首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A light-dependent reversible grana stacking-unstacking process, paralleled by a reorganization of thylakoid components, has been noticed in greening etiolated bean (Phaseolus vulgaris, var. red kidney) leaves upon transfer to darkness. The reorganization, based on biochemical and biophysical criteria, involves mainly the photosystem II (PSII) unit components: upon transfer to darkness, the light-harvesting chlorophyll protein (LHCP), its 25 kilodalton polypeptide and chlorophyll b are decreased, while the CPa and its 42 kilodalton polypeptide are increased and new PSII units of smaller size are formed. This reorganization of components occurs only in thylakoids still in the process of development and not in those present in steady state conditions.

It is proposed that this process does not reflect the turnover of the LHCP component per se, but a regulatory process operating during development, by which the ratio of light-harvesting to PSII reaction center components, determined by the environmental conditions, controls the photosynthetic rate.

  相似文献   

2.
Antibodies were raised against individual polypeptides of the oxygen-evolving photosystem II (PSII) complex from mesophyll chloroplasts of Vicia faba (Long Pod). These antibodies were used to probe immunologically for the presence of the main structural components of the PSII complex in guard cell chloroplasts, using both immunofluorescence microscopy and Western blotting. Immunofluorescence of epidermal peels with antibodies raised against the extrinsic 33 kilodalton polypeptide, as well as the 47 and the 44 kilodalton subunits and the light-harvesting chlorophyll a/b protein, resulted in intense fluorescence indicating the presence of these polypeptide components in guard cell chloroplasts. Results obtained with Western blot analysis showed that the relative amounts of the 33 kilodalton and light-harvesting complex protein polypeptides are between 60 and 80% of that found in mesophyll cells (on chlorophyll basis). These results provide evidence for the existence of structural components associated with PSII activity in guard cell similar to those of mesophyll chloroplasts.  相似文献   

3.
We have quantified the lateral distribution of 12 thylakoid proteins of Spirodela oligorrhiza by immunoblot analysis of detergent-derived granal and stromal lamellae. The immunological, ultrastructural, cytochemical, and biophysical measurements each indicated the expected overall separation of photosystem II (PSII) and photosystem I (PSI) components; however, certain proteins were not completely localized to one lamellar fraction. The apoproteins of the light harvesting chlorophyll a/b complex, subunit 1 of PSI and the components of the PSII reaction center (the 32 kilodalton, D2, and cytochrome b559 proteins) were dually located between granal and stromal lamellae. Proteins associated exclusively with one of the membrane types were: in granal lamellae, the 43 and 51 kilodalton PSII proteins, and in stromal lamellae, the α and β subunits of the proton ATPase.  相似文献   

4.
The response of the photosynthetic apparatus in the green alga Dunaliella salina, to irradiance stress was investigated. Cells were grown under physiological conditions at 500 millimoles per square meter per second (control) and under irradiance-stress conditions at 1700 millimoles per square meter per second incident intensity (high light, HL). In control cells, the light-harvesting antenna of photosystem I (PSI) contained 210 chlorophyll a/b molecules. It was reduced to 105 chlorophyll a/b in HL-grown cells. In control cells, the dominant form of photosystem II (PSII) was PSIIα(about 63% of the total PSII) containing >250 chlorophyll a/b molecules. The smaller antenna size PSIIβ centers (about 37% of PSII) contained 135 ± 10 chlorophyll a/b molecules. In sharp contrast, the dominant form of PSII in HL-grown cells accounted for about 95% of all PSII centers and had an antenna size of only about 60 chlorophyll a molecules. This newly identified PSII unit is termed PSIIγ. The HL-grown cells showed a substantially elevated PSII/PSI stoichiometry ratio in their thylakoid membranes (PSII/PSI = 3.0/1.0) compared to that of control cells (PSII/PSI = 1.4/1.0). The steady state irradiance stress created a chronic photoinhibition condition in which D. salina thylakoids accumulate an excess of photochemically inactive PSII units. These PSII units contain both the reaction center proteins and the core chlorophyll-protein antenna complex but cannot perform a photochemical charge separation. The results are discussed in terms of regulatory mechanism(s) in the plant cell whose function is to alleviate the adverse effect of irradiance stress.  相似文献   

