首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
There is considerable variation in primate species richness across neotropical forest sites, and the richest assemblages are found in western Amazonia. Forest type is an important determinant of the patterns of platyrrhine primate diversity, abundance, and biomass. Here we present data on the assemblage structure of primates in adjacent unflooded (terra firme) and seasonally inundated (várzea and igapó) forests in the lower Purús region of central-western Brazilian Amazonia. A line-transect census of 2,026 km in terra firme, 2,309 km in várzea, and 277 km in igapó was conducted. Twelve primate species were recorded from 2,059 primate group sightings. Although terra firme was found to be consistently more species-rich than várzea, the aggregate primate density in terra firme forest was considerably lower than that in the species-poor várzea. Consequently, the total biomass estimate was much higher in várzea compared to either terra firme or igapó forest. Brown capuchin monkeys (Cebus apella) were the most abundant species in terra firme, but were outnumbered by squirrel monkeys (Saimiri cf. ustus) in the várzea. The results suggest that floodplain forest is a crucial complement to terra firme in terms of primate conservation in Amazonian forests.  相似文献   

2.
Most phenological studies to date have taken place in upland forest above the maximum flood level of nearby streams and rivers. In this paper, we examine the phenological patterns of tree assemblages in a large Amazonian forest landscape, including both upland (terra firme) and seasonally flooded (várzea and igapó) forest. The abundance of vegetative and reproductive phenophases was very seasonal in all forests types. Both types of flooded forest were more deciduous than terra firme, shedding most of their leaves during the inundation period. Pulses of new leaves occurred mainly during the dry season in terra firme, whereas those in the two floodplain forests were largely restricted to the end of the inundation period. Flowering was concentrated in the dry season in all forest types and was strongly correlated with the decrease in rainfall. The two floodplain forests concentrated their fruiting peaks during the inundation period, whereas trees in terra firme tended to bear fruits at the onset of the wet season. The results suggest that the phenological patterns of all forest types are largely predictable and that the regular and prolonged seasonal flood pulse is a major determinant of phenological patterns in várzea and igapó, whereas rainfall and solar irradiance appear to be important in terra firme. The three forest types provide a mosaic of food resources that has important implications for the conservation and maintenance of wide‐ranging frugivore populations in Amazonian forests.  相似文献   

3.
The seasonal flood pulse in Amazonia can be considered a primary driver of community structure in floodplain environments. Although this natural periodic disturbance is part of the landscape dynamics, the seasonal inundation presents a considerable challenge to organisms that inhabit floodplain forests. The present study investigated the effect of seasonal flooding on fruit-feeding butterfly assemblages in different forest types and strata in central Amazonia. We sampled fruit-feeding butterflies in the canopy and the understory using baited traps in adjacent upland (unflooded forests—terra firme), white and blackwater floodplain forests (várzea and igapó, respectively) during the low- and high-water seasons. Butterfly abundance decreased in the high-water season, especially of dominant species in várzea, but the number of species was similar between seasons in the three forest types. Species composition differed between strata in all forest types. However, the flood pulse only affected butterfly assemblages in várzea forest. The β-diversity components also differed only in várzea. Species replacement (turnover) dominated the spatial β-diversity in igapó and terra firme in both seasons and várzea in the high-water season. Nonetheless, nestedness was relatively higher in várzea forests during the low-water season, mainly due to the effect of dominant species. These results emphasize the importance of seasonal flooding to structure butterfly assemblages in floodplain forests and reveal the idiosyncrasy of butterfly community responses to flooding in different forest types. Our results also suggest that any major and rapid changes to the hydrological regime could severely affect floodplain communities adapted to this natural seasonal hydrological cycle, threatening the existence of these unique environments.  相似文献   

4.
We document patterns of fruit and vertebrate abundance within an extensive, virtually undisturbed mosaic of seasonally flooded (várzea and igapó) and unflooded (terra firme) forests of central Amazonia. Using phenological surveys and a standardised series of line-transect censuses we investigate the spatial and temporal patterns of immature and mature fruit availability and how this may affect patterns of habitat use by vertebrates in the landscape. All habitats showed marked peaks in fruiting activity, and vertebrate detection rates varied over time for most species both within and between forest types. Many arboreal and terrestrial vertebrates used both types of flooded forest on a seasonal basis, and fluctuations in the abundance of terrestrial species in várzea forest were correlated with fruit availability. Similarly, the abundance of arboreal seed predators such as buffy saki monkeys (Pithecia albicans) and macaws (Ara spp.) were closely linked with immature fruit availability in terra firme forest. We conclude that highly heterogeneous landscapes consisting of terra firme, várzea and igapó forest appear to play an important role in the dynamics of many vertebrate species in lowland Amazonia, but the extent to which different forest types are used is highly variable in both space and time.  相似文献   

