首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fruit colour influences fruit choice by seed dispersers. The mistletoe Tristerix corymbosus (Loranthaceae) produces mature fruits of two different colours in two different biomes: yellow in the Chilean matorral and green in the temperate forest of southern South America. We conducted field surveys to establish the association between fruit colour and disperser identity throughout the entire geographical range of T. corymbosus. We selected 22 populations, eight of which were located in the Chilean matorral and 14 in the temperate forest south of the matorral. To identify the seed dispersers of the mistletoe we used direct observation, camera traps, and live‐trapping of small mammals. We also report experiments to assess fruit selection by seed dispersers based on differences in colour. The assemblages of dispersers of T. corymbosus differ between the two biomes: yellow fruits in Chilean matorral are exclusively dispersed by three bird species while green fruits in the temperate forest are exclusively dispersed by a marsupial. The differences in the assemblages of seed dispersers can be explained by differences in food‐finding strategies between the two assemblages. Green fruits in temperate forest are not easily detected by birds, while colour might not be an important cue for the marsupial because it is nocturnal and uses other senses to locate food. We propose that the association between the marsupial and the green‐fruited mistletoe constitutes an ecological fitting rather than the outcome of a co‐evolutionary process. The marsupial might have allowed the mistletoe T. corymbosus to retain green coloration in mature fruit, a condition to which it is preadapted by a slower ripening process in temperate forest populations.  相似文献   

2.
Observations and sticky-trap tests were used to assess the effect of fruit color on the behavior of adult male and female Rhagoletis juglandis Cresson (Diptera: Tephritidae), a tephritid that infests husks of Arizona walnut in southeastern Arizona. In the first experiment, during which flies were observed foraging among walnut models suspended from small walnut trees, models were painted green to appear ripe and uninfested or yellow with brown patches to appear ripe and infested. Flies used for this first experiment were also of two types: prior to observations, one group of flies had access to real walnuts for 1.5 days (prior experience) while the other group of flies was held without real walnut fruits (no prior experience). Regardless of prior experience with real walnut fruits, female flies landed on green models more than yellow/brown models. Experienced males also were more likely to land on green models than on yellow/brown models. More interactions also occurred on green models, because there were more landings.In the field behavioral assay, flies from a natural population given a choice of green, yellow, and yellow/brown models landed most often on green models, and all interactions and oviposition attempts occurred on green models. Flies also distinguished models by color in field sticky trap assays.These results suggest that female response to ripeness cues is innate, while males develop a preference for green based on their encounter rate with females.  相似文献   

3.
1. Frugivorous and seed‐feeding insects may alter the traits of fruits, such as shape and size, which may influence fruit attractiveness to frugivorous birds. Consequently, trait‐mediated interactions may occur in systems where plants, seed‐dispersing frugivorous vertebrates, and frugivorous or seed‐feeding insects interact. We investigated colour manipulation in Ilex integra Thunb. berries caused by the seed parasitoid wasp Macrodasyceras hirsutum Kamijo and how that manipulation relates to fruit attractiveness for frugivorous birds. 2. In winter, the colour of I. integra berries varied from green to red, but most berries were greenish, indicating that the berries were immature. Berry dissection indicated that the number of live parasitoid larvae present within each berry was closely related to berry colour – the greater the number of live larvae, more intense is the green colour of the berry. However, the wasp larvae did not modify the shape or size of the berries. More than 98% of berries that were protected from the insects by gauze bags ripened and turned red. In the present study, berries with unfertilised seeds alone turned red. Field‐feeding preference tests showed that the brown‐eared bulbul Hypsipetes amaurotis Temminck preferred red berries to green berries. 3. We demonstrated that the seed parasitoid wasp manipulates the berry colour, but not its shape or size, in a density‐dependent manner. Because green berries suffered less from bird foraging, we believe that this colour manipulation helps the wasps to avoid being killed by the birds. The present study indicates that manipulation by wasps may reduce the level of mutualism between the tree and seed‐dispersing birds.  相似文献   

