首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vertebrate retina, rod outer segment is the site of visual transduction. The inward cationic current in the dark-adapted outer segment is regulated by cyclic GMP. A light flash on the outer segment activates a cyclic GMP phosphodiesterase resulting in rapid hydrolysis of the cyclic nucleotide which in turn causes a decrease in the dark current. Restoration of the dark current requires inactivation of the phosphodiesterase and synthesis of cyclic GMP. The latter is accomplished by the enzyme guanylate cyclase which catalyzes the formation of cyclic GMP from GTP. Therefore, factors regulating the cyclase activity play a critcal role in visual transduction. But regulation of the cyclase by some of these factors — phosphodiesterase, ATP, the soluble proteins and metal cofactors (Mg and Mn) — is controversial. The availability of different types of cyclase preparations, dark-adapted rod outer segments with fully inhibited phosphodiesterase activity, partially purified cyclase without PDE contamination, cloned rod outer segment cyclase free of other rod outer segment proteins, permitted us to address these controversial issues. The results show that ATP inhibits the basal cyclase activity but enhances the stimulation of the enzyme by soluble activator, that cyclase can be activated in the dark at low calcium concentrations under conditions where phosphodiesterase activity is fully suppressed, and that greater activity is observed with manganese as cofactor than magnesium. These results provide a better understanding of the controls on cyclase activity in rod outer segments and suggest how regulation of this cyclase by ATP differs from that of other known membrane guanylate cyclases.This work was supported by the grants from the National Institutes of Health (EY07158, EY 05230, EY 10828, NS 23744) and the equipment grant from Pennsylvania Lions Eye Research Foundation.  相似文献   

2.
Isolated bovine rod outer segment protein is phosphorylated with GTP-gamma-32P and ATP-gamma 32P and to a much lesser extent by CTP-gamma-32P and UTP-gamma-32P. Phosphorylation with both GTP (GTP-kinase activity) and ATP (ATP-kinase activity) is markedly stimulated by light; phosphorylation with GTP is lower in dark-adapted and higher in light-adapted rod outer segments than is phosphorylation with ATP. Km values of 20 and 200 muM and Vmax values of 2.1 and 5.9 nmol/(mg min(-1)) were calculated using ATP and GTP, respectively, in light-adapted outer segments. When outer segments are incubated with GTP-gamma-32P under the usual conditions employed in these experiments, no formation of ATP-gamma-32P was detected by the techniques of high-pressure liquid chromatography and thin-layer chromatography. In intact, light-bleached outer segments, GTP appears to specifically phosphorylate rhodopsin. Histone and phosvitin are not phosphorylated to any appreciable extent by GTP. Histone appears to block rhodopsin phosphorylation by GTP while histone and, to some extent, phosvitin, both act as substrates for ATP-kinase activity. Cyclic AMP and other adenine derivates have a marked inhibitory effect on GTP-kinase activity. Phosphate also inhibits GTP-kinase activity but stimulates ATP-kinase activity. Such differences in phosphorylation with GTP and ATP indicate that these activities are either due to separate enzyme systems or, if only one enzyme is involved, the activities are under separate physiological control in the photoreceptor unit.  相似文献   