5.
Aim Attention has increasingly been focused on the floristic variation within forests of the Amazon Basin. Variations in species composition and diversity are poorly understood, especially in Amazonian floodplain forests. We investigated tree species composition, richness and α diversity in the Amazonian white‐water (várzea) forest, looking particularly at: (1) the flood‐level gradient, (2) the successional stage (stand age), and (3) the geographical location of the forests. Location Eastern Amazonia, central Amazonia, equatorial western Amazonia and the southern part of western Amazonia. Methods The data originate from 16 permanent várzea forest plots in the central and western Brazilian Amazon and in the northern Bolivian Amazon. In addition, revised species lists of 28 várzea forest inventories from across the Amazon Basin were used. Most important families and species were determined using importance values. Floristic similarity between plots was calculated to detect similarity variations between forest types and over geographical distances. To check for spatial diversity gradients, α diversity (Fisher) of the plots was correlated with stand age, longitudinal and latitudinal plot location, and flood‐level gradient. Results More than 900 flood‐tolerant tree species were recorded, which indicates that Amazonian várzea forests are the most species‐rich floodplain forests worldwide. The most important plant families recorded also dominate most Neotropical upland forests, and c. 31% of the tree species listed also occur in the uplands. Species distribution and diversity varied: (1) on the flood‐level gradient, with a distinct separation between low‐várzea forests and high‐várzea forests, (2) in relation to natural forest succession, with species‐poor forests in early stages of succession and species‐rich forests in later stages, and (3) as a function of geographical distance between sites, indicating an increasing α diversity from eastern to western Amazonia, and simultaneously from the southern part of western Amazonia to equatorial western Amazonia. Main conclusions The east‐to‐west gradient of increasing species diversity in várzea forests reflects the diversity patterns also described for Amazonian terra firme. Despite the fine‐scale geomorphological heterogeneity of the floodplains, and despite high disturbance of the different forest types by sedimentation and erosion, várzea forests are dominated by a high proportion of generalistic, widely distributed tree species. In contrast to high‐várzea forests, where floristic dissimilarity increases significantly with increasing distance between the sites, low‐várzea forests can exhibit high floristic similarity over large geographical distances. The high várzea may be an important transitional zone for lateral immigration of terra firme species to the floodplains, thus contributing to comparatively high species richness. However, long‐distance dispersal of many low‐várzea trees contributes to comparatively low species richness in highly flooded low várzea.  相似文献   

6.
In Amazonia, the assemblages of several taxa differ significantly between upland terra firme and white‐water flooded várzea forests, but little is known about the diversity and distribution of bats in these two forest types. We compare the spatio‐temporal patterns of bat assemblage composition and structure in adjacent terra firme and várzea forests in the lower Purus River region of central Brazilian Amazonia. Bats were sampled using mist nets at five sites in each forest type during 40 nights (2400 net‐hours). We captured 1069 bats representing 42 species and Phyllostomidae bats comprised 99.3 percent of all captures. The bat assemblages in várzea and terra firme forests were significantly different, mainly due to a marked dissimilarity in species composition and in the number of captures during high‐water season. In addition, bat assemblages within forest types differed significantly between seasons for both terra firme and várzea. Frugivores dominated the bat assemblages in both forest types. Overall guild structure did not change between várzea and terra firme or between seasons, but frugivore and animalivore abundance increased significantly in várzea forest during the inundation. The difference in assemblage structure observed in the high‐water season is probably caused by the annual várzea flooding, which provides an effective barrier to the persistence of many understory bats. We also hypothesize that some bat species may undertake seasonal movements between forest types in response to fruit abundance, and our results further underline the importance of floodplain habitats for the conservation of species in the Amazon.  相似文献   

