200 μM. Concentrations this high do not occur in the surface layer of the ocean, and the kinetics suggest that both species deposit much less silica in nature than they can be induced to deposit in culture.  相似文献   

9.
Eugene gracilis Klebs (Z) was grown in a cyclostat (continuous culture on a light/dark cycle) at growth limiting levels of phosphate. Cell division was restricted to the dark period regardless of the proportion of the cells dividing during each 24 h period. Growth rate, as reflected by the amplitude of the cell density oscillation, was correlated with dilution rate. The width of the division gate was analyzed using a phasing index and found to be narrowest at dilution rates where the mean generation time of the cell population was an even multiple of 24 h. The effect was attributed to enhanced phasing of the cell division process by the biological clock of Euglena. Residual phosphate levels in the cyclostat were less than 0.3 μM PO4 at all submaximal growth rates. Cellular phosphorus concentration increased with dilution rate as described by a hyperbola saturating at Dmax= 0.74 day−1 with 8 × 10−8μM P/cell as the minimum intracellular phosphorus concentration for growth. The results are discussed, in terms of the inherent similarities and differences between a cyclostat and a steady state chemostat, and the advantages of the cyclostat for studies in phytoplankton ecology.  相似文献   

10.
Uptake rates of nitrate and phosphate were measured for four species and one variety of Porphyra from Long Island Sound (USA) at two temperatures and two nutrient medium concentrations at increasing intervals over a 24- or 48-h period. Maximum uptake rates found were: V30 μM0-1 h=73.8 μmol NO3 g−1 DW h−1 and V3 μM0-1 h=16.7 μmol PO4 g−1 DW h−1, in the two thinnest Porphyra. We found that the nitrate uptake rates were significantly greater at 30 μM than 3 μM NO3 concentration, and that the uptake rates decreased with time of exposure. Temperature (5, 15, and 25 °C) did not have as strong an effect on nitrate uptake rates as did nutrient concentration. Q10 values and uptake rates at four different nitrate concentrations indicated that nutrient uptake at 5 °C was initially an active process. After 24 h, the processes involved appeared passive as Q10 values were between 1.0 and 1.3 and nitrate uptake curves were linear. Nitrate uptake rates correlated positively with the surface area/volume (SA/V) ratio. No coherent trends were found for uptake of phosphate, except that the uptake rates were significantly higher in 30 μM NO3 medium as opposed to 3 μM NO3. We did not find any significant difference in uptake rate and pattern between the summer species Porphyra purpurea (Roth.) C. Agardh, the eurythermic Porphyra suborbiculata Kjellm., the winter species Porphyra rosengurttii J. Coll and J. Cox, and the two varieties of Porphyra leucosticta Thur. Le Jol. (both winter species).  相似文献   

11.
The kinetics of phosphate uptake and growth in Scenedesmus sp. have been studied in continuous culture with particular reference to the shifts in the cellular P compounds as a function of growth rate. Uptake velocity is a function of both internal and external substrate concentrations and can be described by the kinetics of noncompetitive enzyme inhibition. The concentrations of polyphosphates (alkali-extractable or 7-min) can he substituted as inhibitors in the kinetic equation. The apparent half-saturation constant of uptake. Km, is 0.6 μM. The apparent half-saturation concentration for growth is less than Km, by 1 order of magnitude. Growth is a function of cellular P concentrations, and the polyphosphates (alkali-extractable or 7-min) appear to regulate growth rate directly or indirectly. To understand P limitation, therefore, it is necessary to measure both external P and internal polyphosphate levels. Evidence indicates that alkali-extractable polyphosphates, which can be quantitatively determined by a simple method of measuring surplus P, are involved in cell division process find that a maintenance concentration of functional phosphate exists in the form of poly phosphates. Alkaline phosphatase activity has an inversely linear relationship to growth rate and to the reciprocals of both polyphosphates and surplus P. Changes in lipid P, RNA P, and presumably all other forms except DNA are related to changes in growth rate.  相似文献   