3.
Cyclic GMP phosphodiesterase (PDE) is an essential component in retinal phototransduction. PDE is regulated by Pgamma, the regulatory subunit of PDE, and GTP/Talpha, the GTP-bound alpha subunit of transducin. In previous studies (Tsuboi, S., Matsumoto, H. , Jackson, K. W., Tsujimoto, K., Williamas, T., and Yamazaki, A. (1994) J. Biol. Chem. 269, 15016-15023; Tsuboi, S., Matsumoto, H., and Yamazaki, A. (1994) J. Biol. Chem. 269, 15024-15029), we showed that Pgamma is phosphorylated by a previously unknown kinase (Pgamma kinase) in a GTP-dependent manner in photoreceptor outer segment membranes. We also showed that phosphorylated Pgamma loses its ability to interact with GTP/Talpha, but gains a 10-15 times higher ability to inhibit GTP/Talpha-activated PDE than that of nonphosphorylated Pgamma. Thus, we propose that the Pgamma phosphorylation is probably involved in the recovery phase of phototransduction through shut off of GTP/Talpha-activated PDE. Here we demonstrate that all known Pgammas preserve a consensus motif for cyclin-dependent protein kinase 5 (Cdk5), a protein kinase believed to be involved in neuronal cell development, and that Pgamma kinase is Cdk5 complexed with p35, a neuronal Cdk5 activator. Mutational analysis of Pgamma indicates that all known Pgammas contain a P-X-T-P-R sequence and that this sequence is required for the Pgamma phosphorylation by Pgamma kinase. In three different column chromatographies of a cytosolic fraction of frog photoreceptor outer segments, the Pgamma kinase activity exactly coelutes with Cdk5 and p35. The Pgamma kinase activity ( approximately 85%) is also immunoprecipitated by a Cdk5-specific antibody, and the immunoprecipitate phosphorylates Pgamma. Finally, recombinant Cdk5/p35, which were expressed using clones from a bovine retina cDNA library, phosphorylates Pgamma in frog outer segment membranes in a GTP-dependent manner. These observations suggest that Cdk5 is probably involved in the recovery phase of phototransduction through phosphorylation of Pgamma complexed with GTP/Talpha in mature vertebrate retinal photoreceptors.  相似文献   

4.
Guanylate cyclase (GTP pyrophosphate-lyse (cyclizing), EC 4.6.1.2.) of bovine retinal rod outer segments is almost completely particulate, i.e. associated with rod outer segment membranes. In contrast to particulate guanylate cyclase in other tissues, treatment of rod outer segments with Triton X-100 does not solublize the enzyme but inhibits it. Enzyme activity is dependent on the presence of divalent cation, especially Mn2+ with only poor activation by Mg2+ (10-fold lower) and no activation seen with other cation. Ezpression of maximal activity required Nm2+ and GTP in equimolar concentrations with an apparent Km of 8 . 10(-4) M and V of 10 nmol/min per mg protein. Excess of Mn2+ over that required for the formation of the Mn . GTP complex was inhibitory. Ca2+, Ba2+ and Co2+ inhibited enzyme activity when assayed with the Mn . GTP substrate complex. In the presence of a fixed concentration of 1mM Mn2+, the enzyme exhibited strong negative cooperative interactions with GTP, characterized by an intermediary plateau region in the substrate vs. enzyme activity curve, a curve of downward concavity in the double reciprocal plot and a Hill coefficient of 0.5. Nucleotides such as ITP, ATP and UTP at higher concentrations (1 mM) stimulates activity by 40%. NaN3 has no effect on the guanylate cyclase. It is thus possible that the guanylate cyclase may be regulated in vivo by both the metal : GTP substrate ratio and the free divalent cation concentration as well as by the ATP concentration and thus play an important but yet undefined role in the visual process.  相似文献   

5.
A major 38-kDa protein associated with bovine rod outer segment plasma membranes, but not disk membranes, has been identified as glyceraldehyde-3-phosphate dehydrogenase on the basis of its N-terminal sequence and specific enzyme activity. This enzyme was extracted from lysed rod outer segments or isolated rod outer segment plasma membrane with 0.15 M NaCl and purified to homogeneity by affinity chromatography on a NAD(+)-agarose column. A specific activity of 90-100 units/mg of protein is within the range of activity obtained for glyceraldehyde-3-phosphate dehydrogenase isolated from other mammalian cells. Enzyme activity measurements indicate that this enzyme makes up approximately 2% of the total rod outer segment protein and over 11% of the plasma membrane protein. Protease digestion and binding studies on purified rod outer segment plasma and disk membranes suggest that glyceraldehyde-3-phosphate dehydrogenase reversibly interacts with a protease-sensitive plasma membrane-specific protein of rod outer segments. The finding that glyceraldehyde-3-phosphate dehydrogenase is present in large quantities in rod outer segments suggests that at least some of the energy required for the synthesis of ATP and GTP for phototransduction and other processes of the outer segment is derived from glycolysis which takes place within this organelle.  相似文献   