7.
Stable associations between two or more primate species are a prominent feature of neotropical forest vertebrate communities and many studies have addressed their prevalence, and their costs and benefits. However, little is known about the influence of different habitat types on the frequency, seasonality, and composition of mixed-species groups in Amazonian forest primates. Here we examine the features of interspecific primate groups in a large mosaic of flooded (várzea and igapó) and unflooded (terra firme) forest in central Amazonia. In total, 12 primate species occurred in the study area, nine of which were observed in mixed-species associations. Primates were more than twice as likely to form associations in várzea forest than in terra firme forest. Squirrel monkeys were most frequently found in mixed-species groups in all forest types, most commonly in association with brown capuchins. Another frequent member of interspecific associations was the buffy saki, which often formed mixed-species groups with tamarins or brown capuchins. There was no seasonality in the frequency of associations in terra firme forest whereas associations in várzea forest were twice as frequent during the late-dry and early-wet seasons than in the late-wet and early-dry seasons. Interspecific primate associations were common in all forest types, but the degrees to which different species associate varied between these environments. We suggest that the temporal variation of várzea forest associations is connected with seasonal changes in habitat structure and resource abundance. However, more work is needed to pinpoint the underlying causes of mixed-species associations in all forest types and their strong seasonality in várzea forest.  相似文献   

8.
Tree growth is a fundamental indicator for conservation plans of Amazonian floodplain forests. In this study we use dendrochronology to analyze wood growth patterns of Tabebuia barbata and Vatairea guianensis, two tree species occurring in nutrient-rich white-water (várzea, Mamirauá Sustainable Development Reserve, MSDR) and nutrient-poor black-water (igapó, Amanã Sustainable Development Reserve, ASDR) floodplain forests of Central Amazonia. From 20 trees per species and floodplain system (total of 80 trees) growing under a similar flooding regime with a mean inundation height of about 4 m we measured diameter at breast height (dbh). We sampled two cores per tree with an increment corer at the height of dbh to determine wood density (WD), tree age and mean radial increment (MRI) rates. The wood samples were macroscopically analyzed. Both tree species show distinct annual tree rings characterized by marginal parenchyma tissues. MRI was measured by a digital measuring device and WD was determined by the ratio dry mass/fresh volume. MRI of both tree species was significantly higher in the várzea than in the igapó, which can be traced back to the contrasting nutrient status. WD showed no difference comparing both floodplain forest types. Tree ages of a species for the same diameter are more than twofold higher in the igapó than in the várzea. To insure a sustainable harvest, felling cycles in these forests should be adjusted according to rates of growth.  相似文献   

9.
Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) is a dominant legume tree species occurring at low elevations of nutrient-poor black-water (igapó) and nutrient-rich white-water floodplain forests (várzea) of Amazonia. As a consequence of the annual long-term flooding this species forms distinct annual tree rings allowing dendrochronological analyses. From both floodplain types in Central Amazonia we sampled cores from 20 large canopy trees growing at identical elevations with a flood-height up to 7 m. We determined tree age, wood density (WD) and mean radial increment (MRI) and synchronized ring-width patterns of single trees to construct tree-ring chronologies for every study site. Maximum tree age found in the igapó was more than 500 years, contrary to the várzea with ages not older than 200 years. MRI and WD were significantly lower in the igapó (MRI=1.52±0.38 mm year?1, WD=0.39±0.05 g cm?3) than in the várzea (MRI=2.66±0.67 mm year?1, WD=0.45±0.03 g cm?3). In both floodplain forests we developed tree-ring chronologies comprising the period 1857–2003 (n=7 trees) in the várzea and 1606–2003 (n=13 trees) in the igapó. The ring-width in both floodplain forests was significantly correlated with the length of the terrestrial phase (vegetation period) derived from the daily recorded water level in the port of Manaus since 1903. In both chronologies we found increased wood growth during El Niño events causing negative precipitation anomalies and a lower water discharge in Amazonian rivers, which leads to an extension of the terrestrial phase. The climate signal of La Niña was not evident in the dendroclimatic proxies.  相似文献   

10.
Three hectares of Amazonian terra firme forest and an adjacent one-half hectare of várzea forest were quantitatively inventoried at O Deserto, on the Rio Xingu, Pará, Brazil. In the terra firme forest, 1420 individual trees greater than ten cm dbh, in 39 families and 265 species, were inventoried. In the várzea forest, there were 220 individual trees, in 17 families and 40 species.Cenostigma macrophyllum andOrbignya sp. were the most important species in the terra firme forest;Mollia lepidota andLeonia glycycarpa were most important in the várzea forest. Among one-hectare subplots of the total three-hectare terra firme sample, the number of trees ranged from 393 to 460, the number of families was a constant 33, and the number of species ranged from 118 to 162. This variation indicates that one-hectare samples are too small to be used to estimate the species richness of the total forest. The terra firme forest was richer in species and had a greater stature than the várzea forest.  相似文献   