12.
We compared inorganic phosphate (Pi) uptake and growth kinetics of two cultures of the diazotrophic cyanobacterium Trichodesmium isolated from the North Atlantic Ocean (IMS101) and from the Great Barrier Reef, Australia (GBRTRLI101). Phosphate‐limited cultures had up to six times higher maximum Pi uptake rates than P‐replete cultures in both strains. For strain GBRTRLI101, cell‐specific Pi uptake rates were nearly twice as high, due to larger cell size, but P‐specific maximum uptake rates were similar for both isolates. Half saturation constants were 0.4 and 0.6 μM for Pi uptake and 0.1 and 0.2 μM for growth in IMS101 and GBRTRLI101, respectively. Phosphate uptake in both strains was correlated to growth rates rather than to light or temperature. The cellular phosphorus quota for both strains increased with increasing Pi up to 1.0 μM. The C:P ratios were 340–390 and N:P ratios were 40–45 for both strains under severely P‐limited growth conditions, similar to reported values for natural populations from the tropical Atlantic and Pacific Oceans. The C:P and N:P ratios were near Redfield values in medium with >1.0 μM Pi. The North Atlantic strain IMS101 is better adapted to growing on Pi at low concentrations than is GBRTRLI101 from the more Pi‐enriched Great Barrier Reef. However, neither strain can achieve appreciable growth at the very low (nanomolar) Pi concentrations found in most oligotrophic regimes. Phosphate could be an important source of phosphorus for Trichodesmium on the Great Barrier Reef, but populations growing in the oligotrophic open ocean must rely primarily on dissolved organic phosphorus sources.  相似文献   

13.
Silicon uptake kinetics of the diatom Phaeodactylum tricornutum (Bohlin) were examined at pH 8.8 ± 0.1 and pH 9.1 ± 0.1. Uptake follows hyperbolic saturation kinetics at both pH's, but at the higher pH the half-saturation constant for uptake is 11.8 μM, as opposed to 54.8 μM at the lower pH. When the uptake rate is examined as a function of the calculated concentration of the monovalent conjugate base, SiO(OH)3?, the half-saturation constant for uptake is 6.6 μM at either pH.  相似文献   

14.
The effectr of phosphate starvation and subsequent uptake on distribution and concentration of phosphate metabolic intermediates and metals were studied in Heterosigma akashiwo (Hada) Hada by 31P-NMR spectroscopy, neutron activation analysis and ESR spectroscopy. Excess orthophosphate (4.5 μM Pi, as NaH2PO4) added to a medium with P-depleted H. akashiwo cells was rapidly taken up resulting in an increase in P cell quota (qp)from 68.2 to 99.6 fmol. cell-1in 2 h and to 156.3 fmol. cell-1in 6 h. After three days, qp approached about 190 fmol. cell?1. Polyphosphate (PPi) rapidly increased from 0 to 11.4 fmol· cell?1in 2 h and to 24.7 fmol·cell?1in 6 h. Diel variation of cell quota indicated that cellular Pi increase was synchronized with cellular PPi decrease and vice versa. The average chain length of PPi increased from ca. 0 to ca. 10.2 phosphate residues in 2 h after addition of Pi and one day later, from ca. 9.8 to ca. 12.5. The cell quota of Mn (qMn), and to a lesser extent Co, increased rapidly from 4.87 fg. cell?1in the P- starved condition to 50.48 fg·cell?12 h afer addition of Pi but decreased to 8.63 fg. Cell?1by 6 h. Concentrations of Zn, As, Hf, Cu and sometimes Al, Mg, K, and Ca changed in a manner opposite to that of Mn and Co. The excretion of these cations, which was synchronized with the uptake of Mn and Co, may be important for a charge balancing in the cells. The ESR spectra showed that the high cellular Mn observed at 2 h after P addition was Mn2+which was taken up by the cells rather than adsorbed on the cell surface. These data combined with PPi data suggested that the behavior of qMn is synchronized with the behavior of average chain length of PPi.  相似文献   