5.
Spinach (Spinacia oleracea) chloroplasts were aged at 4°C under red light and in the dark. The electron transport activity was monitored together with the thylakoid polypeptide patterns in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The light-induced decay of photosystem II (PSII) activity (half-life, about 4 hours) was correlated with a decrease in polypeptides with apparent molecular weights of 36, 48, and 50 kilodaltons. There was very little decay of photosystem I (PSI) activity until after 8 hours illumination. Prior freezing of the chloroplasts enhanced the decrease in PSI activity which was correlated with chlorophyll-protein complex I (CPI) disappearance and an increase in a polypeptide with apparent molecular weight of 60 kilodalton. No variations were detected in the light-harvesting chlorophyll a/b protein. In the dark, the decay of PSII started at 4 to 6 hours and showed a half life of about 30 hours. PSI activity decay (half life about 6 days) occurred simultaneously with the disappearance of CPI. The use of bovine serum albumin (30 mg/mg of chlorophyll) in the light-induced decay experiments increased the stability of PSII more than 2-fold; in the dark experiments, the stability of both photosystems was also more than doubled and the stability of the CPI complex was considerably improved. Comparative electrophoresis of the purified proteins indicated no changes in the cytochrome f band or in the subunits of the ATPase coupling factor during the light-induced decay experiments. Heating of purified PSI particles prior to electrophoresis showed that the 60 kilodaltons polypeptide increased with the disappearance of CPI.  相似文献   

6.
The effect of light quality on the composition, function and structure of the thylakoid membranes, as well as on the photosynthetic rates of intact fronds from Asplenium australasicum, a shade plant, grown in blue, white, or red light of equal intensity (50 microeinsteins per square meter per second) was investigated. When compared with those isolated from plants grown in white and blue light, thylakoids from plants grown in red light have higher chlorophyll a/chlorophyll b ratios and lower amounts of light-harvesting chlorophyll a/b-protein complexes than those grown in blue light. On a chlorophyll basis, there were higher levels of PSII reaction centers, cytochrome f and coupling factor activity in thylakoids from red light-grown ferns, but lower levels of PSI reaction centers and plastoquinone. The red light-grown ferns had a higher PSII/PSI reaction center ratio of 4.1 compared to 2.1 in blue light-grown ferns, and a larger apparent PSI unit size and a lower PSII unit size. The CO2 assimilation rates in fronds from red light-grown ferns were lower on a unit area or fresh weight basis, but higher on a chlorophyll basis, reflecting the higher levels of electron carriers and electron transport in the thylakoids.

The structure of thylakoids isolated from plants grown under the three light treatments was similar, with no significant differences in the number of thylakoids per granal stack or the ratio of appressed membrane length/nonappressed membrane length. The large freeze-fracture particles had the same size in the red-, blue-, and white-grown ferns, but there were some differences in their density. Light quality is an important factor in the regulation of the composition and function of thylakoid membranes, but the effects depend upon the plant species.

  相似文献   

7.
A photosystem two (PSII) core complex consisting of five major polypeptides (47, 40, 32, 30, and 10 kilodaltons) and a light harvesting chlorophyll a/b complex (LHC-2) have been isolated from the halotolerant alga Dunaliella salina. The chlorophyll and polypeptide composition of both complexes were compared in illuminated and dark-adapted cultures. Dark adaptation is accompanied by a decrease in the chlorophyll a to chlorophyll b (Chl a/Chl b) ratio of intact thylakoids without any change in total chlorophyll. These changes occur with a half-time of 3 hours and are reversed upon reillumination. Analyses of PSII enriched membrane fragments suggest that the decrease in the Chl a/Chl b is due partly to an increase in the Chl b content of LHC-2 and partly to changes in the relative levels of the two complexes. Apparently during dark adaptation there is: (a) a net synthesis of chlorophyll b, (b) removal of PSII core complexes resulting in a 2-fold drop in the PSII cores to LHC-2 chlorophyll ratio. These changes should dramatically increase the light harvesting capacity of the remaining PSII reaction centers. Presumably this adjustment of antenna size and composition is a physiological mechanism necessary for responding to shade conditions. Also detected, using 32P, are light-induced phosphorylation of the LHC-2 (consistent with the ability to undergo State transitions) and of the 40 and 30 kilodalton subunits of the PSII core complex. These observations indicate that additional mechanisms may also exist to help optimize the interception of quanta during rapid changes in illumination conditions.  相似文献   