11.
Blackwater ecosystems of Amazonia represent extreme nutrient-poor conditions that differ from those found in other regions of the Amazon. The tendency to contrast mainly the floodplain (várzea) and the upland forests (terra firme) has made it possible to overlook significant differences present within the Amazonian terra firme. These differences can be important in understanding human adaptation, particularly at the extremes of the nutrient-poorl-rich gradient. Human populations inhabiting blackwater areas have adjusted to the low productivity of the environment through complex forms of exchange and subsistence specialization, inherited and hierarchical control over the more productive fisheries, segmentary lineage organization, very small settlements at considerable distances from each other, and dependence on bitter manioc for the bulk of their calories. Analytical recognition of ecosystem heterogeneity in Amazonia is likely to lead to reinterpretations of several human/environment processes that have interested anthropologists, such as the protein debate and the role of environmental characteristics on the development of culture.  相似文献   

12.
The types of Amazonian forests subject to inundation can be organized into seven categories which are herewith named and described. This classification is intended to set in order the confusion of terminology used in the past. The types are: (1)seasonal várzea—forest flooded by regular annual cycles of white-water rivers; (2)seasonal igapó—forest flooded by regular annual cycles of black- and clear-water rivers; (3) mangrove—forests flooded twice daily by salt-water tides; (4)tidal várzea—forest flooded twice daily by fresh water backed up from tides; (5)floodplain forest—on low lying ground flooded by irregular rainfall, generally in upper reaches of rivers; (6)permanent white- water swamp forest; (7)permanent igapó—black-water forest. The first five types are periodically inundated and the last two are permanently waterlogged. This terminology is closer to that used by lim nologists by restricting the use ofigapó to forest inundated by black and clear water.  相似文献   

13.
1. The effect of habitat structural features and physicochemical characteristics of the water on the composition and richness of fish assemblages in temporary ponds near streams were examined at three spatial scales: among ponds, among streams and between drainage basins, in a ‘terra‐firme’ (not subject to long‐term flooding) forest reserve in Central Amazonia. 2. The fish assemblage in temporary ponds was composed of subsets of 18 small‐bodied species widely distributed in the reserve. The assemblages had a nested subset structure, where smaller ponds contained subgroups of the species found in larger ponds. 3. Species composition and richness in temporary ponds were similar between drainage basins, although the fish assemblages in streams differed between basins. 4. Fish assemblage structure was influenced by local factors related to habitat structure, such as pond area and depth, canopy cover and hydroperiod. Physicochemical characteristics of the water in the ponds were similar between drainage basins and had little detectable effect on the structure of pond fish assemblages. 5. No correspondence was found between the composition, richness or abundance of fishes in the ponds and in stretches of the streams adjacent to the ponds. Therefore, it is not possible to predict the composition of these temporary pond fish assemblages from the fish assemblages found in adjacent streams.  相似文献   

14.
Sapling communities in Amazonian white-water forests   总被引:1,自引:0,他引:1  
Aim Structure and floristic composition of forest regeneration (trees between 1 and 10 cm diameter at breast height (d.b.h), ≥ 1 m growth height) was described in three forest types of Amazonian white‐water forests (várzea), in order to analyse whether floristic composition of saplings is related to the successional stage of the forests, whether it differs in comparision with the mature flora, and if there exists a zonation of sapling species along the gradients of flooding and irradiation. Location Mamirauá Sustainable Development Reserve, Western Brazilian Amazon. Methods The investigated forests were of the low and the high várzea type, on an annual average flooded around 4 and 1 months, respectively. The two low‐várzea forests belonged to the secondary and to the late‐successional stage, the high‐várzea forest also to the late‐successional stage. A total of 24 circular sample plots covering 1885 m2 were installed. They were nested within three rectangular 1 ha permanent sample plots where individuals ≥ 10 cm d.b.h. were formerly inventoried. Average inundation and radiation [relative photosynthetically active radiation (rPAR)] at the forest floor was recorded in all inventoried plots. The Mean spatial Distribution Center (MDC; Ebdon, 1998 ) for all sapling species was calculated. Sapling species were grouped into associations with respect to their light‐demand and their location along the flood‐level gradient. Results Average flood height and average rPAR at the forest floor was highest in the secondary stage of the low várzea and lowest in the high‐várzea forest. Overall average density and basal area of the saplings averaged 2250 individuals and 2.3 m2 ha?1 in the secondary stage, 2330 individuals and 2.6 m2 ha?1 in the late‐successional stage of the low várzea and 5000 individuals and 4.8 m2 ha?1 in the high várzea. In all forest types, species richness of saplings was lower than species richness of trees ≥ 10 cm d.b.h., and amounted to 25 species in the secondary stage, to 35 species in the late‐successional stage of the low várzea and to 88 species in the high‐várzea forest. The amount of ‘immigrants’ ( Bazzaz, 1991 ) at the sapling level increased with proceeding forest succession and amounted to 24 and 29% in the low várzea and to 31% in the high várzea. Sapling species distribution, species richness and individual density was linked to both, the gradient of flooding and the gradient of irradiation. Species richness and individual density was highest in the high várzea and decreased with increasing influence of flooding. The high várzea was predominated by pronounced shade‐tolerant sapling species, whereas in the low várzea occured both, light demanding and shade‐tolerant species groups. Main conclusions Influence of flooding seems to be the main factor triggering species composition and structure of sapling communities in várzea forests. Proceeding forest succession reduces the impact of flooding because of the biogenical induced silting up of the forested sites. However, forest succession also alters forest architecture of the overstory and such the light conditions at the sapling level. Therefore, radiation is an important factor influencing species composition of sapling communities in várzea forests.  相似文献   