4.
Air pollution fades the plumage of the Great Tit   总被引:5,自引:0,他引:5  
1. Great Tits ( Parus major ) derive the carotenoid pigments for their yellow plumage via the prey items in their diet. Air pollution is known to affect the abundance of many forest insects, e.g. green caterpillars, which are an important source of food and pigments for tits. This study investigates whether air pollutants indirectly affected the intensity of the yellow colour in P. major plumage via the reduced access to carotenoid sources.
2. The intensity of the yellow colour in the plumage of P. major nestlings was scored and the relative abundance of green herbivorous larvae in territories around a polluting copper smelter in SW Finland was simultaneously measured.
3. Both the intensity of yellow colour in nestling plumage and caterpillar abundance increased with increasing distance from the pollution source. The colour intensity correlated significantly with the density of green herbivorous larvae in a territory.
4. Parus major nestlings were significantly heavier at distant sites than close to the pollution source which suggests that the future survival probability of pale nestlings may be lowered.
5. Young birds, after their first moult, were studied for the relationships between condition, size and plumage colour by the means of ptilochronology. The plumage colour intensity did not correlate with the size corrected width of the growth bars in fifth rectrix (condition at moult) but was correlated positively with the length of the rectrix (size).
6. The implications of colour change for survival and mate choice are discussed.  相似文献   

5.
Flower-visiting insects exhibit innate preferences for particular colours. A previous study demonstrated that naive Papilio xuthus females prefer yellow and red, whereas males are more attracted to blue. Here, we demonstrate that the innate colour preference can be modified by olfactory stimuli in a sexually dimorphic manner. Naive P. xuthus were presented with four coloured discs: blue, green, yellow and red. The innate colour preference (i.e. the colour first landed on) of the majority of individuals was blue. When scent from essential oils of either orange flower or lily was introduced to the room, females’ tendency to select the red disc increased. Scents of lavender and flowering potted Hibiscus rosa-sinensis, however, were less effective. Interestingly, the odour of the non-flowering larval host plant, Citrus unshiu, shifted the preference to green in females. In males, however, all plant scents were less effective than in females, such that blue was always the most favoured colour. These observations indicate that interactions between visual and olfactory cues play a more prominent role in females.  相似文献   

6.
Red is a common colour signal in both aposematic warning displays, and in fruit displays. One common feature is that red is conspicuous against the natural background of the prey and fruits. However, there is a potential conflict between fruits and aposematic prey in how a bird predator should react to red colours, where fruits aim to attract birds and aposematic insects aim to ward off, often the same bird individuals. Here we investigate possible differences in red/green colour preferences of frugivorous, wild-caught, young blackcaps (Sylvia atricapilla), when food is either a fruit or an insect. Birds in two groups were presented with a series of pairs of food items that had been artificially painted red and green, in the order of (I) fruits, crickets and maggots, or (II) crickets, fruits, and maggots. Birds first presented with crickets or fruits differed in first attacks directed at the two colours: They showed no colour preference between fruits, but showed a clear preference for green over red crickets. Also, birds in both experimental groups clearly preferred green to red maggots. These results provide evidence that wild, frugivorous birds are able to differentiate between prey types, and show different colour preferences depending on whether food is insect or fruit. We conclude that blackcaps show an attack bias against red insects, and that one important function of the signal in insects, is to inhibit attack after discovery. However, the lack of preference for red fruits suggests other functions to red fruit displays, such as facilitating discovery per se, rather than directly stimulating attack after discovery.  相似文献   

7.
Visual traps like yellow sticky card traps are used for monitoring and control of the greenhouse whitefly (Trialeurodes vaporariorum). However, reflected intensity (brightness) and hence, attractiveness depend on the ambient light conditions, and the colour (wavelength) might not fit with the sensitivity of whitefly photoreceptors. The use of light emitting diodes (LEDs) is a promising approach to increase the attractiveness, specificity and adaptability of visual traps. We constructed LED‐based visual traps equipped with blue and green high‐power LEDs and ultraviolet (UV) standard LEDs according to the putative spectral sensitivities of the insects' photoreceptors. In a series of small‐scale choice and no‐choice recapture experiments, the factors time of day as well as light intensity and light quality (colour) of LED traps were studied in terms of attractiveness compared to yellow traps without LEDs. Green LED traps (517 nm peak wavelength) were comparably attractive in no‐choice experiments but clearly preferred over yellow traps in all choice experiments. The time of day had a clear effect on the flight activity of the whiteflies and thereby on the trapping success. Blue LEDs (474 nm) suppressed the attractiveness of the light traps when combined with green LEDs suggesting that a yet undetected photoreceptor, sensitive for blue light, and an inhibiting interaction with the green receptor, might exist in T. vaporariorum. In choice experiments between LED traps emitting green light only or in combination with UV (368 nm), the green‐UV combination was preferred. In no‐choice night‐time experiments, UV LEDs considerably increased whitefly flight activity and efficacy of trapping. Most likely, the reason for the modifying effect of UV is the stimulating influence on flight activity. In conclusion, it seems that the use of green LEDs alone or in combination with UV LEDs could be an innovative option for improving attractiveness of visual traps.  相似文献   