6.
Cyclic guanosine 3',5'-monophosphate phosphodiesterase in crude extracts from bovine rod outer segments can be activated by the addition of bleached rod outer segment membranes and GTP. In the absence of rhodopsin-containing membranes, the phosphodiesterase specific activity decreases with increasing concentration. A trypsin-sensitive inhibitor believed to be responsible for this phenomenon can be separated from the phosphodiesterase by DEAE-cellulose chromatography of the crude extract. Phosphodiesterase eluted from the DEAE-cellulose column shows considerably less concentration-dependence than in the crude extract. This partially purified phosphodiesterase was used as the substrate to assay for inhibitor. A GTPase which is active only in the presence of bleached rod outer segment membranes coelutes with the phosphodiesterase and is distinct from the phosphodiesterase inhibitor we have isolated.  相似文献   

7.
The light-activated cyclic GMP phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed in isolated outer segments suspended in a low-calcium Ringer's solution. Activation occurs over a range of light intensity that also causes a decrease in the permeability, cyclic GMP levels, and GTP levels of isolated outer segments. At intermediate intensities, PDE activity assumes constant intermediate values determined by the rate of rhodopsin bleaching. Washing causes an increase in maximal enzyme activity. Increasing light intensity from darkness to a level bleaching 5 x 10(3) rhodopsin molecules per outer segment per second shifts the apparent Michaelis constant (Km) from 100 to 900 microM. Maximum enzyme velocity increases at least 10-fold. The component that normally regulates this light- induced increase in the Km of PDE is removed by the customary sucrose flotation procedures. The presence of 10(-3) M Ca++ increases the light sensitivity of PDE, and maximal activation is caused by illumination bleaching only 5 x 10(2) rhodopsin molecules per outer segment per second. Calcium acts by increasing enzyme velocity while having little influence on Km. The effect of calcium appears to require a labile component, sensitive to aging of the outer segment preparation. The decrease in the light sensitivity of PDE that can be observed upon lowering the calcium concentration may be related to the desensitization of the permeability change mechanism that occurs during light adaptation of rod photoreceptors.  相似文献   

8.
The effects of ATP and GTP on the activities of ox liver and brain glutamate dehydrogenase were determined in the absence and presence of added Mg2+ ions. Although GTP was an inhibitor of the enzyme reaction assayed in the direction of NAD+ reduction, the magnesium complex of this nucleotide had no effect on the activity. Similarly the magnesium complex of ATP was without effect on the activity of the enzyme although the free nucleotide was an activator. These results suggest that it is important to take account of magnesium complex formation when considering the regulatory actions of these nucleotides.  相似文献   

9.
The rod outer segments of the bovine and frog retina possess a cyclic GMP phosphodiesterase (PDE) that is composed of two larger subunits, alpha and beta (P alpha beta), which contain the catalytic activity and a smaller gamma (P gamma) subunit which inhibits the catalytic activity. We studied the binding of P gamma to P alpha beta in both the bovine and frog rod outer segment membranes. Analysis of these data indicates that there are two classes of P gamma binding sites per P alpha beta in both species. The activation of PDE by the guanosine 5'-[gamma-thio]triphosphate form of the alpha subunit of transducin, T alpha.GTP gamma S, was also studied. These data indicate that the two classes of P gamma binding sites contribute to the formation of two classes of binding sites for T alpha.GTP gamma S. We demonstrate solubilization of a portion of the P gamma by T alpha.GTP gamma S in both species. There is also present, in both species, a second class of P gamma which is not solubilized even when it is dissociated from its inhibitory site on P alpha beta by T alpha.GTP gamma S. The amount of full PDE activity which results from release of the solubilizable P gamma is about 50% in the frog PDE but only approx. 17% in the bovine PDE. We also show that activation of frog rod outer segment PDE by trypsin treatment releases the PDE from the membranes. This type of release by trypsin has already been demonstrated in bovine rod outer segments [Wensel & Stryer (1986) Proteins: Struct. Funct. Genet. 1, 90-99].  相似文献   