15.
Spatial, Temporal, and Economic Constraints to the Commercial Extraction of a Non?CTimber Forest Product: Copaíba (Copaifera spp.) Oleoresin in Amazonian Reserves. The increasing prevalence of government?C and NGO?Csponsored programs to encourage commercial non?Ctimber forest product (NTFP) extractivism in the humid tropics has highlighted the need for ecological and socioeconomic appraisal of the viability of extractive industries. We adopted a novel integrative approach to examine NTFP resource potential and produced credible landscape?Cscale estimates of the projected value of an economically important Amazonian NTFP, the medicinal oleoresin of Copaifera trees, within two large contiguous extractive reserves in Brazilian Amazonia. We integrated results derived from previous spatial ecology and harvesting studies with socioeconomic and market data, and mapped the distribution of communities within the reserves. We created anisotropic accessibility models that determined the spatial and temporal access to Copaifera trees in permanently unflooded (terra firme) and seasonally flooded (várzea) forests. Just 64.9?% of the total reserve area was accessible, emphasizing the distinction between the actual resource stock and that which is available to extractors. The density of productive tree species was higher in the várzea forests, but per?Ctree productivity was greater in the terra firme forests, resulting in similar estimates of oleoresin yield per unit area (64?C67?ml?ha?C1) in both forest types. A greater area of the várzea forests was accessible within shorter travel times of ??250 minutes; longer travel times allowed access to increasingly greater volumes of oleoresin from the terra firme forests. The estimated total volume of oleoresin accessible within the two reserves was 38,635 liters for an initial harvest, with projected offtake for a subsequent harvest falling to 8,274 liters. A household that extracted just 2 liters of oleoresin per month could generate 5?% of its mean income; market data suggested that certification could increase the value of the resource fivefold. Our approach is valuable in that it incorporates a range of methodologies and quantitatively accounts for the numerous constraints to the commercial viability of NTFP extraction.  相似文献   

16.
Central Amazonian floodplain forests: Tree adaptations in a pulsing system   总被引:1,自引:0,他引:1  
Amazonian floodplain forests are characterized by an annual flood pulse with changes of the water table that exceed 10 meters. Seedlings and adult trees are waterlogged or submerged for continuous periods lasting up to seven months per year. The monomodal flood pulse of the rivers causes drastic changes in the bioavailability of nutrients, oxygen levels, and concentrations of phytotoxins. The aquatic phase occurs during a period in which temperature and light conditions are optimal for plant growth and development, implying the need for adaptations. Not only do trees persist in a dormant state, they grow vigorously during most of the year, including the aquatic period. The regularity of flooding may have enhanced the evolution of specific traits, which partially are well known from floodplain trees in other tropical and in temperate regions. Different kinds of adaptations are found at the level of structural, physiological, and phenological traits. Combinations of adaptations regarding seed germination, seedling development, and traits of roots, shoots, and leaves result in a variety of growth strategies among trees. These lead to specific species distributions and zonations along the flooding gradient and within Amazonian floodplain systems (nutrient-rich white-water várzea and nutrient-poor black-water igapó).  相似文献   