8.
Why leaves of some trees turn red in autumn has puzzled biologists for decades, as just before leaf fall the pigments causing red coloration are newly synthesized. One idea to explain this apparently untimely investment is that red colour signals the tree's quality to herbivorous insects, particularly aphids. However, it is unclear whether red leaves are indeed less attractive to aphids than green leaves. Because aphids lack a red photoreceptor, it was conjectured that red leaves could even be indiscernable from green ones for these insects. Here we show, however, that the colour of autumnal tree leaves that appear red to humans are on average much less attractive to aphids than green leaves, whereas yellow leaves are much more attractive. We conclude that, while active avoidance of red leaves by aphids is unlikely, red coloration in autumn could still be a signal of the tree's quality, or alternatively serve to mask the over-attractive yellow that is unveiled when the green chlorophyll is recovered from senescing leaves. Our study shows that in sensory ecology, receiver physiology alone is not sufficient to reveal the whole picture. Instead, the combined analysis of behaviour and a large set of natural stimuli unexpectedly shows that animals lacking a red photoreceptor may be able to differentiate between red and green leaves.  相似文献   

9.
We explored two mutually nonexclusive hypotheses on autumnal leaf colouration. The co-evolutionary hypothesis states that autumnal leaf colouration functions as a handicap signal to herbivorous insects, whereas the photoprotection hypothesis posits that plant pigments primarily protect the plant against cold-induced photoinhibition and enhance nutrient transfer. To contrast both hypotheses, we compared yellow and red leaf colouration in three groups of mountain ash (Sorbus aucuparia L.). Two montane groups of different age were characterised by low aphid numbers and low temperature, and a lowland group by high aphid numbers and high temperature. There were no consistent altitudinal differences in leaf colouration. Compared to young trees, adult trees developed fewer red but more yellow leaves at high altitude. In the lowland population, the development of red leaf colour was related to decreasing daytime temperature, whereas the appearance of yellow leaf colouration corresponded to the decreasing photoperiod. This is consistent with the photoprotection hypothesis. Individual differences in red and yellow leaf colouration were inversely correlated to the number of fruits, which might be interpreted as a trade-off between reproductive and protective commitment. Temperature effects explained variation in aphid numbers over time and leaf colouration explained aphid distribution on a given day. As predicted by the co-evolutionary hypothesis, strongly coloured individuals harboured fewer aphids than green or dull-coloured ones. Since decreasing temperature reduced the number of migrating aphids but induced red leaf colouration, these processes are not mutually fine-tuned, which likely restricts the potential for co-evolution between mountain ash and aphids.  相似文献   

10.
The relevance of visual and olfactory cues for host‐plant location is investigated in males and females of the oligophagous mustard leaf beetle Phaedon cochleariae Fabricius (Coleoptera: Chrysomelidae). Different objects are offered in a walking arena and the behaviour of beetles is observed. Beetles orient toward vertically or horizontally striped black and white pattern independent of stripe orientation. The results suggest that contrast facilitates orientation in the field, whereas the pattern itself may be less important for host location in dense vegetation. The response to green and yellow objects is tested to investigate discrimination abilities between young (green) and mature (yellow) leaves. Beetles prefer green over yellow independent of material (cardboard or leaves of Nasturtium officinale R. Br., Brassicaceae). Preference behaviour tested in a dual‐choice contact assay coincides with visual preferences, where adults prefer young, more nutritious leaves for feeding and oviposition. Furthermore, females discriminate between visual cues of green leaves and green cardboard, whereas males do not, indicating that females are more sensitive in colour discrimination. Differences in colour wavelength influence the choice of beetle behaviour more strongly than differences in intensity. Both sexes of P. cochleariae prefer volatiles of the host plant N. officinale, whereas only females respond to the main volatile compound 2‐phenylethyl isothiocyanate. Given a choice between visual and olfactory cues, males orientate towards the colour cues, whereas females do not show any preferences. In males, visual cues may thus override olfactory cues, whereas, in females, both are equally important, which may reflect different ecological requirements and/or physiological abilities.  相似文献   