8.
Prochlorothrix hollandica is one of the three known species of an unusual clade of cyanobacteria (formerly called “prochlorophytes”) that contain chlorophyll a and b molecules bound to intrinsic light-harvesting antenna proteins. Here, we report the structural characterization of supramolecular complex consisting of Photosystem I (PSI) associated with the chlorophyll a/b-binding Pcb proteins. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the Pcb-PSI supercomplex consists of a central trimeric PSI surrounded by a ring of 18 Pcb subunits. We conclude that the formation of the Pcb ring around trimeric PSI represents a mechanism for increasing the light-harvesting efficiency in chlorophyll b-containing cyanobacteria.  相似文献   

9.
Klaus Apel 《BBA》1977,462(2):390-402
In the green alga Acetabularia mediterranea a light-harvesting chlorophyll a/b · protein complex of 67 000 daltons has been found which contains two polypeptide chains of 21 500 and 23 000 daltons. These two polypeptides were isolated on a preparative scale and were further characterized by several different methods. Both polypeptides proved to be very similar. While their amino acid and sugar compositions as well as their immunochemical properties were almost identical the tryptic peptides and the cyanogen bromide fragments of the two polypeptides revealed minor but significant differences. The 67 000-dalton chlorophyll a/b · protein complex and its two polypeptide components were compared to the light-harvesting chlorophyll a/b · protein of higher plants.  相似文献   

10.
11.
Cells of two species of single-celled marine algae, the diatom Skeletonema costatum (Greve), Cleve, and the chlorophyte Dunaliella tertiolecta Butcher, were cultured in white light of high (500-600 microeinsteins per square meter per second) and low (30 microeinsteins per square meter per second) intensity. For both algal species, cells grown at low light levels contained more chlorophyll a and had a lower ratio of chlorophyll a to chlorophylls b or c than did cells grown at high light levels. When photosynthetic unit sizes were measured on the basis of either oxygen flash yields or P700 photooxidation, different results were obtained with the different species. In the chlorophyte, the cellular content of photosystem I (PSI) and photosystem II (PSII) reaction centers increased in tandem as chlorophyll a content increased so that photosynthetic unit sizes changed only slightly and the ratio PSI:PSII reaction centers remained constant at about 1.1. In the diatom, as the chlorophyll content of the cells increased, the number of PSI reaction centers decreased and the number of PSII reaction centers increased so that the ratio of PSI:PSII reaction centers decreased from about unity to 0.44. In neither organism did photosynthetic capacity correlate with changes in cellular content of PSI or PSII reaction centers. The results are discussed in relationship to the physical and biological significance of the photosynthetic unit concept.  相似文献   

12.
Light-harvesting capacities of photosystem I (PSI) and photosystemII (PSII) in a wild-type and three chlorophyll b-deficient mutantstrains of rice were determined by measuring the initial slopeof light-response curve of PSI and PSII electron transport andkinetics of light-induced redox changes of P-700 and QA, respectively.The light-harvesting capacity of PSI determined by the two methodswas only moderately reduced by chlorophyll b-deficiency. Analysisof the fluorescence induction that monitors time course of QAphotoreduction showed that both relative abundance and antennasize of PSIIa decrease with increasing deficiency of chlorophyllb and there is only PSII in chlorina 2 which totallylacks chlorophyll b. The numbers of antenna chlorophyll moleculesassociated with the mutant PSII centers were, therefore, threeto five times smaller than that of PSIIa in the wild type rice.Rates of PSII electron transport determined on the basis ofPSII centers in the three mutants were 60–70% of thatin the normal plant at all photon flux densities examined, indicatingthat substantial portions of the mutant PSII centers are inactivein electron transport. The initial slopes of light-responsecurves of PSII electron transport revealed that the functionalantenna sizes of the active populations of PSII centers in themutants correspond to about half that of PSII in the wild typerice. Thus, the numbers of chlorophyll molecules that serveas antenna of the oxygen-evolving PSII centers in the mutantsare significantly larger than those that are actually associatedwith each PSII center. It is proposed that the inactive PSIIserves as an antenna of the active PSII in the three chlorophyllb-deficient mutants of rice. In spite of the reduced antennasize of PSII, therefore, the total light-harvesting capacityof PSII approximately matches that of PSI in the mutants. (Received July 29, 1994; Accepted February 7, 1996)  相似文献   