17.
Population density and distribution in tropical forest vertebrates are directly linked to patterns of use of space relative to habitat structure and composition. To examine how forest type may explain the ranging behavior and high variance in group density observed within the geographic range of bald-faced saki monkeys (Pithecia irrorata), we monitored habitat use of 5 neighboring focal groups of this species in southwestern Amazonia over 3 yr. To test whether sakis are unflooded (terra firme) forest specialists, we compared home range (HR) use to the corresponding availability of 4 main forest types and quantified HR size and activity budgets as a function of forest type. HR size varied from 16 to 60 ha, and saki population density at this scale (12.5 ± 6.4 SD individuals/km2) was more closely related to forest type than to group size. Although sakis were not obligate habitat specialists, groups clearly avoided bamboo forest and preferred terra firme forest. Terra firme forests were associated with small HRs, intensive use, high HR overlap, and territorial defense, all of which suggest that saki densities will be higher in areas dominated by terra firme forest where large patches of bamboo (Guadua spp.) are absent. The increased desiccation and subsequent forest fires expected in this region from the combined impacts of climate change and human land use potentially threaten the long-term viability of old-growth terra firme forest specialists such as sakis. Regional-scale conservation efforts should ensure that extensive blocks of terra firme forest are protected in areas that remain relatively free of bamboo.  相似文献   

18.
Amazonian várzea forests are floodplains inundated by nutrient-rich white-water rivers occurring along the Amazon River. They are regularly flooded for up to 210 days per year by water columns of 10–15 m. Topographic variation results in different flooding amplitudes and durations along the flooding gradient, where the different tolerance to flooding of different plant species results in a vegetation zonation. We made a review of literature about the vegetation composition ofvárzea floodplain forests of Brazilian Amazonia along the Amazon River. Twenty-two studies were selected. Basing on the distribution of inventories which are concentrated in three main areas around the three larger cities Belém, Manaus and Tefé, we classified the inventories into three regions: (A) Estuary region with flooding regime influenced by daily inundations linked to the tides; (B) Central Amazonia near Manaus; (C) Western part of Brazilian Amazonia bordering Peru and Colombia, including Tefé and the “Reserva de Desenvolvimento Sustentável Mamirauá”. Summarizing the analyzed species lists, 36 tree species were registered in all sampled regions including the estuary. The regions A +C have 63 species in common, region B+C 143, and A+B 50. In the inventories analyzed here, an increase in species numbers from East to West can be confirmed, but it is difficult to state whether this is not an artefact due to local sampling. Vertical zonation patterns are difficult to discuss due to the lack of comparable data. The inventoried areas are small, and there is an urgent need for comparable floristic inventories throughout the basin. Destruction is spreading rapidly and the traditional use of forests and its resources is changing to a destructive exploitation that already has changed much of the physiognomy and diversity of this unique ecosystem.  相似文献   

19.
This study examines the occurrence of vascular epiphytic species in Central Amazonian black-water floodplain forests (igapó) and considers whether their horizontal and vertical distribution is influenced by the flood pulse, as is the case with tree species (phorophytes). Research was conducted in sixteen forest plots the Jaú National Park. In these, epiphytes on all phorophytes with DBH ≥ 10 cm were identified. We measured flood height using the watermark left by the last high-water period, then estimated the height relative to the ground of every epiphytic individual. We recorded 653 individuals in 37 species, distributed on 109 phorophytes. Igapó floodplain forests have much lower richness and abundance of vascular epiphyte species than do other Amazonian forests. This may reflect the limitation of available sites for colonization (only 24.9% of studied trees were occupied by epiphytes). Holoepiphytes predominated, and the combined presence of a flood-pulse, linked to the nutrient-poor soil poor seems to limit the occurrence of nomadic vines. Horizontal distribution of epiphytes followed the distribution of phorophytes, which in turn followed the flood-level gradient. Also flooding interacted strongly with vertical zonation to determine species richness. As already well-reported for trees, and unlike reports of epiphytes in other floodplains, flooding strongly influenced richness and distribution of vascular epiphytes in the studied igapó forests.  相似文献   

20.
Abstract. Within different stands of the white-water inundation forest (várzea forest) in the Central Amazon region, composition, abundance, frequency and basal area of tree species were recorded. Determinations of age and radial growth rates were conducted using dendrochronological methods. Results show significant differences in age, history and species composition between stands as well as different growth strategies among dominant species. Assignment of tree species to growth strategies by means of anatomical and morphological features together with quantitative aspects of vegetational analysis permit the further differentiation of successional stages of várzea forests. General features of successional stages were quantitatively described and compared with forest types from outside the várzea. Many tree species of the várzea forests are widespread in South America, and not limited to floodplains. Their occurrence on sites with distinct dry seasons suggests that they are not specifically adapted to flooding but are tolerant to seasonality in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号