10.
Cross-linking of the different subunits of the retinal cGMP-phosphodiesterase (PDE) with its activator G alpha GTP gamma S (alpha subunit of the retinal G-protein transducin with GTP gamma S (guanosine 5'-O-(3-thiotriphosphate) bound) has been investigated using purified proteins, with a N-hydroxysuccinimide homobifunctional cross-linker, bis(sulfosuccinimidyl)suberate (BS3) and its cleavable analog 3,3'-dithiobis(sulfosuccinimidylpropionate) (DTSSP). Interaction of purified G-protein and PDE is achieved in the presence of lecithin vesicles, at protein concentrations sufficient for full PDE activation. Protein subunits linked with DTSSP are separated by cleavage of the disulfide bridge and identified by electrophoresis. Complexes of PDE alpha (PDE beta) with 1 and 2 molecules of activator G alpha GTP gamma S are observed, providing direct evidence for an interaction or at least a close proximity between 2 molecules of activator G alpha and each of the catalytic PDE subunits in the activated state of PDE. The results also reveal symmetrical roles of PDE alpha and PDE beta, with the existence of one site for PDE gamma and one site for G alpha on each catalytic subunit.  相似文献   

11.
Affinity chromatography on calmodulin Sepharose showed that transducin, the G protein of bovine retinal rod outer segments, interacts with the Ca2+-calmodulin complex. This may mean that in the dark, rod outer segment calmodulin is largely in the bound state. It was assumed that photoactivation of rods induces a change in the calmodulin concentration in the cytoplasm of rod outer segments and this may be one of the processes leading to light adaptation of the photoreceptor.  相似文献   

12.
The content of a protein inhibitor of the cyclic nucleotides phosphodiesterase (PDE) in different retinal preparations as well as its distribution in the subfractions of rod outer segments (ROS) was studied. The content of protein inhibitor of PDE in different preparations of the retina was found to correlate with the rhodopsin content. The distribution of this protein over different ROS subfractions appeared to be exactly the same as that of rhodopsin, the content of protein inhibitor of PDE being more than a half of its content in the native ROS. The protein inhibitor of PDE could be easily washed out from the ROS fractions. It is concluded that the cattle protein inhibitor of PDE is localized in ROS, and is absent in the other retinal layers.  相似文献   

13.
The cytosol fraction of an extract of Xenopus laevis ovaries contains a protein inhibitor that can specifically block the activation of calmodulin-sensitive cyclic nucleotide phosphodiesterase (PDE I) found in that tissue. This inhibitor was purified by DEAE-cellulose chromatography, gel filtration on Sephacryl S-200, and affinity chromatography on calmodulin-Sepharose. It has a molecular weight of approximately 90,000, and is heat-labile and susceptible to inactivation by chymotrypsin. The inhibitor blocks calmodulin activation of cyclic nucleotide phosphodiesterases from amphibian ovary and bovine brain and of the myosin light chain kinase from rabbit smooth muscle, but does not affect the activity of a calmodulin-insensitive cyclic nucleotide phosphodiesterase. The inhibitor not only affects the activation of Xenopus PDE I and of the bovine brain phosphodiesterase by calmodulin, but also inhibits the stimulation of these enzymes by lysophosphatidylcholine. The inhibitor also acts on PDE I activated by partial tryptic proteolysis, but the enzyme fully activated by trypsin is only slightly susceptible to inhibition by this protein. The inhibition of PDE I activation caused by this ovarian factor can be reversed by adding excess amounts of calmodulin or lysophosphatidylcholine. The presence of this inhibitor provides a possible explanation for the previously observed inactivity of PDE I in vivo.  相似文献   