11.
We assessed the role of visual and olfactory cues on oviposition preference in the oligophagous tomato fruit fly, Neoceratitis cyanescens (Bezzi) (Diptera: Tephritidae). In a field survey, we evaluated the stage of susceptibility of field‐grown tomatoes by monitoring N. cyanescens infestations from fruit‐setting up to harvest, in relation to post‐flowering time, size, and visual properties of fruit. In two‐choice laboratory experiments, we tested the degree to which females use visual and olfactory cues to select their host plant for oviposition. In addition, we investigated the ability of flies to avoid fruit already infested by conspecific eggs or larvae, and the influence of natal host fruit on oviposition preference. Neoceratitis cyanescens females preferentially lay their eggs in small yellow‐green unripe fruit (2–3.5 cm diameter, 10–21 days post‐flowering). Damage to fruit was significantly affected by brightness and size properties. In laboratory experiments, females chose to lay their eggs in bright orange rather than yellow domes. On the sole basis of olfactory stimuli, females showed a significant preference for unripe vs. ripe host fruit, for unripe fruit vs. flowers or leaves, and for host vs. non‐host fruit (or control). However, colour interacted with odour as females dispatched their eggs equally between the yellow dome and the bright orange dome when unripe fruit of tomato was placed under the yellow dome vs. ripe fruit under the bright orange dome. When offered real ripe and unripe tomatoes, females preferred unripe tomatoes. Females significantly chose to lay eggs in non‐infested fruit when they were given the choice between these or fruit infested with larvae. In contrast, recent stings containing eggs did not deter females from laying eggs. Rather, they could have an attractive effect when deposited within <1 h. Regardless of their natal host plant, tomato or bugweed, N. cyanescens females laid significantly more eggs in a dome containing bugweed fruit. However, 15% of females originating from tomato laid eggs exclusively in the dome with tomato, against 3% of females originating from bugweed.  相似文献   

12.
Plants use colours as signals to attract mutualists and repel antagonists. Fleshy-fruits are often conspicuously coloured to signal different types of information including fruit maturity and spatial location. Previous work on fruit colour selection focus on large diurnal vertebrates, yet fruit colours are perceived differently by frugivores with different types of visual systems. Here, we tested whether a nocturnal, frugivorous, seed-dispersing insect selects fruits based on their pigmentation and whether different lighting conditions affect fruit colour selection. We captured 20 Wellington tree weta (Hemideina crassidens) from a forest reserve on the North Island of New Zealand and brought them into laboratory conditions to test their fruit colour preferences. The fruits of Coprosma acerosa, a native shrub species that naturally produces translucent, blue-streaked fruits, were dyed either red or blue. Fruits were then offered to weta in a binary (y-maze) choice test in two light conditions, either at night during a full moon or under artificial light conditions in the lab. Weta preferred unmanipulated, naturally blue-streaked fruits and artificially-blue coloured fruits over those dyed red. Furthermore, their colour preferences were unaffected by light environment. Our results therefore suggest that weta can discriminate between colours (using colour vision) in both light and dark light environments. Their consistent preferences for colours other than red indicate that weta might be responsible for the unusual colours of fleshy-fruits in New Zealand.  相似文献   