15.
Summary The phosphate uptake in the leaf cells of Elodea densa shows multiple isotherms in the range [S]>1 mmole P/l to 100 mmoles P/l. In the dark the uptake isotherms contain three distinct parts (II/1, II/2 and II/3); the first two obey Michaelis-Menten kinetics, whereas the third is exponential. In the light the phosphate uptake curve consists only of two parts (II/1 and II/2) agreeing with Michaelis-Menten kinetics, the exponential part being absent.Cellular phosphate content was found to be 45 mmoles/l. Data concerning the membrane potential E for Elodea densa were obtained from Jeschke (1970). In accordance with the Nernst equation a change from the hyperbolic curve to an exponential one was expected at a concentration of about 60 mmoles P/l in the dark and at above 100 mmoles P/l in the light. The results obtained agree with these theoretical calculations: in the dark, the change from the hyperbolic to the exponential curve was observed at [S]=50 mmoles P/l, which is in electro-chemical equilibrium with the cellular orthophosphate content of about 35 mmoles/l (inorganic P content amounting to 80 per cent of total phosphate). In the light no change towards an exponential curve was noticed.The effect of the uncoupler CCCP in the light and in the dark was examined in order to elucidate its influenc on 32P incorporation into the fractions of inorganic, organic and acid-insoluble phosphates, the inorganic fraction representing phosphate uptake. The inhibition of the uptake into the inorganic part decreases with an increasing inactive component of total uptake, while the fixation in the organic fraction is severely curtailed at all concentrations tested. The acid-insoluble fraction remains unaffected.
Abkürzungen und Symbole CCCP Carbonylcyanid m-Chlorphenylhydrazon - Du Dunkel FG Frischgewicht - GP Gesamtphosphat - [H2PO4 -]i Innenkonzentration - [H2PO4 -]o Außenkonzentration - Ko Kontrolle - Li Licht - P Phosphat - Pa anorganisches TCE-lösliches Phosphat - Po organisches TCE-lösliches Phosphat - Pu TCE-unlösliches Phosphat - Pgl TCE-gesamtlösliches Phosphat - [S] Außenkonzentration des H2PO4 --Ions - TCE Trichloressigsäure  相似文献   

16.
Fusarium oxysporum grown in a low phosphate medium was found to take up several times as much K from KH2PO4 as from KCI solutions. Large amounts of phosphate also were taken up from KH2PO4. Similar large uptakes of Na and phosphate took place from solutions of NaH2PO4. Substantial quanties of phosphate were taken up from solutions of Ca(H2PO4)2 in the absence of any appreciable Ca uptake. When the fungus was grown in a medium containing high phosphate, little or no uptake of phosphate from KH2PO4 solutions occured and the K Uptake was at the same level as from KCI solutions. During large phosphate uptake sizable reductions in the organic acid content of the fungal cells were observed. Much, but not all, of the data could be explained on the basis of maintenance of charge balance within the cells. – The respiratory rate of fungus, grown in a low P medium, was markedly increased in KH2PO4 solution. Fungus, grown in a medium with high phosphate, had a higher respiratory rate which showed only a slight response to KH2PO4 solution. Fungus, grown in a medium with high phosphate, had a higher respiratory rate which showed only a slight response to KH2PO4.  相似文献   

17.
Pithophora oedogonia (Mont.) Wittr. biomass in Surrey Lake, Indiana was greater in the littoral than in the pelagial region. Although mean soluble reactive phosphorus concentrations did not differ between the two areas, nitrate concentrations were almost six times higher in the cove than in the open water. Using laboratory cultures of Pithophora, the half saturation constant (Ks at 20° C relating filament growth to external concentrations of nitrate-nitrogen was determined to be 1.23 mg L?1 (=88 μM)and for phosphate-phosphorus, 0.1 mg L?1 (=3.22 μM). These values were used to calculate a NO3-N/PO4-P atomic ratio of 27.6. Comparison of this value with NO3-N/PO4-P ratios in Surrey Lake showed that nitrogen limiting conditions were prevalent in the open water section of the lake. Alkaline phosphatase and dark ammonia uptake analyses on field collected filaments from the shallow and deep water sections confirmed the hypothesis that nitrate is the major factor limiting growth of Pithophora in Surrey Lake.  相似文献   