14.
Association of guanylate cyclase with the axoneme of retinal rods   总被引:4,自引:0,他引:4  
Axonemes were isolated from purified bovine retinal rod outer segments by dissolving the outer segment membranes in detergent and separating the axonemes by centrifugation on a linear detergent-containing sucrose density gradient. Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.61.2) activity was concentrated in the axoneme fraction. Guanylate cyclase eluted in the void volume when detergent-solubilized rod outer segments were subjected to exclusion chromatography on Sepharose 4B. Attempts to extract guanylate cyclase from isolated axonemes with salt, EDTA, base and other reagents were successful.  相似文献   

15.
Protein complement of rod outer segments of frog retina   总被引:6,自引:0,他引:6  
H E Hamm  M D Bownds 《Biochemistry》1986,25(16):4512-4523
Rod outer segments (ROS) from frog retina have been purified by Percoll density gradient centrifugation, a procedure that preserves their form and intactness. One- and two-dimensional electrophoretic analysis reveals a smaller number of proteins than is observed in many cell organelles and permits quantitation of the 20 most abundant polypeptides. Rhodopsin accounts for 70% of the total protein (3 X 10(9) copies/outer segment), and approximately 70 other polypeptides are present at more than 6 X 10(4) copies/outer segment. Another 17% of the total protein is accounted for by the G-protein (3 X 10(8) copies/outer segment) that links rhodopsin bleaching and the activation of cyclic GMP phosphodiesterase (PDE). The phosphodiesterase accounts for 1.5% of the protein (1.5 X 10(7) copies/outer segment), and a 48,000-dalton component that binds to the membrane in the light accounts for a further 2.6%. The function of approximately 90% of the total protein in the outer segment is known, and two-thirds of the non-rhodopsin protein is accounted for by enzyme activities associated with cyclic GMP metabolism. The relative molar abundance of rhodopsin, G-protein, and PDE is 100:10:1. Apart from these major membrane-associated proteins, most of the other proteins are cytosolic. Thirteen other polypeptides are found at an abundance of one or more copies per 1000 rhodopsins, nine soluble and four membrane-bound, and their abundance relative to rhodopsin has been quantitated. ROS have been separated into subcellular fractions which resolve three classes of soluble, extrinsic membrane, and integral membrane proteins. A listing of the proteins that are phosphorylated and their subcellular localization is given. Approximately 25 phosphopeptides are detected, and most are in the soluble fraction. Fewer phosphorylated proteins are associated with the purified outer segments than with crude ROS. Distinct patterns of phosphorylation are associated with intact rods incubated with [32P]Pi and broken rods incubated with [gamma-32P]ATP.  相似文献   

16.
We have examined cyclic GMP concentrations, guanylate cyclase activities, and cyclic GMP phosphodiesterase (PDE) activities in developing retinas of congenic mice with different allelic combinations at the retinal degeneration (rd) and retinal degeneration slow (rds) loci. Although guanylate cyclase activities were found to be uniformly low in the mutant retinas, striking differences in PDE activity and cyclic GMP levels were observed in retinas of the various genotypes. Homozygous rds mice, which lack receptor outer segments, showed reduced retinal PDE activity and cyclic GMP concentration in comparison to normal animals. In heterozygous rds/+ mice with abnormal outer segments, the levels were intermediate. In retinas of homozygous rd mice, PDE activity was lower than in rds retinas and cyclic GMP levels were much higher. In mice homozygous for both rd and rds genes, retinal PDE activities were even lower than in single homozygous rd mice; the cyclic GMP level reached the same high value as in the rd animals, persisted for a longer time at this high level, and did not correlate with the rate of photoreceptor cell loss. Thus, a marked variation in PDE activity appears to be the major manifestation of abnormal outer segment differentiation and eventual degeneration of photoreceptor cells in these neurological mutants. An increased cyclic GMP level seems to be an essential corollary in the expression of the rd gene even in the absence of outer segments, but it appears unlikely that an abnormally high nucleotide level in itself causes photoreceptor cell death.  相似文献   