13.
Abstract.
  • 1 The interactions between the univoltine mirid bug Cupsodes infuscatus and its food plant, the geophyte Asphodelus ramosus, were studied in the Negev desert for a 5 year period. The bug feeds mainly on Asphodelus inflorescence meristems, flowers and fruits, and in some years may destroy more than 95% of the plant population expected fruit production.
  • 2 Asphodelus expected fruit production fluctuated widely during the study period, but was not related to precipitation. Cupsodes density was related to the plant expected fruit production, but with a 1 year time lag. In years of high inflorescence production, a high per-capita reproduction of the bug resulted in a dense bug population in the following year. This dense population then decimated the plant fruit production, became food limited and had a low per-capita reproduction.
  • 3 This kind of time lag is expected to be common among desert insect herbivores that specialize in using ephemeral resources. The rare years of high plant production are in general preceded and followed by years of low plant production. Hence, in years which contribute most to plant reserves (seed, underground storage organs), insect herbivores are relatively rare as a result of food limitation in preceding low production years. But the insect populations which build up during years of high plant production decimate their food resources and become food limited in subsequent years with low plant production.
  • 4 Thus, herbivorous insects seem to have a limited ability to affect plant population dynamics in desert ecosystems. In contrast, the potential appears to be much greater for herbivorous insects to be regulated by their food plants.
  相似文献   

14.
In laboratory and field experiments, stimuli were tested that might affect oviposition decisions by female peach twig borer moths, Anarsia lineatella Zeller (Lepidoptera: Gelechiidae). When given a choice between immature green peach fruits, green mature peach fruits and soft-ripe peach fruits, the latter received the fewest eggs. Fuzzy halves of peach fruits received ten times more eggs then shaved hairless halves. Volatiles from both almond and peach shoots induced more oviposition by females than by control stimuli. Similarly, volatiles from immature green peach fruits, mature green or mature hard-ripe peach fruits induced more oviposition than their respective control stimuli. In a choice experiment, volatiles from immature peach fruit stimulated three times more oviposition than those from soft-ripe peach fruit. Discrimination against mature soft-ripe peach fruits as potential oviposition sites may lie in the phenology of A. lineatella and host peach fruits. Larval development to the pupal stage takes 15–27 days. Therefore, any eggs laid on a ripe fruit 14 days before it falls from the tree will not likely develop into adult insects because developing larvae will only reach third or fourth instar before the fruit is decomposed, and only first and second instar larvae can overwinter.  相似文献   

15.
Freshly emerged, inexperienced imagos of the hoverfly Eristalis tenax L. extend their proboscis towards small, yellow colour stimuli, such as anther parts and artificial floral guides. The releasing of this behaviour, which is adapted to pollen feeding, was investigated in behavioural tests using white, UV-reflecting artificial flowers with four small screens illuminated with test stimuli serving as artificial floral guides. The releasing of the innate proboscis extension was tested using monochromatic test lights. Within an intensity range from approx. 5·1011 to approx. 1014 quanta · cm-2· s-1, the flies extended their proboscis only towards green and yellow test lights (approx. 520–600 nm). The inhibition of the innate proboscis extension was tested using mixed light stimuli composed of a yellow monochromatic reference light (560 nm, 1013 quanta·cm-2 -1) and of a monochromatic test light. When the reference light was mixed with ultraviolet or blue test lights, the releasing of the innate proboscis extension was strongly inhibited, whereas admixing green/yellow light slightly promoted it; admixing red light had no effect. The results indicate that the releasing of the innate proboscis extension is mediated by the photoreceptor type R8y. Other receptor types which could cause the inhibition of the proboscis reaction are discussed.  相似文献   

16.
17.
Visual orientation in the greenhouse whitefly (Trialeurodes vaporariorum Westwood, Hemiptera: Aleyrodidae) is the result of “wavelength‐specific behaviours.” Green–yellow elicits “settling behaviour” while ultraviolet (UV) radiation initiates “migratory behaviour.” The only available physiological study of the photoreceptors' spectral efficiency showed peaks in the green and the UV range and whitefly vision was said to be dichromatic so far. In order to study the visual behaviour of T. vaporariorum, 19 narrow‐bandwidth light emitting diodes (LEDs) covering the UV‐A and visible range were used in combination with light scattering acrylic glass screens in a small‐scale choice arena under greenhouse conditions. Multiple‐choice and dual‐choice assays were performed, resulting in LED‐based behavioural action spectra of settling (green) and migratory behaviour (UV). A potential inhibitory blue–green chromatic mechanism was studied by combining yellow with different bluish LEDs. Intensity dependencies were illustrated by changing LED intensities. Regarding the “settling response,” highest attraction was achieved by a green LED with a centroid wavelength of 550 nm, while a blue LED with 469 nm proved to be most inhibitory. Besides this inhibitory interaction, an intensity dependence was observed within the action spectrum in the green–yellow range. “Migratory behaviour” was elicited the most by the UV LED with the shortest available wavelength of 373 nm. The results provide compelling behavioural evidence for the presence of a green and a yet undescribed blue sensitive photoreceptor and a blue–green opponent mechanism. Furthermore, empirical colour choice models were built and receptor peaks were estimated around 510–520 nm (green), 480–490 nm (blue) and 340–370 nm (UV). Consequently, a trichromatic receptor setup is suggested for T. vaporariorum.  相似文献   