18.
Phenylalanine uptake in Chlorella fusca was measured, using the membrane filter technique. The cells were synchronized, and harvested at specific points of the life cycle. Experiments with autospores showed that the uptake followed saturation kinetics, with a Km= 5 μM. Vmax, was 0.1 nmol/min × 107 cells. The optimum temperature for the uptake was 40°C, and the activation energy was 1700 J/mol. The uptake showed a high specificity towards l -phenylalanine; presence of the unlabelled stereoisomer did not inhibit the uptake. Uptake of l -phenylalanine was inhibited in the presence of other analogues or other amino acids, but only if they were present in concentrations considerably higher than that of L-phenylalanine. Variations in the ratio of Na4+ to K+ in the external solution during uptake experiments did not have any influence upon the uptake rate of l -phenylalanine. The cells were able to take up the amino acid against a concentration gradient. At pool maximum the ratio between internal and external amino acid concentration was 1000/1. 2,4-Dinitro-phenol inhibited the uptake completely. Exchange between internal and external l -phenylalanine could not be demonstrated. The Km value did not change during the life cycle of the cells. The uptake rate reached a maximum at the end of the light period, and fell to a minimum just before sporulation started. It is concluded that Chlorella fusca cells have a highly specific, active uptake system for l -phenylalanine. The system is constitutive, independent on the K or Na concentration, and the mechanism of uptake does not change during the life cycle of the cells.  相似文献   

19.
The uptake kinetics of ammonium and phosphate by Gracilaria tikvahiae McLachlan were studied under field conditions. Seaweeds, pulse fed once a week for 6 h over a 4-week period, had maximum uptake rates of 19 μmol·g fwt?1·h?1 for ammonium and 0.28 μmol·g fwt?1·h?1 for phosphate. For both nutrients there was a positive linear correlation between uptake rate (v) and concentration (S) over the entire range of concentration tested. In a nutrient depletion experiment, the phosphate uptake curve determined over a wide range of concentrations consisted of two stages of saturation at low concentrations, and a linear phase at high concentrations. Ash free dry weight, chlorophyll a, phycoerythrin, and protein content were higher in pulse fed plants than in control plants receiving no nutrient additions, while the reverse held true for carbohydrate contents and the C/N ratios. The C/N ratio inversely correlated with ammonium and phosphate uptake rate as well as protein and phycoerythrin content, and positively with carbohydrate content.  相似文献   

20.
The desmid Staurastrum luetkemuellerii Donat et Ruttner and the cyanobacterium Microcystis aeruginosa Kütz. were grown in mixed cultures with various phosphate (Pi) additions. One pulse of Pi each day (semi-continuous cultures) favored M. aeruginosa whereas S. luetkemuellerii was favored when the same quantity of Pi was supplied continuously (chemostats). Both species coexisted under P limitation provided that the nutrient was supplied in an appropriate mode. The ability of each species to compete for P depended on their Pi uptake characteristics and their capability to retain the accumulated Pi. High affinity in uptake at low Pi concentrations contributed considerably to the growth eficiency of S. luetkemuellerii under continuous supply of PiM. aeruginosa was, however, consistently superior to S. luetkemuellerii in accuniulatiug the newly added P, but had a high rate of Pi release. In both -types of cultures, a net high of P went from M. aeruginosa to S. luetkemuellerii. The kinetic characteristics of the two species were used to simulate the outcome of competition experiments. Simulations agreed with the experimental data f both uptake and Pi release were considered in the model. The zlariable P*(the concentration of Pi at which the net uptake is equal to μ·QP is a function of uptake and release of Pi but could not explain the chemostat results. S. luetkemuellerii was the winner in many experiments even if its P*was higher thou that of M. aeruginosa. Thus, in the present case Pc (the concentration at which the net uptake is zero) was a better predictor of the ability to compete for Pi under steady state as well as transient conditions in the Pi supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号