13.
Phosphorylated thylakoid proteins of spinach (Spinacia oleracea L.) and pea (Pisum sativum L.) were solubilized, fractionated by sucrose density gradient centrifugation, and analyzed by gel electrophoresis and crossed immunoelectrophoresis to identify the phosphoproteins. It was found that in addition to intense phosphorylation of light-harvesting chlorophyll complex II, four photosystem II components, CP43 apoprotein, D1, D2, and a 10 to 11 kilodalton protein, are substantially phosphorylated in the light. Furthermore, the CP43 apoprotein, D1 and D2 can be resolved into two electrophoretic subspecies, only one of which is phosphorylated. This indicates that only a fraction of the PSII polypeptides is phosphorylated. Finally, analysis of detergent procedures suggests that the 10 to 11 kilodalton phosphoprotein is a peripheral component of the O2-evolving PSII reaction center complex.  相似文献   

14.
The development and organization of the Photosynthetic units follow a step-wise assembly process. First the core complexes of the PSI and PSII units are formed, followed by their light-harvesting components; then an assembly process of these components into supramolecular structures takes place. Parallel to this, the control of excitation energy distribution between the two photosystems is established. This control is attributed to the modulation of the PSI unit effective cross section, which is possible only when LHC-I is formed and assembled into CPIa. Parallel to the formation of PSI and PSII, the electron carriers are synthesized and the electron transport chain is assembled. The number of PSII units operating per electron transport chain remains constant throughout development and equal to that of the mature chloroplast, but the number of PSI units per chain varies with PSII unit size. During development, when the rate of Chla synthesis is low, relative to the other thylakoid components, or is completely stopped, then the newly formed or preexisting LHC-I and LHC-II proteins are digested and their Chla is used for the formation of PS core complexes.  相似文献   

15.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl Chlorophyll - CL Continuous light - CPa the reaction center complex of PSII - CPI the reaction center complex of PSI - CPIa Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI - fr w fresh weight - LDC Light dark cycles - LHC-I Light-harvesting complex of PSI - LHC-II Light harvesting complex of PSII - PS photosystem - PSI photosystem I - PSII photosystem II  相似文献   

16.
Obokata J 《Plant physiology》1987,84(2):535-540
Synthesis and assembly of photosystems (PS) I and II polypeptides in etiochloroplasts isolated from greening wheat (Triticum aestivum L. cv Norin 61) seedlings were studied. The isolated etiochloroplasts synthesized PSI polypeptides of 66 and 15 kilodaltons, PSII polypeptides of 46 and 42 kilodaltons, and atrazine-binding 34 to 32 kilodalton polypeptide. Their assembly processes in the thylakoid membrane were studied by pulse-chase labeling with [35S]methionine, mild solubilization of the thylakoid membrane with Triton X-100, sucrose density gradient centrifugation, and polyacrylamide gel electrophoresis. The newly synthesized polypeptides of 66, 46, 42, 34, and 32 kilodaltons were first integrated into the complexes of 7.5, 5.9, 7.5, 6.3, and 7.5 Svedberg units, respectively, in 20 minutes. After the chase with excess amount of methionine for 100 min, they were found in complexes of 9.5, 9.1, 9.1, 9.1, and 9.1 Svedberg units, respectively. In this condition, stained polypeptides of PSI and PSII were found in the complexes of 11.1 and 10.3 Svedberg units, respectively. These results indicated that newly synthesized PSI or PSII polypeptides are integrated into intermediate complexes, but not complete complexes in the isolated etiochloroplasts. The relationship between the processing of the atrazine-binding 32 kilodalton polypeptide and its assembly into the PSII complex is also discussed.  相似文献   