18.
In order to study chloroplast biogenesis, we chose natural variegated Epipremnum aureum (golden pothos) and regenerated pale yellow, variegated and green plants from all three types of tissue explants. The percentage of three types of regenerated shoots from three different explants was very close. Regenerated plants have been maintained for a year and show no sign of a colour switch. By comparing their protein profiles, two major differences between pale yellow and green plants were observed at the 15 and 40 to 50 kDa proteins. Moreover, pale yellow plants had unexpected high molecular mass proteins (greater than 60 kDa). Both variegated and green plants had more chlorophyll (Chl) a than Chl b, the ratios were about 1.46 and 1.93, respectively. In contrast, the pale yellow plants not only had less total Chl, but also the reduction of Chl a was much greater than Chl b, resulting in a higher content of Chl b than Chl a. Microscopic analysis revealed that pale yellow plants contained predominantly undeveloped chloroplasts with low Chl contents, even though their mesophyll cells were similar to green and variegated plants. PCR amplification of chloroplast DNA with 14 universal chloroplast primers did not reveal any difference among these regenerated plants.  相似文献   

19.
Secondary metabolites in fruit are compounds that are not directly associated with plant growth; some are directly related to plant reproductive processes, specifically seed protection and dispersion. There is a complex and species‐specific interaction between these plant compounds and their avian seed dispersers. To determine whether two important secondary metabolites in wine grapes – tannins and colour pigments – might be important cues to two of the avian species that forage on wine grapes, and how species‐specific this interaction might be, comparative field experiments were run with Australasian silvereyes (Zosterops lateralis) and European blackbirds (Turdus merula). Both species were offered a glucose/fructose artificial nectar with increasing concentrations of grape tannins. In a second experiment, they were offered both green and purple artificial grapes where only the colour differed. Both species showed aversion to tannins; silvereyes appeared to have greater tolerance than blackbirds of tannin concentrations above 5%. In summer no preference was shown between green and purple coloured artificial grapes, but in late autumn blackbirds took only purple grapes whereas silvereyes pecked mostly at green. Links between tannin for seed protection and colour signals to birds are discussed. Colour may cue the two species to different species‐specific aspects of fruit nutritive value.  相似文献   

20.
Abstract 1. Polymorphism has been described for a number of herbivorous insects, but little is known about whether differences in body colour cause fitness differences. In Chorthippus parallelus, three main colour morphs occur, namely brown, green, and dorsally striped. 2. The present study examined colour morph abundances and morph‐related differences in body size, oviposition rate, and offspring numbers in females of C. parallelus collected in 15 montane grasslands. The study also examined the effect of plant species richness, composition, community productivity, and solar radiation on colour morph frequency and fitness. 3. The relative frequencies of the three colour morphs was 31.7% (brown), 33.1% (green), and 35.2% (dorsally striped), but the morphs were not evenly distributed across the 15 sites. 4. There was no effect of the habitat variables on the distribution of the green and the striped morph in the study sites, however 80% of the variation in the abundances of the brown morph was explained by plant species richness and composition. 5. Grasshopper size was equal among the morphs. Brown females laid significantly more egg pods than the green and dorsally striped morphs. There were no significant differences in offspring numbers among the colour morphs. 6. Body colour in C. parallelus seems to be a fitness‐relevant trait, raising the question of the evolutionary maintenance of polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号