17.
G Swarup  D L Garbers 《Biochemistry》1983,22(5):1102-1106
Porcine rod outer segment (ROS) proteins were phosphorylated in the presence of [gamma-32P]ATP and Mg2+, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and detected by autoradiography. The phosphorylation of rhodopsin, the major protein-staining band (Mr approximately 34 000-38 000), was markedly and specifically increased by exposure of rod outer segments to light; various guanine nucleotides (10 microM) including GMP, GDP, and GTP also specifically increased rhodopsin phosphorylation (up to 5-fold). Adenine nucleotides (cyclic AMP, AMP, and ADP at 10 microM) and 8-bromo-GMP (10 microM) or cyclic 8-bromo-GMP (10 microM) had no detectable stimulatory effect on rhodopsin phosphorylation. GTP increased the phosphorylation of rhodopsin at concentrations as low as 100 nM, and guanosine 5'-(beta, gamma-imidotriphosphate), a relatively stable analogue of GTP, was nearly as effective as GTP. Maximal stimulation of rhodopsin phosphorylation by GTP was observed at 2 microM. GMP and GDP were less potent than GTP. Both cyclic GMP and GMP were converted to GTP during the time period of the protein phosphorylation reaction, suggestive of a GTP-specific effect. Transphosphorylation of guanine nucleotides by [32P]ATP and subsequent utilization of [32P]GTP as a more effective substrate were ruled out as an explanation for the guanine nucleotide stimulation. With increasing concentrations of ROS proteins, the phosphorylation of rhodopsin was nonlinear, whereas in the presence of GTP (2 microM) linear increases in rhodopsin phosphorylation as a function of added ROS protein were observed. These results suggest that GTP stimulates the phosphorylation of rhodopsin by ATP and that a GTP-sensitive inhibitor (or regulator) of rhodopsin phosphorylation may be present in ROS.  相似文献   

18.
19.
The presence of glycolytic enzymes and a GLUT-1-type glucose transporter in rod and cone outer segments was determined by enzyme activity assays, glucose uptake measurements, Western blotting, and immunofluorescence microscopy. Enzyme activities of six glycolytic enzymes including hexokinase, phosphofructokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, and lactate dehydrogenase, were found to be present in purified rod outer segment (ROS) preparations. Immunofluorescence microscopy of bovine and chicken retina sections labeled with monoclonal antibodies against glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and lactate dehydrogenase have confirmed that these enzymes are present in rod and cone outer segments and not simply contaminants from the inner segments or other cells. Rod outer segments were also found to contain glucose transport activity as detected by 3-O-[14C]methylglucose uptake and exchange. The glucose transporter had a Km of 6.3 mM and a Vmax of 0.15 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for net uptake and a Km of 29 mM and a Vmax of 1.06 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for equilibrium exchange. These Km values for net uptake and equilibrium exchange are similar to values obtained for human red blood cells and are characteristic of GLUT-1-type glucose transporter. The transport was inhibited by both cytochalasin B and phloretin. Western blot analysis and immunofluorescence microscopy using type-specific glucose transporter antibodies indicated that both rod and cone outer segment plasma membranes have a GLUT-1 glucose transporter of Mr 45K as found in red blood cells and brain microsomal membranes. Solid-phase radioimmune competitive inhibition studies indicated that rod outer segment plasma membranes contained 15% the number of glucose transporters found in human red blood cell membranes and had an estimated density of 400 glucose transporter per micron2 of plasma membrane. These studies support the view that outer segments can generate energy in the form of ATP and GTP by anaerobic glycolysis to supply at least some of the energy requirements for phototransduction and other metabolic processes.  相似文献   

20.
Ca2+-dependent GTPase activity is found to be present in the rod outer segments of frog retina. GTPase localization in rod outer segments is shown by fractionating the rod outer segment preparation in the sucrose density gradient. The enzyme is readily washed out of cells with isotonic NaCl solution. The Km is 0.6 mM for GTP. The activity is inhibited by 78 +/- 12% with the increase in Ca2+ concentration from 10(-9) to 10(-7) M. GTP hydrolysis is inhibited by the same concentrations of Ca2+ which block the sodium conductivity of the rod outer segment cytoplasmic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号