17.
The transverse heterogeneity of the polypeptides associated with the Photosystem I (PSI) complex in spinach thylakoid membranes and in a highly resolved PSI preparation has been studied using the impermeant chemical modifier, 2,4,6-trinitrobenzenesulfonate (TNBS) and the proteolytic enzyme, Pronase E. The present study has shown that the PSI reaction center polypeptide of ~62 kilodaltons and the 22 and 20 kilodalton polypeptides of the PSI light-harvesting chlorophyll protein (LHCPI) complex are not labeled by [14C]TNBS in unfractionated thylakoids. On the other hand, the 23 kilodalton polypeptide of the PSI LHCP and the 19 and 14 kilodalton polypeptides associated with the PSI primary electron acceptor complex are readily labeled by [14C]TNBS and are exposed to the stromal side of the thylakoid. Differences and similarities in the labeling of polypeptides associated with the PSI complex in thylakoids and in the isolated PSI complex are also noted. Treatment of thylakoids with pronase had no effect on the organization of the polypeptides in the LHCPI or the reaction center core complex, as manifested by the separation of these two subcomplexes from pronase-treated membranes. The 62, 19, and 14 kilodalton polypeptides associated with the reaction center core complex and the 23 and 22 kilodalton polypeptides associated with LHCPI are sensitive to pronase treatment while the 20 kilodalton polypeptide of LHCPI was inaccessible to the protease. The proteolysis of the 62 kilodalton polypeptide generated first a single immunodetectable fragment at about 48 kilodaltons, and further proteolytic digestion generated two other fragments at 30 and 17 kilodaltons respectively. These results are discussed in relation to the organization of the PSI complex in spinach thylakoids. A model for the transmembrane topography of the polypeptide constituents of PSI has been developed.  相似文献   

18.
Measurements of electron transport activity point to the occurrence of major changes in the organisation of the photosynthetic apparatus of heat-stressed chloroplasts. One of the consequences of these changes is shown to be a greatly increased susceptibility of chlorophyll to photobleaching. Despite the fact that the threshold temperature for this photobleaching coincides closely with that for the inhibition of PSII activity, the bleached components were found to be specifically associated with PSI. This increased susceptibility of PSI pigments to photobleaching is shown to be a direct consequence of an interruption of the flow of reductants from PSII to PSI that would normally protect PSI from photooxidation.Abbreviations PSI photosystem I - PSII photosystem II - chl a chlorophyll a - chl b chlorophyll b - LHCP chlorophyll a/b light-harvesting protein - CP1 P700-chlorophyll a protein - DCMU 3-(34 dichlorophenyl)-11-dimethylurea - DCPIP dichlorophenolindophenol - Fecy potassium ferricyanide - MV methyl viologen Biochemistry Department, King's College (KQC), University of London  相似文献   

19.
The effect of protein phosphorylation on electron transportactivities of thylakoids isolated from wheat leaves was investigated.Protein phosphorylation resulted in a reduction in the apparentquantum yield of whole chain and photosystem II (PSII) electrontransport but had no effect on photosystem I (PSI) activity.The affinity of the D1 reaction centre polypeptide of PSII tobind atrazine was diminished upon phosphorylation, however,this did not reduce the light-saturated rate of PSII electrontransport. Phosphorylation also produced an inhibition of thelight-saturated rate of electron transport from water or durohydroquinoneto methyl viologen with no similar effect being observed onthe light-saturated rate of either PSII or PSI alone. This suggeststhat phosphorylation produces an inhibition of electron transportat a site, possibly the cytochrome b6/f complex, between PSIIand PSI. This inhibition of whole-chain electron transport wasalso observed for thylakoids isolated from leaves grown underintermittent light which were deficient in polypeptides belongingto the light-harvesting chlorophyll-protein complex associatedwith photosystem II (LHCII). Consequently, this phenomenon isnot associated with phosphorylation of LCHII polypeptides. Apossible role for cytochrome b6/f complexes in the phosphorylation-inducedinhibition of whole chain electron transport is discussed. Key words: Electron transport, light harvesting, photosystem 2, protein phosphorylation, thylakoid membranes, wheat (Triticum aestivum)  相似文献   

20.
Electrophoretic analysis by sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis showed that the light-harvesting chlorophyll ab-protein complex of barley thylakoids contains only one polypeptide of apparent molecular weight 26 000. The barley mutant, deficient in chlorophyll b and this light-harvesting complex, lacks this polypeptide.The addition of a nonionic detergent, Triton X-100, to the sodium dodecyl solubilization buffer prior to SDS polyacrylamide tube gel electrophoresis, allowed separation of a relatively stable complex, characterized as an oligomeric form of the light-harvesting complex. The oligomer also contained a polypeptide with an apparent molecular weight of 26 000. The absorption and fluorescence spectral properties of the oligomer are similar to those of the monomer. It is suggested that the oligomer of the light-harvesting chlorophyll ab-protein is closer to the in vivo form rather than the monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号